0. Introduction

[FP] Fulton, Pandharipande, "Notes on stable maps and quantum cohomology",

Proc. Symp. Pure Math. 62, AMS, 1997; arXiv:alg-geom/9608011

Contents

- 1- 6: Definition, construction and properties of the moduli space of stable maps
- §7 §10: Quantum cohomology

I will explain

- I. Stable maps and the moduli space $\overline{M}_{g,n}(X,\beta)$
- II. Outline of construction \rightarrow [R2]
- III. Theorems of [FP] on $\overline{M}_{0,n}(X,\beta)$ (especiially for X = G/P) \rightarrow [R4], [R5]
- IV. Basics of quantum cohomology \rightarrow [R1], [R3]

Schemes are over C.

Consider the classification of $\{(p_1, ..., p_n) \mid p_i \in \mathbb{P}^1, p_i \neq p_j \forall i \neq j\}$ under the equivalance $(p_1, ..., p_n) \sim (q_1, ..., q_n) \Leftrightarrow \exists \Phi \in Aut(\mathbb{P}^1) \text{ s.t. } \Phi(p_i) = q_i \forall i \}.$ The corresponding moduli space would be the "classifying space" of the equiv. classes.

[Grothendieck]

One should consider not only the objects but the families of such objects over any base.

A family of n points on \mathbb{P}^1 over a base scheme B is $(\pi, \sigma_1, ..., \sigma_n)$ with

- A (flat proper) morphism $\pi: X \to B$ of schemes such that $\pi^{-1}(b) \in \mathbb{P}^1 \ \forall b \in B$
- *n* disjoint sections $\sigma_i: B \to X$

Two families $(\pi: X \to B, \sigma_i)$ and $(\pi': X' \to B, \sigma_i')$ are equivalent if $\exists \Phi: X \to X'$ isom. s.t. ...

The moduli functor $\mathcal{M}_{0,n}$: Schemes \rightarrow Sets^{op} assigns to a scheme *B* the set of classes and to any morphism $f:B' \rightarrow B$ the map induced by the publiback of families. Ex. For pt = Spec(\mathbb{C}), $\mathcal{M}_{0,n}(pt) = \{$ equivalence classes $[p_1, ..., p_n]$ in the beginning $\}$.

I.2. Moduli space of n points in \mathbb{P}^{1}

A fine moduli $M_{0,n}$ is a scheme representing $\mathcal{M}_{0,n}$, i.e., \exists fun. isom. $\mathcal{M}_{o,n} \rightarrow \text{Hom}(-, M_{0,n})$.

For n = 3, $\mathcal{M}_{0,3}(\text{pt}) = \text{pt} = \{(0,1,\infty)\}$ by $\text{Aut}(\mathbb{P}^1) = \text{PGL}_2(\mathbb{C})$.

Given any family $(\pi: X \to B, \sigma_1, \sigma_2, \sigma_3)$, consider the morphism $T: X \to B \times \mathbb{P}^1$ defined by $T(x) \coloneqq (\pi(x), \operatorname{CrossRatio}_{\pi(x)}(\sigma_1(\pi(x)), \sigma_2(\pi(x)), \sigma_3(\pi(x)), x)), \operatorname{CR}(p_1, \dots, p_4) \coloneqq p_{14}p_{23}/p_{12}p_{34})$ It yields an isomorphism of families (π, σ_1, \dots) to $(\pi_1: B \times \mathbb{P}^1 \to B, 0, 1, \infty)$. Thus, we have the fine moduli $M_{0,3} = pt$.

For n = 4, we have the fine moduli $M_{0,4} = \mathbb{P}^1 - \{0,1,\infty\}$, since any (p_1, \dots, p_4) is equivalent to $(0,1,\infty, CR(p_1,\dots, p_4))$.

For $n \ge 4$, we have the fine moduli $M_{0,n} = (M_{0,4})^{n-3} - (all diagonals)$ [since any $(p_1, ..., p_4)$ is equivalent to $(0, 1, \infty, CR(p_1, p_2, p_3, p_4), ..., CR(p_1, p_2, p_3, p_n))$.]

For $n \leq 2$, $\mathcal{M}_{0,n}(pt)$ consists of only one point, but there is some *B* with non-equiv. families. There is no fine moduli. Generally, a moduli functor means a functor \mathcal{F} : Schemes \rightarrow Sets^{op}. Similarly, a fine moduli of \mathcal{F} is defined.

For a fine moduli space M of \mathcal{F} and functor isom $\varphi: \mathcal{F} \to \operatorname{Hom}(-, M)$, the universal family is defined to be $\varphi^{-1}(id_M) \in \mathcal{F}(M)$, which can be expressed as a family $\pi: U \to M$ of objects over the base M. It has the property that $\forall m \in M = \mathcal{F}(\operatorname{pt})$ corresponding to the equivalence classes of objects $[X_m]$, we have $[\pi^{-1}(m)] = [X_m]$.

For the fine moduli $M_{0,3} = pt$, the universal family is $U_{0,3} = (\pi: \mathbb{P}^1 \to pt, 0, 1, \infty)$.

For the fine moduli $M_{0,4} = \mathbb{P}^1 - \{0,1,\infty\}$, the universal family is $U_{0,4} = (\pi_1: M_{0,4} \times \mathbb{P}^1 \to M_{0,4}, 0, 1, \infty, \delta)$ with δ the diagonal section $\delta(p) = p$.

I.4. Rational stable curves

Remark. Grassmann functor \mathcal{GR} : Schemes \rightarrow Sets^{op},

 $\mathcal{GR}(S) = \{\text{equivalence classes } [\mathcal{F}, q] \text{ of quotients } q: \mathcal{O}_{S}^{\bigoplus n} \to \mathcal{F} \text{ with } \mathcal{F} \text{ locally free of rank } k \}$ has a fine moduli, nothing but the (quotient) Grassmannian $\operatorname{Gr}^{\operatorname{quot}}(\mathbb{C}^{n}, k)$. The universal family $\pi: Q \to \operatorname{Gr}^{\operatorname{quot}}(\mathbb{C}^{n}, k)$ is the tautological quotient bundle Q. [Special case of Quot scheme]

 $M_{0,n}$ is open, and one wants to compactify it. It would be nice if the universal family is also lifted to the compactification. A solution is:

An *n*-pointed rational stable curve $(C, p_1, ..., p_n)$ consists of a connected curve *C* with at worst nodal singularity and n-tuple of distinct points in C - Sing(C) such that for each irreducible component $E \subset C$, there are at least 3 special points on E.

Nodal singularity: locally (xy = 0) in $\mathbb{C}^2 = \text{Spec } \mathbb{C}[x, y]$.

The condition means $Aut(C, \{p_i\})$ is a finite group (no non-trivial infinitesimal aut.).

I.5. Moduli of pointed curves and KDM moduli

Thm. [Knudsen]

There exists an irreducible smooth projective fine moduli space $\overline{M}_{0,n}$ for *n*-pointed rational stable curves which contains $M_{0,n}$ as open dense sub.

The boundary $\partial M_{0,n} \coloneqq \overline{M}_{0,n} - M_{0,n}$ consisting of nodal stable curves is NCD.

Ex.
$$\overline{M}_{0,n} = \mathbb{P}^1$$
, $\partial M_{0,4} = \{0,1,\infty\}$, corresponds to

 $\partial M_{0,5}$ consists of 10 codim 1 strata and 15 codim 2 strata

Higher genus case [Deligne-Mumford, Knudsen]

An *n*-pointed stable curve $(C, p_1, ..., p_n)$ of genus g is a pair of a connected curve C with at worst nodal sing. and *n*-tuple of distinct points in C - Sing(C) such that for $E \subset C$,

- If $E \cong \mathbb{P}^1$, then E must contain at least 3 special points.
- If g(E) = 1, then E must contain at least 1 special point.

These conditions are equivalent to $Aut(C, \{p_i\})$ is a finite group.

In this case, we have the moduli space $\overline{M}_{g,n}$ as DM stack (orbifold) of dim = 3g - 3 + n.

II.1. Stable maps

An n-pointed genus g quasi-stable curve $(C, p_1, ..., p_n) = (C, \{p_i\})$ is a projective connected reduced curve C of arithmetic genus g with at most nodal singularities, equipped with n-distinct non-singular marked points $p_1, ..., p_n$.

X: scheme (of finite type over \mathbb{C})

A map from a quasi-stable curve $(C, \{p_i\})$ to X is a morphism $f: C \to X$ of schemes, denoted as $(C, \{p_i\}, f)$.

Such a map is stable if for each irreducible component E of C,

- If $E \cong \mathbb{P}^1$ and f(E) is a point, then E must contain at least 3 special points.
- If g(E) = 1 and f(E) is a point, then E must contain at least 1 special point. Equivalent to Aut(C, {p_i}, f) is a finite group (no non-trivial infinitesimal aut.)

II.2. Kontsevich moduli

X: projective variety

The Chow (co)homology in even deg: $A_d(X) \coloneqq H_{2d}(X,\mathbb{Z}), A^d(X) \coloneqq H^{2d}(X,\mathbb{Z}).$ For $\beta \in A_1(X) = H_2(X,\mathbb{Z})$, the moduli functor $\mathcal{M}: Sch \to Sets^{op}$, $\mathcal{M}(S) \coloneqq \{\text{isom clasess of stable maps } (C \to S, \{p_i\}, f: C \to X) \text{ over } S \text{ with } f_*[C] = \beta \}.$

FP's Thm. 2, proved in 4, § 5:

The functor \mathcal{M} has a coarse moduli space $\overline{M} = \overline{M}_{g,n}(X,\beta)$ as a projective scheme. It is a compactification of the moduli $M_{g,n}(X,\beta)$ of nonsingular domains C.

For $\mathcal{F}: Sch \to Sets^{op}$, the coarse moduli M is a scheme with fun. morph. $\varphi: \mathcal{F} \to Hom(-, M)$ such that $\varphi(Spec \mathbb{C})$ is a bijection and $\mathcal{M} \xrightarrow{\qquad} Hom(-, M)$ $\forall \psi \xrightarrow{\qquad} \exists! \alpha$ $Hom(-, \forall N)$

Kontsevich [1995, PM129] sketched the construction as a Deligne-Mumford stack.

III. Construction of moduli

Remark 1. Trivial case $\beta = 0$. $\overline{M}_{g,n}(X,0) = \overline{M}_{g,n} \times X$, $\overline{M}_{g,n}$: Deligne-Mumford moduli (orbifold in general). Remark 2. $\overline{M}_{0,n}(\mathbb{P}^n, 1) = G(\mathbb{P}^1, \mathbb{P}^r) = \operatorname{Gr}(2, r+1)$

Outline of the construction

§ 3 A rigidification of $\overline{M}_{g,n}(\mathbb{P}^r, d)$: for a basis $\overline{t} \subset V^* \coloneqq H^0(\mathbb{P}^r, O(1))$, $d \in A_1(\mathbb{P}^r) = H_2(\mathbb{P}^r, \mathbb{Z}) = \mathbb{Z}H \cong \mathbb{Z}$

construct a coarse moduli space $\overline{M}_{g,n}(\mathbb{P}^r, d, \overline{t})$ of \overline{t} -rigid stable maps. $\overline{M}_{0,n}(\mathbb{P}^r, d, \overline{t})$ is a nonsingular algebraic variety.

§ 4 The construction of $\overline{M}_{g,n}(\mathbb{P}^r, d)$: gluing $\{\overline{M}_{g,n}(\mathbb{P}^r, d, \overline{t}) \mid \overline{t} \subset V^*$: basis}

§ 5 The construction of $\overline{M}_{g,n}(X,\beta)$:

for projective variety X, $\iota: X \hookrightarrow \mathbb{P}^r$, $\iota * (\beta) = dH$,

construct $\overline{M}_{g,n}(X,\beta,\overline{t}) \subset \overline{M}_{g,n}(\mathbb{P}^r,d,\overline{t})$ and glue them.

IV.1. Genus 0 Moduli spaces

A nonsingular projective variety is convex if $\forall f : \mathbb{P}^1 \to X$, $f^*(T_X)$ is globally generated. A homogeneous space X = G/P is an example. (T_X globally generated,

FP's Thm. 2, proved in $\S3 - \S5$:

X: nonsingular projective convex variety, $\beta \in A_1(X)$, $\overline{M} \coloneqq \overline{M}_{0,n}(X,\beta)$.

- (1) \overline{M} is a normal projective variety of pure dimension dim $X 3 + \int_{\beta} c_1(T_X) + n$.
- (2) \overline{M} is locally a quotient of a nonsingular variety by a finite group.
- (3) $\overline{M}^* \subset \overline{M}$: the open locus of stable maps with no non-trivial automorphism. \overline{M}^* is a nonsingular fine moduli space of the corresponding functor \mathcal{M}^* .

FP's Thm. 3, proved in § 6: *X*: as in Thm. 2, $\beta \in A_1(X)$, $\overline{M} \coloneqq \overline{M}_{0,n}(X,\beta)$. $\overline{M} \supset \partial \overline{M} \coloneqq \{f: C \to X \mid C \text{ is reducible}\}$ is a divisor with normal crossings.

IV.2. Dimension of moduli space

The argument of dimension in [\S 5.2, FM] seems to be inaccurate. The following is based on \S 7.1.4 of

Cox, Katz, "Mirror Symmetry and Algebraic Geometry", MSM 68, AMS, 1998.

For $\overline{M} = \overline{M}_{g,n}(X,\beta)$, and its point $m \in \overline{M}$ corresponding to $(C, \{p_i\}, f: C \to X)$, exp. dim_m $\overline{M} \coloneqq$ dim(1st order deformations of m) – dim(obstructions for m)

 $\begin{array}{l} (1 \text{st order deformations}) &= \operatorname{Ext}_{C}^{1}(f^{*}\Omega_{X}^{1} \rightarrow \Omega_{C}^{1}(\sum_{i=1}^{n}p_{i}), O_{C}), \quad (\text{obstructions}) = \operatorname{Ext}_{C}^{2}(..., O_{C}), \\ &\quad 0 \rightarrow \operatorname{Ext}_{C}^{0}(..., O_{C}) \rightarrow \operatorname{Ext}_{C}^{0}(\Omega_{C}^{1}(...), O_{C}) \rightarrow \operatorname{Ext}_{C}^{0}(f^{*}\Omega_{X}^{1}, O_{C}) \rightarrow \operatorname{Ext}_{C}^{1}(..., O_{C}) \rightarrow \cdots \\ \text{3rd arrow is injective by the stability of } f, \text{ so } \operatorname{Ext}_{C}^{0}(..., O_{C}) = 0. \\ &\quad \therefore \text{ exp. dim} = -\chi(..., O_{C}) = -\chi(\Omega_{C}^{1}(...), O_{C}) + \chi(f^{*}\Omega_{X}^{1}, O_{C}) = \operatorname{ext}^{1} - \operatorname{ext}^{0} + \chi(f^{*}\Theta_{X}) \\ &\quad (\text{at the last equality, used } \operatorname{Ext}_{C}^{i}(\Omega_{C}^{1}(...), O_{C}) \cong \operatorname{H}^{i}(f^{*}\Theta_{X})) \\ \text{HRR gives } \chi(f^{*}\Theta_{X}) = -\int_{\beta} \omega_{X} + (1 - g) \operatorname{dim} X. \\ &\quad -\int_{\beta} \omega_{X} := \omega_{X}(\beta) \quad \text{for } \beta \in A_{1}(X) = \operatorname{H}_{2}(X, \mathbb{Z}), \quad \omega_{X} = -\operatorname{c}_{1}(\operatorname{T}_{X}) \in \operatorname{H}^{2}(X, \mathbb{Z}). \\ \text{ext}^{1} - \operatorname{ext}^{0} = (1 \text{st order deform. of } (C, \{p_{i}\})) - (\operatorname{infinitesimal aut.}) = \operatorname{dim} \overline{M}_{g,n} = 3g - 3 + n. \\ \text{Therefore exp. dim}_{m} \overline{M} = (1 - g)(\operatorname{dim} X - 3) - \int_{\beta} \omega_{X} + n. \end{array}$

V.1 Gromov-Witten invariant

X: nonsingular projective convex variety (e.g. homogeneous variety G/P) $\beta \in A_1(X), \ \overline{M} \coloneqq \overline{M}_{0,n}(X,\beta) \supset M \coloneqq M_{0,n}(X,\beta),$ Evaluation maps: $ev_1, \dots, ev_n \colon \overline{M} \to X, \ (C, \{p_i\}, f \colon C \to X) \mapsto f(p_i).$ $\gamma_1, \dots, \gamma_n \in A^*(X)$ gives rise to cohomology class $ev_1^*(\gamma_1) \cup \dots \cup ev_n^*(\gamma_n) \in A^*(\overline{M}).$

Gromov-Witten invariant: $I_{\beta}(\gamma_1, ..., \gamma_n) \coloneqq \int_{[\overline{M}]} ev_1^*(\gamma_1) \cup \cdots \cup ev_n^*(\gamma_n).$ It is 0 unless $\sum \operatorname{codim} \gamma_i = \dim \overline{M} = \dim X - 3 + \int_{\beta}^{\square} c_1(T_X) + n$ (for homog. γ_i). It is symmetric for $\gamma_1, ..., \gamma_n$.

FP's Lem.14 in §7: $X = G/P, g_1, ..., g_n \in G$: general elements, $\Omega_1, ..., \Omega_n \subset X$: pure dimensional subvar. The scheme theoretic intersection $Z \coloneqq ev_1^{-1}([g_1\Omega_1]) \cap \cdots \cap ev_n^{-1}([g_n\Omega_n])$ is a finite number of reduced points supported in M, and $I_{\beta}([\Omega_1], ..., [\Omega_n]) = \# Z$.

V.2 Quantum cohomology

 $X = G/P, \ \beta \in A_1(X), \ \overline{M} \coloneqq \overline{M}_{0,n}(X,\beta)$ as before. $T_0 \coloneqq 1 \in A^0(X), \ T_1, \dots, T_p$: basis of $A^1(X), \ T_{p+1}, \dots, T_m$: the other basis of $A^*(X)$.

The classical cup product is given by GW invariants at $\beta = 0$: $\overline{M}_{0,n}(X, \beta = 0) = \overline{M}_{0,n} \times X.$ $\Delta \subset X \times X$: the diagonal, $[\Delta] = \sum g^{ef} T_e \otimes T_f \in A^*(X \times X) = A^*(X) \otimes A^*(X).$ $T_i \cup T_j = \pi_{2*} \left([\Delta] \cup \pi_1^* (T_i \cup T_j) \right) = \sum (\int_X T_i \cup T_j \cup T_e) g^{ef} T_f = \sum I_0 (T_i T_j T_e) g^{ef} T_f.$

Quantum cup product:

$$T_i * T_j \coloneqq \sum_{ef} \Phi_{ije} g^{ef} T_f, \quad \Phi_{ijk} \coloneqq \sum_{n \ge 0} \sum_{\beta} \frac{1}{n!} I_{\beta} (\gamma^n T_i T_j T_k), \quad \gamma \coloneqq \sum_{i=0}^m y_i T_i.$$

FP's Thm. 4 in §7 (big quantum cohomology ring):

The operation * makes $A^*(X) \otimes \mathbb{Q}[[y]]$ into a comm. unital assoc. $\mathbb{Q}[[y]]$ -algebra.

V.3 Small quantum cohomology ring

 $X = G/P, \ \beta \in A_1(X), \ \overline{M} \coloneqq \overline{M}_{0,n}(X,\beta)$ as before. $T_0 \coloneqq 1 \in A^0(X), \ T_1, \dots, T_p$: basis of $A^1(X)$.

Small quantum product:

$$\begin{split} \overline{\Phi}_{ijk} &\coloneqq \Phi_{ijk} \big(y_0, \dots, y_p, 0, \dots, 0 \big) = \int_X T_i \cup T_j \cup T_k + \overline{\Gamma}_{ijk}, \\ \overline{\Gamma}_{ijk} &\coloneqq \sum_{n \ge 0} \frac{1}{n!} \sum_{\beta \ne 0} I_\beta \big(\overline{\gamma}^n T_i T_j T_k \big) \in \mathcal{A}^*(X) \otimes \mathbb{Z} \big[q_1, \dots, q_p \big], \qquad q_i \coloneqq e^{y_i}. \\ T_i * T_j &\coloneqq \sum_{ef} \overline{\Phi}_{ije} g^{ef} T_f = T_i \cup T_j + \sum_{ef} \overline{\Gamma}_{ije} g^{ef} T_f. \end{split}$$

We have a unital commutative associative $\mathbb{Z}[q]$ -algebra [R1] $QH_s^*(X) \coloneqq (A^*(X) \otimes \mathbb{Z}[q],*)$: the small quantum cohomology ring of X.