Okounkov's conjecture on qMZV

Shintarou Yanagida

Nagoya University

March 13, 2024 @ q-series and its related topics (Umeda2024)

Abstract and contents

A quick review of
[Ok] A. Okounkov, "Hilbert schemes and multiple q-zeta values", 13pp., arXiv:1404.3873, focusing on the section 2: $\operatorname{Hilb}^{n}(S)$ and $q M Z V$.
$q \mathrm{MZV}$ appear in Nekrasov-like functions.
Contents
$\S 1 \operatorname{Hilb}^{n}(S)$ and $q M Z V$
§2 Hilbert scheme of points
§3 Carlsson-Okounkov vertex operators
[4 pages]
[4 pages]
[7 pages]

§1 $\operatorname{Hilb}^{n}(S)$ and $q \mathrm{MZV} \quad[1 / 4]$

S : a non-singular projective surface over \mathbb{C}
$S^{[n]}:=\operatorname{Hilb}^{n}(S)$: the Hilbert scheme of n-points on $S\left(n \in \mathbb{Z}_{\geq 0}\right)$
: roughly, "moduli space of n-points on S " (explained in $\S 2$)
: non-singular projective of dimension $2 n$
[Göttsche ${ }^{1}$]

$$
\sum_{n=0}^{\infty} q^{n} e\left(S^{[n]}\right)=(q ; q)_{\infty}^{-e(S)}
$$

with $e(X):=$ Euler number of X.
For generalization, $\quad \mathrm{LHS}=\sum_{n=0}^{\infty} q^{n} \int_{S^{[n]}} c_{2 n}\left(T_{S^{[n]}}\right)$ with $T_{S^{[n]}}$ the tangent bundle and $c_{2 n}$ the top Chern class, and $\int_{S^{[n]}}$ is the integration of cohomology.

[^0]
$\S 1 \operatorname{Hilb}^{n}(S)$ and $q M Z V \quad[2 / 4]$

Göttsche formula: $\sum_{n=0}^{\infty} q^{n} \int_{S^{[n]}} c_{2 n}\left(T_{S[n]}\right)=(q ; q)_{\infty}^{-e(S)}$. For line bundles L, M on S and $f \in \mathbb{Q}\left[\mathrm{ch}_{0}, \mathrm{ch}_{1}, \mathrm{ch}_{2}, \ldots\right]$,

$$
\langle f\rangle_{L, M}:=\sum_{n=0}^{\infty} q^{n} \int_{S_{[n]}} f\left(L^{[n]}\right) c_{2 n}\left(T_{S[n]}(M)\right) \in H^{*}(\mathrm{pt} ; \mathbb{Q}) \llbracket q \rrbracket=\mathbb{Q} \llbracket q \rrbracket
$$

with $L^{[n]}$ and $T_{S[n]}(M)$ certain vector bundles on $S^{[n]}$ (p.10, §2.4).
[Carlsson-Okounkov ${ }^{2}$, Cor. 1], [Ok, §2.4]
$\langle 1\rangle_{M}=\sum_{n=0}^{\infty} q^{n} \int_{S^{[n]}} c_{2 n}\left(T_{S^{[n]}}(M)\right)$ is equal to

$$
\langle 1\rangle_{M}=(q ; q)_{\infty}^{-\delta}, \quad \delta:=\int_{S} c_{2}\left(T_{S} \otimes M\right)
$$

If $M=O_{S}$ (trivial bundle), then $T_{S}(M)=T_{S}$ and $\delta=e(S)$, recovering the Göttsche formula.

[^1]
§1 $\operatorname{Hilb}^{n}(S)$ and $q \mathrm{MZV} \quad[3 / 4]$

For $f \in \mathbb{Q}\left[\mathrm{ch}_{0}, \mathrm{ch}_{1}, \mathrm{ch}_{2}, \ldots\right]$ and line bundles L, M on S,
$\langle f\rangle_{L, M}:=\sum_{n=0}^{\infty} q^{n} \int_{S^{[n]}} f\left(L^{[n]}\right) c_{2 n}\left(T_{S^{[n]}}(M)\right) \in \mathbb{Q} \llbracket q \rrbracket$.
[Carlsson-Okounkov, Cor. 3], [Ok, §2.6]
$f=c_{1}=c h_{1}$: 1st Chern class, $L=O_{S}$,

$$
\frac{\left\langle c_{1}\right\rangle_{O_{S}, M}}{\langle 1\rangle_{M}}=\frac{1}{2}\left(\widetilde{E}_{q}(2)-\widetilde{E}_{q}(3)\right) \cdot \int_{S}\left(c_{1} c_{2}-c_{3}\right)\left(T_{S} \oplus M\right)
$$

with $\widetilde{E}_{q}(s):=\sum_{n>0} n^{s-1} \frac{q^{n}}{1-q^{n}}$.
Relation to $q \mathrm{MZV}$ [Ok, §1]
$\zeta_{q}^{O}\left(s_{1}, \ldots, s_{k}\right):=\sum_{n_{1}>n_{2}>\cdots>n_{k} \geq 1} \prod_{i=1}^{k}\left(n_{i}\right)^{-s_{i}},(n)^{-s}:=\frac{p_{s}\left(q^{n}\right)}{\left(1-q^{n}\right)^{s}}$,
$p_{s}(t):=t^{s / 2}(s:$ even $), t^{(s-1) / 2}(t+1)(s:$ odd $)$.
$q \mathrm{MZV} \subset \mathbb{Q} \llbracket q \rrbracket: \mathbb{Q}$-subalg. spanned by $\zeta_{q}^{O}\left(s_{1}, \ldots, s_{k}\right)$ with $s_{i} \geq 2$.
$\widetilde{E}_{q}(2)=\zeta_{q}^{O}(2)$ and $\widetilde{E}_{q}(3)=\zeta_{q}^{O}$ (3) (but $\widetilde{E}_{q}(s) \neq \zeta_{q}^{O}(s)$ for $s \geq 4$).

§1 $\operatorname{Hilb}^{n}(S)$ and $q \mathrm{MZV} \quad[4 / 4]$

For $f \in \mathbb{Q}\left[\mathrm{ch}_{0}, \mathrm{ch}_{1}, \mathrm{ch}_{2}, \ldots\right]$ and line bundles L, M on S, $\langle f\rangle_{L, M}:=\sum_{n=0}^{\infty} q^{n} \int_{S_{[n]}} f\left(L^{[n]}\right) c_{2 n}\left(T_{S^{[n]}}(M)\right) \in \mathbb{Q} \llbracket q \rrbracket$.
Normalized function

$$
\langle f\rangle_{L, M}^{\prime}:=\langle f\rangle_{L, M} /\langle 1\rangle_{M} .
$$

Carlsson-Okounkov formula:

$$
\left\langle c_{1}\right\rangle_{O_{S}, M}^{\prime}=\frac{1}{2}\left(\zeta_{q}^{O}(2)-\zeta_{q}^{O}(3)\right) \cdot \int_{S}\left(c_{1} c_{2}-c_{3}\right)\left(T_{S} \oplus M\right) \in q \mathrm{MZV} .
$$

Conjecture 2 in [Ok]
For any $f \in \mathbb{Q}\left[\mathrm{ch}_{0}, \mathrm{ch}_{1}, \mathrm{ch}_{2}, \ldots\right]$ and line bundles L, M on S,

$$
\langle f\rangle_{L, M}^{\prime} \stackrel{?}{\in} q \mathrm{MZV} .
$$

Remark
If S quasi-projective with G-action, $\langle f\rangle_{L, M}^{\prime} \in H_{G}^{*}(\mathrm{pt} ; \mathbb{Q})_{\text {loc }} \llbracket q \rrbracket$.

§2.1 Hilbert scheme of points $\operatorname{Hilb}^{n}(X)$

[Grothendieck]
X : quasi-projective scheme over \mathbb{C}
$\exists \operatorname{Hilb}(X)$: scheme such that for all scheme T,
$\operatorname{Hom}_{\text {Sch }}(T, \operatorname{Hilb}(X))=\mathcal{H}_{X}(T):=\left\{Z \subset T \times X \left\lvert\, \begin{array}{l}\text { closed subscheme, } \\ \text { proper and flat } / T\end{array}\right.\right\}$.
It decomposes as $\operatorname{Hilb}(X)=\bigsqcup_{P \in \mathbb{Q}[\lambda]} \operatorname{Hilb}^{P}(X)$, and

$$
\operatorname{Homsch}(T, \operatorname{Hilb}(X))=\left\{Z \in \mathcal{H}_{X}(T) \mid \Phi_{Z_{t}}=P \forall t \in T\right\}
$$

with $\Phi_{Y} \in \mathbb{Q}[\lambda]$ the Hilbert polynomial. $\operatorname{deg} \Phi_{Y}=\operatorname{dim} Y$. In the case $P=n$ (constant, $n \in \mathbb{Z}_{\geq 0}$),
$\operatorname{Hilb}^{n}(X)=\left\{Z \subset X \mid 0\right.$-dim. subcsheme, $\left.\operatorname{dim}_{\mathbb{C}} H^{0}\left(Z, O_{Z}\right)=n\right\}$.
$\operatorname{Supp}\left(O_{Z}\right)=\left\{p_{1}, \ldots, p_{l}\right\}, p_{i} \in X, n=\sum_{i=1}^{l} \operatorname{dim}_{\mathbb{C}} O_{Z, p_{i}}$.

§2.2 Universal family and tangent space

$X^{[n]}:=\operatorname{Hilb}^{n}(X) . \operatorname{Hom}_{S c h}\left(T, X^{[n]}\right)=\mathcal{H}_{X}^{n}(T)$ for any scheme T. $\mathcal{H}_{X}^{n}(T):=\left\{Z \subset T \times X \mid\right.$ closed sub., flat over $\left.T, \Phi_{Z_{t}}=n\right\}$.
Universal family
It is a closed subscheme $\Sigma_{n} \subset X^{[n]} \times X$ given by

$$
\operatorname{Homsch}_{\text {sch }}\left(X^{[n]}, X^{[n]}\right)=\mathcal{H}_{X}^{n}\left(X^{[n]}\right), \quad \text { id }_{X^{[n]}} \longmapsto \Sigma_{n} \subset X^{[n]} \times X
$$

In fact, $\Sigma_{n}=\left\{(W, x) \in X^{[n]} \times X \mid x \in W\right\}$.
Tangent space of $X^{[n]}$
For each $Z \in X^{[n]}$, the Zariski tangent space of $X^{[n]}$ at Z is

$$
T_{Z} X^{[n]}=\operatorname{Hom}_{O_{X}}\left(I_{Z}, O_{Z}\right) .
$$

I_{Z} is the ideal sheaf. $0 \rightarrow I_{Z} \rightarrow O_{X} \rightarrow O_{Z} \rightarrow 0$ (exact).

§2.3 Hilbert scheme of points on a surface

[Fogarty ${ }^{3}$]
For a non-singular (quasi-)projective surface S,
$S^{[n]}$ is non-singular (quasi)-projective.
K-theory class of tangent space [Ok, §2.2]
Since $S^{[n]}$ is non-singular, the Zariski tangent space is equal to the fiber of the tangent bundle $T_{S[n]}$ of the complex manifold $S^{[n]}$.
We have $\left.T_{S[n \mid}\right|_{Z}=T_{Z} S^{[n]}=\operatorname{Hom}_{O_{S}}\left(I_{Z}, O_{Z}\right)$.
Then, by [Ellingsrud-Göttsche-Lehn ${ }^{4}$, Prop. 2.2],

$$
\left.T_{S[n]}\right|_{Z}=\chi\left(O_{S}, O_{S}\right)-\chi\left(I_{Z}, I_{Z}\right)
$$

in $K(\mathrm{pt})$, where $\chi(E, F):=\sum_{i}(-1)^{i} \mathrm{Ext}_{O_{S}}(E, F)$.

[^2]
§2.4 Bundles in [Ok]

Recall the Nekrasov-like function

$$
\langle f\rangle_{L, M}:=\sum_{n=0}^{\infty} q^{n} \int_{S^{[n]}} f\left(L^{[n]}\right) c_{2 n}\left(T_{S[n]}(M)\right)
$$

The bundle $L^{[n]}$ in [Ok]
L : a line bundle on $S, \quad \Sigma_{n} \subset S^{[n]} \times S$: the universal family,
$p: \Sigma_{n} \rightarrow S^{[n]}, q: \Sigma_{n} \rightarrow S$: projections
$L^{[n]}:=p_{*} q^{*} L$: vector bundle on $S^{[n]}$ of rank n.
The fiber at $Z \in S^{[n]}$ is $\left.L^{[n]}\right|_{Z}=H^{0}\left(Z, O_{Z} \otimes O_{X} L\right)$.
The bundle $T_{S_{[n]}}(M)$ in [Ok]
M : a line bundle on S
We can twist the tangent bundle $T_{S_{[n]}}$ by M to get $T_{S_{[n]}}(M)$ such that $\left.T_{S[n]}(M)\right|_{Z}=\chi\left(O_{S}, M\right)-\chi\left(I_{Z}, I_{Z} \otimes M\right)$.

§3.1 Carlsson-Okounkov vertex operator

Consider the direct sum of the cohomology of $S^{[n]}$:

$$
\mathcal{F}=\bigoplus_{n \geq 0} \mathcal{F}_{n}, \quad \mathcal{F}_{n}:=H^{*}\left(S^{[n]} ; \mathbb{Q}\right),
$$

a linear superspace with $\mathcal{F}^{\mathrm{ev}}:=\bigoplus_{n} H^{\mathrm{ev}}\left(S^{[n]} ; \mathbb{Q}\right)$, similar for $\mathcal{F}^{\text {od }}$.
[Nakajima ${ }^{5}$, Grojnowski ${ }^{6}$]
For each $n \in \mathbb{Z} \backslash\{0\}$ and $\gamma \in H^{*}(S ; \mathbb{Q})$, there is $\alpha_{n}(\gamma) \in \operatorname{End}(\mathcal{F})$ such that

$$
\left[\alpha_{m}(\gamma), \alpha_{n}\left(\gamma^{\prime}\right)\right]=(-1)^{m-1} m \delta_{m+n, 0}\left\langle\gamma, \gamma^{\prime}\right\rangle
$$

with $\left\langle\gamma, \gamma^{\prime}\right\rangle:=\int_{S} \gamma \cup \gamma^{\prime}$, and \mathcal{F} is isomorphic to the Fock representation of this Heisenberg algebra.

[^3]
§3.1 Carlsson-Okounkov vertex operator

[Carlsson-Okounkov ${ }^{7}$]

$\Sigma \subset S^{[n]} \times S$: the universal family, M : a line bundle, $k, I \in \mathbb{Z}_{\geq 0}$.
$\Sigma^{(i)}:=p_{i 3}^{!}\left(O_{\Sigma}\right) \in K\left(S^{[k]} \times S^{[/]} \times S\right)$ for $i=1,2$,
where $p_{13}: S^{[k]} \times S^{[l]} \times S \rightarrow S^{[k]} \times S$ is the proj., similar for p_{23}, and $p_{i 3}^{!}$is the K-theoretic pullback.

$$
E_{M}:=p_{12!}\left(\left(\Sigma^{(1) \vee}+\Sigma^{(2)}-\Sigma^{(1) \vee} \cdot \Sigma^{(2)}\right) \cdot p_{3}^{!} M\right) \in K\left(S^{[k]} \times S^{[/]}\right)
$$

where $p_{!}$is the K-theoretic push-forward., V is the K-theor. dual, and \cdot is the multiplication (\otimes of bundles). rk $E_{M}=k+I$, and the fiber at $\left(Z_{1}, Z_{2}\right) \in S^{[k]} \times S^{[/]}$is

$$
\left.E_{M}\right|_{\left(Z_{1}, Z_{2}\right)}=\chi\left(O_{S}, M\right)-\chi\left(I_{Z_{1}}, I_{Z_{2}} \otimes M\right)
$$

So $\left.E_{M}\right|_{\text {diag. of } S^{[k]} \times S^{[k]}}=T_{S^{[n]}}(M)$.

[^4]
§3.3 Carlsson-Okounkov vertex operator

An operator series (quantum field) $W(M, z) \in($ End $\mathcal{F}) \llbracket z^{ \pm 1} \rrbracket$:

$$
\langle W(M, z) \xi, \eta\rangle=z^{I-k} \int_{S^{[k]} \times S^{[]]}} p_{1}^{*}(\xi) \cup p_{2}^{*}(\eta) \cup c_{k+1}\left(E_{M}\right)
$$

for $\xi \in H^{*}\left(S^{[k]} ; \mathbb{Q}\right)$ and $\eta \in H^{*}\left(S^{[l]} ; \mathbb{Q}\right)$.
Theorem [Carlsson-Okounkov]
$W(M, z)$ has the following vertex operator expression:

$$
\begin{aligned}
W(M, z)= & \exp \left(-\sum_{n>0} \frac{1}{n}(-z)^{n} \alpha_{-n}(M)\right) \\
& \cdot \exp \left(-\sum_{n>0} \frac{1}{n} z^{-n} \alpha_{n}\left(K_{S}-M\right)\right)
\end{aligned}
$$

where $\alpha_{n}(M):=\alpha_{n}\left(c_{1}(M)\right), \alpha_{n}\left(K_{S}-M\right):=\alpha_{n}\left(c_{1}\left(K_{S} \otimes M^{*}\right)\right)$ and K_{S} is the canonical bundle of S.

§3.2 Computing Nekrasov-like function
 [1/4]

Nekrasov-like function as a super-trace
$f \in \mathbb{Q}\left[\mathrm{ch}_{0}, \mathrm{ch}_{1}, \mathrm{ch}_{2}, \ldots\right], \quad L, M$: line bundles on S

$$
\begin{aligned}
\langle f\rangle_{L, M} & :=\sum_{n=0}^{\infty} q^{n} \int_{S_{[n]}} f\left(L^{[n]}\right) c_{2 n}\left(T_{S[n]}(M)\right) \\
& =\sum_{n=0}^{\infty} q^{n} \int_{S[n]} f\left(L^{[n]}\right) c_{2 n}\left(\left.E_{M}\right|_{\text {diag. of } S^{[n]} \times S^{[n]}}\right) \\
& =\operatorname{str}_{\mathcal{F}}\left(q^{N} \cdot f\left(L^{[N]}\right) \cdot W(M, z)\right) .
\end{aligned}
$$

$\operatorname{str}_{\mathcal{F}}:=\operatorname{tr}_{\mathcal{F}^{\mathrm{ev}}}-\operatorname{tr}_{\mathcal{F} \text { od }}$, and $\mathrm{N}_{\mathcal{F}_{n}}=n \mathrm{id}_{\mathcal{F}_{n}}$ is the number-of-points operator.

§3.2 Computing Nekrasov-like function $[2 / 4]$

$\langle 1\rangle_{M}=\sum_{n=0}^{\infty} q^{n} \int_{S[m]} c_{2 n}\left(T_{S[n]}(M)\right)$ [CO, Cor.1], [Ok, §2.4]
Decompose $W(M, z)=\Gamma_{-}(z) \Gamma_{+}(z)$.

$$
\begin{aligned}
\langle 1\rangle_{M} & =\operatorname{str}\left(q^{N} \Gamma_{-}(z) \Gamma_{+}(z)\right) & & \\
& =\operatorname{str}\left(\Gamma_{-}(q z) q^{N} \Gamma_{+}(z)\right) & & \text { [commutation rel.] } \\
& =\operatorname{str}\left(q^{N} \Gamma_{+}(z) \Gamma_{-}(q z)\right) & & \text { [cycle prop. of str] } \\
& =(1-q)^{\left(M, K_{s}-M\right)} \operatorname{str}\left(q^{N} \Gamma_{-}(q z) \Gamma_{+}(z)\right) & & \text { [comm. rel. of VO] } \\
& =\cdots=(q ; q)_{\infty}^{\left(M, K_{s}-M\right)} \operatorname{str}\left(q^{N} \Gamma_{+}(z)\right) & & \\
& =(q ; q)_{\infty}^{\left(M, K_{S}-M\right)} \operatorname{str}\left(q^{N}\right) & & {\left[\Gamma_{+}\right. \text {is triangular] }} \\
& =(q ; q)_{\infty}^{\left(M, K_{s}-M\right)}(q ; q)_{\infty}^{-e(S)} & & \text { [Göttsche formula] } \\
& =(q ; q)_{\infty}^{-\int_{S} c_{2}\left(T_{s} \otimes M\right) .} & &
\end{aligned}
$$

[commutation rel.]
[cycle prop. of str]
[Γ_{+}is triangular]
[Göttsche formula]

§3.2 Computing Nekrasov-like function $\quad[3 / 4]$

Computing $\left\langle c_{1}\right\rangle_{O_{S}, M}$ [CO, Cor.3], [Ok, §2.6]

$$
\left\langle c_{1}\right\rangle_{O_{S}, M}^{\prime}=\operatorname{str}\left(q^{N} \cdot c_{1}\left(O_{S}^{[N]}\right) \cdot W(M, z)\right) .
$$

Reduce to the case $S=\mathbb{C}^{2} \curvearrowleft T=\left(\mathbb{C}^{\times}\right)^{2}, \mathcal{F}=\bigoplus_{n} H_{T}^{*}(S ; \mathbb{Q})$. $t_{1}, t_{2}: T$-equiv. weight of $T_{S}, m: T$-equiv. weight of O_{S}.
[Lehn ${ }^{8}$]
As an operator on the Fock space \mathcal{F},

$$
\begin{aligned}
c_{1}\left(O_{S}^{[\mathrm{N}]}\right)= & -\frac{1}{2}\left(t_{1}+t_{2}\right) \sum_{k>0}(k-1) \alpha_{-k} \alpha_{k} \\
& +\frac{1}{2} t_{1} t_{2} \sum_{k, l>0} \alpha_{-k} \alpha_{-I} \alpha_{k+1}-\frac{1}{2} \sum_{k, l>0} \alpha_{-k-l} \alpha_{k} \alpha_{l}
\end{aligned}
$$

with $\alpha_{k}:=\alpha_{k}(1)$ [quantum Calogero-Sutherland operator].
Then one can compute

$$
\begin{aligned}
& \left\langle c_{1}\right\rangle_{O_{S}, M}^{\prime}=\cdots=-\frac{1}{2}\left(t_{1}+t_{2}\right) \sum_{k} k(k-1) q^{k} /\left(1-q^{k}\right) \\
& \quad-\frac{1}{2 t_{1} t_{2}}\left(t_{1}+t_{2}\right)\left(m+t_{1}+t_{2}\right) m . \\
& \quad \cdot\left[\sum_{k} q^{k} /(1-q)^{k}+\sum_{k, /} q^{k+l} /\left(1-q^{k}\right)\left(1-q^{\prime}\right)\left(1-q^{k+\prime}\right)\right] .
\end{aligned}
$$

[^5] points on surfaces", Invent. Math. 136 (1999), 157-207.

§3.2 Computing Nekrasov-like function [4/4]

$\left\langle c_{1}\right\rangle_{O_{S, M}}=-A \sum_{k}-B\left(\sum_{k}+\sum_{k, 1}\right)$.
$A:=\frac{1}{2}\left(t_{1}+t_{2}\right), B:=\frac{1}{2 t_{1} t_{2}}\left(t_{1}+t_{2}\right)\left(m+t_{1}+t_{2}\right) m$.
Lemma

$$
\begin{align*}
& 1 \text { st } \sum_{k}=\widetilde{E}_{3}(q)-\widetilde{E}_{2}(q), \quad \text { 2nd } \sum_{k}=q \frac{d}{d q} \widetilde{E}_{1}(q)-\widetilde{E}_{2}(q), \\
& \sum_{\sim}{ }_{k, l}=\widetilde{E}_{3}(q)-q \frac{d}{d q} \widetilde{E}_{1}(q)
\end{align*}
$$

with $\widetilde{E}_{s}(q):=\sum_{n>0} n^{s-1} q^{n} /\left(1-q^{n}\right)$.
Hence $\left\langle c_{1}\right\rangle_{O_{S}, M}^{\prime}=(A+B)\left(\widetilde{E}_{2}(q)-\widetilde{E}_{3}(q)\right)$, but
$A+B=\left(t_{1}+t_{2}\right)\left(t_{1}+m\right)\left(t_{2}+m\right) / 2 t_{1} t_{2}=\frac{1}{2} \int_{S}\left(c_{1} c_{2}-c_{3}\right)\left(T_{s} \oplus M\right)$ in $H_{T}^{*}\left(S=\mathbb{C}^{2} ; \mathbb{Q}\right)$. Thus

$$
\left\langle c_{1}\right\rangle_{O_{S}, M}^{\prime}=\frac{1}{2}\left(\widetilde{E}_{2}(q)-\widetilde{E}_{3}(q)\right) \cdot \int_{S}\left(c_{1} c_{2}-c_{3}\right)\left(T_{S} \oplus M\right) .
$$

[^0]: ${ }^{1}$ L. Göttsche, "The Betti numbers of the Hilbert scheme of points on a smooth projective surface", Math. Ann. 286 (1990), 193-207.

[^1]: ${ }^{2}$ E. Carlsson, A. Okounkov, "Exts and vertex operators", Duke Math. J. 161 (2012), no. 9, 1797-1815.

[^2]: ${ }^{3} \mathrm{~J}$. Fogarty, "Algebraic families on an algebraic surface", Am. J. Math., 10 (1968), 511-521.
 ${ }^{4}$ G. Ellingsrud, L. Göttsche, M. Lehn, "On the cobordism class of the Hilbert scheme of a surface", J. Algebraic Geom. 10 (2001), 81-100.

[^3]: ${ }^{5}$ H. Nakajima, "Heisenberg algebra and Hilbert schemes of points on projective surfaces", Ann. Math. (2) 145 (1997), 379-388.
 ${ }^{6}$ I. Grojnowski, "Instantons and affine algebras I", Math. Res. Lett. 3 (1996), 275-291.

[^4]: ${ }^{7}$ E. Carlsson, A. Okounkov, "Exts and vertex operators", Duke J. M. (2012).

[^5]: ${ }^{8}$ M. Lehn, "Chern classes of tautological sheaves on Hilbert schemes of

