Quick introduction to chiral quantization

Shintaro Yanagida (Nagoya University)
2023/09/08
Shenzhen - Nagoya Workshop on Quantum Science 2023

1. Quantization in mathematical physics

Review talk on chiral quantization, partly based on
S.Y., "Derived gluing construction of chiral algebras",

Lett. Math. Phys., 111 (2021), article 51, 103pp.; arXiv:2004.10055.

1. Quantization in mathematical physics [3 pages]
1.1. Quantization in general
1.2. Deformation quantization
1.3. Other notions of quantization
2. Vertex algebras and chiral quantization
3. Application: chiral quantization of Moore-Tachikawa TQFT

1.1. Quantization in general

- Let me use the word quantization to mean a mathematical formulation of the process of building quantum systems from classical mechanical/Hamiltonian systems.
- Canonical quantization (in physics).
- For finite-dimensional mechanical system (first quantization):

$$
\{A, B\} \longmapsto \frac{1}{i \hbar}[\widehat{A}, \widehat{B}],
$$

replacing the Poisson bracket by commutators.

- For field theory (second quantization), the procedure depends on the fields being quantized and the interaction.
- I first recall a well-known mathematical formulation of finite-dimensional case: deformation quantization.

1.2. Deformation quantization

For simplicity, I give an algebraic explanation.

- A classical Hamiltonian system can be encoded by
a Poisson algebra $(A, \cdot,\{\cdot, \cdot\})$ consisting of
c.f. Hayami-san's talk
- (A, $)$: a (unital finitely-generated) commutative algebra with product - encoding the functions on the phase space of the classical system,
- $\{\cdot, \cdot\}$: Poisson bracket, a bi-derivation (bilinear form with Leibniz rule) satisfying the Jacobi identity.
$\{\cdot, \cdot\}$ is called symplectic if it is non-degenerate.
- Given a Poisson algebra $(A, \cdot,\{\cdot, \cdot\})$, a deformation quantization is a (non-commutative) algebra $\left(A[\hbar]:=\left\{\sum_{n=0}^{\infty} a_{n} \hbar^{n} \mid a_{n} \in A\right\}, \star\right)$ s.t.
- $f \star g=f \cdot g+O(\hbar)$,
- $[f, g]=\hbar\{f, g\}+O\left(\hbar^{2}\right)$, where $[f, g]:=f \star g-g \star f$.

A deformation quantization of a Poisson manifold is defined similarly.
[F. Bayen, et. al., Ann. Phys., 1978].

- A universal formula of \star-product: Kontsevich's formula.
[M. Kontsevich, LMP, 2003] c.f. Deligne conjecture in Prof. Kong's talk

1.3. Other notions of quantization

- Geometric quantization: another finite-dimensional quantization.
- Prequantization: Given a symplectic manifold (= phase space), construct a line bundle L with connection.
- Polarization: Construct a quantum Hilbert space H from L.
- Half-form correction.
c.f. Li-san's talk
- Feynman path integral: perturbative determination of field quantization (infinite-dimensional).
- There are other notions of quantization in mathematics.
- Quantization of algebraic groups by Hopf algebras (quantum groups). c.f. Hattori-san's talk
- Connes' noncommutative geometry involving C^{*}-algebras.
- A version of quantization for functions is q-analogs.
- Chiral quantization is a combination of finite-dimensional and infinite-dimensional (field theory) cases.

2. Vertex algebras and chiral quantization

1. Quantization in mathematical physics
2. Vertex algebras and chiral quantization [7 pages]
2.1. 1st example: KK Poisson algebra and affine vertex algebra
2.2. Vertex algebras
2.3. Chiral quantization - Definition
2.4. 2nd example: Slodowy slice and W-algebra
2.5. Existence theorem of chiral quantization
3. Application: chiral quantization of Moore-Tachikawa TQFT

2.1. 1st example: KK Poisson structure and

Recall the Kostant-Kirillov Poisson algebra $R^{K K}(\mathfrak{g})=(R, \cdot,\{\cdot, \cdot\})$:

- \mathfrak{g} : a complex simple Lie algebra with Lie bracket [$\cdot, \cdot]$. $(R, \cdot):=\operatorname{Sym}(\mathfrak{g})=\bigoplus_{n=0}^{\infty} \mathfrak{g}^{\otimes n} / S_{n}:$ the symmetric algebra of \mathfrak{g}. $R \cong \mathbb{C}\left[\mathfrak{g}^{*}\right]$: the coordinate ring (function alg.) of the affine space \mathfrak{g}^{*}.
- $\{\cdot, \cdot\}: R \otimes R \rightarrow R$: Kostant-Kirillov Poisson bracket on R, uniquely determined by $\{x, y\}:=[x, y]$ for $x, y \in \mathfrak{g}$, and $\{x a, b\}:=\{x, b\} a+x\{a, b\}$ for $x \in \mathfrak{g}$ and $a, b \in R$.
- Example: $\mathfrak{g}=\mathfrak{s l}_{2}=\mathbb{C e}+\mathbb{C} f+\mathbb{C} h, e=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], f=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right], h=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$. $R=\mathbb{C}[e, f, h], \quad\{e, f\}=h,\{h, e\}=e,\{h, f\}=-f$.

2.1. 1st example: ... and affine vertex algebra

The chiral quantization of the Kostant-Kirillov Poisson algebra $R^{K K}(\mathfrak{g})$ is the affine vertex algebra $V_{k}(\mathfrak{g})$.
c.f. Nishinaka-san's talk

- $\mathfrak{g}:$ a complex simple Lie algebra. $\widehat{\mathfrak{g}}=\mathfrak{g}\left[t^{ \pm 1}\right] \oplus \mathbb{C} K$: the affine Lie algebra associated to \mathfrak{g}.
(without grading operator D)
$V_{k}(\mathfrak{g}):=U(\widehat{\mathfrak{g}}) \otimes U(\mathfrak{g}[t] \oplus \mathbb{C} K) \mathbb{C}_{k}$
with \mathbb{C}_{k} the 1 -dim. rep. where $\mathfrak{g}[t]$ acts trivially and K acts by k.
($k \in \mathbb{C}$: level, U : the universal enveloping algebra)
It has a unique vertex algebra structure such that $1:=1 \otimes 1$ is the vacuum vector and $Y\left(x_{(-1)} \mathbf{1}, z\right)=\sum_{n \in \mathbb{Z}} x_{(n)} z^{-n-1}, x_{(n)}:=x \otimes t^{n}$.
- There is a canonical Li filtration on the vertex algebra $V_{k}(\mathfrak{g})$ s.t. the C_{2}-Poisson algebra $R\left(V_{k}(\mathfrak{g})\right)$ coincides with the Kostant-Kirillov Poisson algebra $R^{K K}(\mathfrak{g})$.
[Y. Zhu, JAMS, 1996]

2.2. Vertex algebras

c.f. Nishinaka-san's talks and

- A vertex algebra $(V,|0\rangle, T, Y)$ consists of
- a linear space V, called state space,
- an element $|0\rangle \in V$, called vacuum,
- an endomorphism $T \in$ End V, called translation,
- a linear map $Y(\cdot, z): V \rightarrow($ End $V) \llbracket z^{ \pm 1} \rrbracket$ (state-field corresp.), denoted as $Y(a, z)=a(z)=\sum_{n \in \mathbb{Z}} a_{(n)} z^{-n-1}$, for each $a \in V$, satisfying
(i) $a(z) b \in V((z))$ for any $a, b \in V, \quad V((z)):=\left\{\sum_{n=-k}^{\infty} v_{n} z^{n} \mid v_{n} \in V\right\}$,
(ii) $Y(|0\rangle, z)=i d_{V}, a(z)|0\rangle=a+O(z)$ for any $a \in V$ (vacuum axiom),
(iii) $T|0\rangle=0,[T, a(z)]=\partial_{z} a(z)$ for any $a \in V$ (translation invariance),
(iv) $\forall a, b \in V, \exists N_{a, b} \in \mathbb{Z}_{\geq 0}$ s.t. $(z-w)^{N_{a, b}}[a(z), b(w)]=0$
(locality, \Longleftrightarrow operator product expansion in Nishinaka-san's talk).
- A vertex algebra can be regarded as a linear space V equipped with infinitely many binary operations $(a, b) \mapsto a_{(n)} b \quad(n \in \mathbb{Z})$.

2.3. Chiral quantization — Definition

- Li filtration of a vertex algebra $V=(V,|0\rangle, T, Y)$: [H. Li, CMP, 2005]

$$
\begin{aligned}
& V=F^{0} V \supset F^{1} V \supset F^{2} V \supset \cdots, \\
& F^{p} V:=\left\langle\left(a_{1}\right)_{\left(-n_{1}\right)} \cdots\left(a_{r}\right)_{\left(-n_{r}\right)} v \mid a_{i}, v \in V, n_{i} \in \mathbb{Z}_{>0}, \sum_{i} n_{i} \geq p\right\rangle_{\operatorname{lin}} .
\end{aligned}
$$

- The 0-th graded part

$$
R(V):=F^{0} V / F^{1} V=V / C_{2}(V), \quad C_{2}(V):=\left\langle a_{(-2)} b \mid a, b \in V\right\rangle_{\operatorname{lin}} .
$$

is a Poisson algebra, called Zhu's C_{2}-algebra. [Y. Zhu, JAMS, 1996]

$$
\bar{a} \cdot \bar{b}:=\overline{a_{(-1)} b}, \quad\{\bar{a}, \bar{b}\}:=\overline{a_{(0)} b} \quad(\bar{a} \in R(V) \text { for } a \in V) .
$$

The Poisson scheme $\operatorname{Spec} R(V)$ is called the associated scheme.

Definition

A chiral quantization of a Poisson algebra R is a vertex algebra V such that $R(V)$ is isomorphic to R.

2.4. 2nd example: Slodowy slices and \mathbf{W}-algebras

\mathfrak{g} : complex simple Lie algebra.

- The affine vertex algebra $V_{k}(\mathfrak{g})$ is a chiral quantization of $R^{K K}(\mathfrak{g})$.
- The (regular) W -algebra $W_{k}\left(\mathfrak{g}, f_{\text {reg }}\right)$ is a chiral quantization of the Slodowy slice $S_{f_{\text {reg }}}$.
[T. Arakawa, IMRN, 2015]
Recollection of Slodowy slice and W -algebra:
- $f \in \mathfrak{g}$: a nilpotent element $(: \Leftrightarrow \operatorname{ad}(f):=[x,] \in \operatorname{End}(\mathfrak{g})$ is nilpotent $)$. $\{e, f, h\} \subset \mathfrak{g}: \mathfrak{s l}_{2}$-triple, $\mathfrak{g}^{e}:=\{x \in \mathfrak{g} \mid[x, e]=0\}$: centralizer of e. $S_{f}:=f+\mathfrak{g}^{e} \subset \mathfrak{g} \simeq \mathfrak{g}^{*} \quad$ via Killing form.
S_{f} with the Kostant-Kirillov Poisson structure is called the Slodowy slice.
- Example: $\mathfrak{g}=\mathfrak{s l}_{2}=\left\{\left.\left[\begin{array}{cc}a & b \\ c & -a\end{array}\right] \right\rvert\, a, b, c \in \mathbb{C}\right\}, f=f_{\text {reg }}:=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$, $e=\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right], \mathfrak{g}^{e}=\mathbb{C e}$.

$$
S_{\text {feg }}=f_{\text {reg }}+\mathfrak{g}^{e}=\left[\begin{array}{cc}
0 & * \\
1 & 0
\end{array}\right] .
$$

- Given a nilpotent element $f \in \mathfrak{g}$ and level $k \in \mathbb{C}$, we can construct a vertex algebra $W_{k}(\mathfrak{g}, f)$ called the W-algebra.
- Example: $\mathfrak{g}=\mathfrak{s l}_{2}, f=f_{\text {reg }}, W_{k}\left(\mathfrak{s l}_{2}, f_{\text {reg }}\right)=$ the Virasoro vertex algebra. $\left[L_{m}, L_{n}\right]=L_{m+n}+\frac{c}{12}\left(m^{3}-m\right) \delta_{m,-n}$.

2.4. 2nd example: Slodowy slices and W-algebras

- $V_{k}(\mathfrak{g})$ is a chiral quantization of $R^{K K}(\mathfrak{g})$.
- $W_{k}\left(\mathfrak{g}, f_{\text {reg }}\right)$ is a chiral quantization of $S_{\text {freg }}$.

These two chiral quantizations are related under Hamiltonian reduction.

c.f. quantum Hamiltonian reduction $=$ BRST reduction in Hayami-san's talk

2.5. Existence theorem of chiral quantization

Theorem

For any Poisson algebra R, there exists a vertex algebra V such that $R(V) \cong R$, i.e., a chiral quantization of R exists.

- For any R, the arc algebra $R \llbracket t \rrbracket=\left\{\sum_{n=0}^{\infty} a_{n} t^{n} \mid a_{n} \in R\right\}$ has the structure of level 0 Poisson vertex algebra.
[T. Arakawa, Math. Z., 2012]
- For any Poisson vertex algebra P, there exists a vertex algebra V such that $\mathrm{gr} V=P$. c.f. [Tamarkin, PICM, 2002], chiral Deligne conjecture
- The associated graded space $\operatorname{gr} V:=\bigoplus_{n=0}^{\infty} F^{n} V / F^{n+1} V$ of Li filtration of any vertex algebra V has a structure of Poisson vertex algebra.
c.f. Hayami-san's talk

Open problem

\exists ? explicit description of the above chiral quantization (like Kontsevich's formula of deformation quantization)

3. Application: chiral quantization of Moore-Tachikawa TQFT

1. Quantization in mathematical physics
2. Vertex algebras and chiral quantization
3. Application: chiral quantization of Moore-Tachikawa TFT [11 pages]
3.1. Moore-Tachikawa 2d TQFT η_{G}
3.2. BFN construction of η_{G}
3.3. Arakawa's chiral quantization $\eta_{G, g=0}^{\mathrm{ch}}$

3.1. Moore-Tachikawa 2d Topological QFT

[G. Moore, Y. Tachikawa, String-Math 2011; arXiv:1106.5698]
Moore and Tachikawa conjectured the existence of a functor

$$
\eta_{G}: \mathrm{Bo}_{2} \longrightarrow \mathrm{HS}
$$

between certain symmetric monoidal categories with duality.
The source category Bo_{2} is the 2-bordism category.

- Objects: $\left(S^{1}\right)^{n}$ for $n \in \mathbb{Z}_{\geq 0}$, identified with n.
- Morphisms: $\Sigma_{g, n_{1}+n_{2}}: n_{1} \rightarrow n_{2}$, 2-dim. oriented manifolds with genus g and boundary $\left(S^{1}\right)^{n_{1}} \sqcup-\left(S^{1}\right)^{n_{2}}$.
- Composition $:=$ gluing.

- $\otimes:=\sqcup$, disjoint union of manifolds.

3.1. Moore-Tachikawa 2d Topological QFT

The target HS is the category "of holomorphic symplectic varieties" :

- Objects: semisimple algebraic groups over \mathbb{C}.
- Morphisms: $X: G_{1} \rightarrow G_{2}$, holomorphic symplectic variety X with Hamiltonian $G_{1} \times G_{2}$-action.
$G \curvearrowright(Y, \omega)$ is Hamiltonian if $\exists \mu: Y \rightarrow \mathfrak{g}^{*}:=\operatorname{Lie}(G)^{*}$, the moment map, s.t.
$\langle d \mu(\cdot), \xi\rangle=-\iota_{\xi \gamma} \omega$ with $\xi_{\gamma}(y):=\left.\frac{d}{d t}{ }^{t \xi} \cdot y\right|_{t=0}$ for $\xi \in \mathfrak{g}$,
and $\mu(g \cdot y)=\operatorname{ad}_{g^{-1}}^{*} \mu(y)$ for $g \in G$.
The identity morphism id $G:=T^{*} G=G \times \mathfrak{g}^{*}$.
- Composition: For $X_{12} \in \operatorname{Hom}{ }_{H S}\left(G_{1}, G_{2}\right)$ and $X_{23} \in \operatorname{Hom}{ }_{H S}\left(G_{2}, G_{3}\right)$,

$$
X_{23} \circ X_{12}:=\left(X_{12}^{\mathrm{op}} \times X_{23}\right) / / \mu \Delta\left(G_{2}\right)=\mu^{-1}(0) / \Delta\left(G_{2}\right) .
$$

$/ / \mu$: Hamiltonian reduction (symplectic quotient) for the moment map

$$
\mu: X_{12} \times X_{23} \rightarrow \mathfrak{g}_{2}^{*}:=\operatorname{Lie}\left(G_{2}\right)^{*}, \quad \mu(x, y):=-\mu_{12}(x)+\mu_{23}(y)
$$

with μ_{12} the \mathfrak{g}_{2}^{*}-component of momentum map $X_{12} \rightarrow \mathfrak{g}_{1}^{*} \times \mathfrak{g}_{2}^{*}$.

- \otimes : given by Cartesian product.

3.1. Moore-Tachikawa 2d Topological QFT

Moore and Tachikawa conjectured that, for each 1-conn. semisimple G, there exists a functor $\eta_{G}: \mathrm{Bo}_{2} \rightarrow \mathrm{HS}$ with $\eta_{G}(n)=G^{n}$ and
$\eta_{G}\left(\Sigma_{g, n_{1}+n_{2}}\right)$: holo. symplectic variety with Ham. $G^{n_{1}+n_{2}}$-action (Moore-Tachikawa symplectic variety).

A functor from Bo_{2} is called a 2d topological QFT (Atiyah-Segal), and η_{G} is called Moore-Tachikawa TQFT.
c.f. Wakatsuki-san's talk

The functoriality of η_{G} means that taking symplectic quotients of $\eta_{G}(\Sigma)$'s is compatible with gluing bordisms Σ 's.

$$
\begin{array}{cc}
\eta_{G}\left(\Sigma_{g^{\prime}, n_{2}+n_{3}}^{\prime} \circ \Sigma_{g, n_{1}+n_{2}}\right)= & \text { gluing } \\
\|_{G}\left(\sum_{g^{\prime \prime}, n_{1}+n_{3}}^{\prime \prime}\right) \\
\text { functoriality } & \left(\eta_{G}\left(\Sigma_{g, n_{1}+n_{2}}\right)^{\mathrm{op}} \times \eta_{G}\left(\Sigma_{g^{\prime}, n_{2}+n_{3}}^{\prime}\right)\right) \\
\eta_{G}\left(\sum_{g^{\prime}, n_{2}+n_{3}}^{\prime}\right) \circ \eta_{G}\left(\Sigma_{g, n_{1}+n_{2}}\right)=\left(G^{n_{2}}\right)
\end{array}
$$

3.2. BFN construction of η_{G}

[A. Braverman, M. Finkelberg, H. Nakajima, Adv. Theor. Math. Phys., 2019]

Theorem (Braverman-Finkelberg-Nakajima)

Moore-Tachikawa 2d TQFT η_{G} exists.

- They introduced, in some equivariant derived constructible category $D_{G_{\mathcal{O}}}\left(\mathrm{Gr}_{G}\right)$ on the affine Grassmannian

$$
\operatorname{Gr}_{G}=G_{\mathcal{K}} / G_{\mathcal{O}}, \quad G_{\mathcal{O}}:=G(\mathbb{C}[z]), G_{\mathcal{K}}:=G(\mathbb{C}((z))),
$$

two distinguished objects $\mathcal{A}, \mathcal{B} \in D_{G_{\mathcal{O}}}\left(\mathrm{Gr}_{G}\right)$ which are ring objects with respect to the convolution product \star.

- Using these ring objects for the Langlands dual G^{L}, they showed that

$$
\eta_{G}\left(\Sigma_{g, n}\right):=\operatorname{Spec}\left(H_{G_{O}^{L}}^{*}\left(\operatorname{Gr}_{G^{L}}, i_{\Delta}^{\prime}\left(\mathcal{A}^{\boxtimes n} \boxtimes \mathcal{B}^{\boxtimes g}\right)\right), \star\right)
$$

has a symplectic structure, and satisfies the gluing condition $\eta_{G}\left(\Sigma \circ \Sigma^{\prime}\right) \simeq \eta_{G}(\Sigma) \circ \eta_{G}\left(\Sigma^{\prime}\right)$.

3.2. BFN construction of η_{G}

A few varieties in genus zero part can be described explicitly.
Denoting $W_{G}^{n}:=\eta_{G}\left(\Sigma_{g=0, n}\right)$, the gluing condition gives

$$
W_{G}^{n} \circ W_{G}^{m} \simeq W_{G}^{n+m-2} .
$$

- The case $n=2$ is already explained:

$$
W_{G}^{2}=\eta_{G}(0)=\operatorname{id}_{G}=T^{*} G=G \times \mathfrak{g}^{*} .
$$

- The case $n=1$ is a bit non-trivial.

$$
W_{G}^{1}=\eta_{G}(D)=\eta_{G}(\bigcirc)=G \times S_{f_{\text {reg }}}
$$

with $S_{f_{\text {feg }}} \subset \mathfrak{g}^{*}$ the Slodowy slice of the regular nilpotent $f_{\text {reg }} \in \mathfrak{g}$.

- The case $n=3$ for $G=S L_{2}$ and ${S L_{3}}$ is

$$
W_{\mathrm{SL}_{2}}^{3}=\left(\mathbb{C}^{2}\right)^{\times 3}, \quad W_{\mathrm{SL}_{3}}^{3}=\overline{O_{\min }} \text { in } E_{6} .
$$

$\overline{O_{\min }}$: closure of coadjoint orbit of minimal nilpotent element

3.3. Arakawa's chiral quantization $\eta_{G, g=0}^{\mathrm{ch}}$

[T. Arakawa, arXiv:1811.01577]

- Arakawa considered "chiral quantization" of η_{G} :

$$
\eta_{G}^{\mathrm{ch}}: \mathrm{Bo}_{2} \longrightarrow \mathrm{HS}^{\mathrm{ch}} .
$$

- Target category HS ${ }^{\text {ch }}$:
- Objects: semisimple algebraic groups (the same as HS).
- Morphisms $V: G_{1} \rightarrow G_{2}$: vertex algebras V equipped with

$$
V_{-h_{1}^{\vee}}\left(\mathfrak{g}_{1}\right) \otimes V_{-h_{2}^{\vee}}\left(\mathfrak{g}_{2}\right) \rightarrow V(+ \text { some cond. }) .
$$

- Composition of $V_{12}: G_{1} \rightarrow G_{2}$ and $V_{23}: G_{2} \rightarrow G_{3}$:

$$
\begin{array}{r}
V_{23} \circ V_{12}:=H^{\frac{\infty}{2}+0}\left(\widehat{\mathfrak{g}}_{-2 h_{2}^{\vee}}, \mathfrak{g}_{2}, V_{12}^{\mathrm{op}} \otimes V_{23}\right), \\
H^{\frac{\infty}{2}+*}(\cdot, \cdot, \cdot): \text { relative BRST (semi-infinite) cohomology }
\end{array}
$$

(quantum Hamiltonian reduction)

- The functor η_{G}^{ch} should sit in a commutative diagram

3.3. Arakawa's chiral quantization $\eta_{G, g=0}^{\mathrm{ch}}$

- Arakawa built genus 0 part $\eta_{G, g=0}^{c \mathrm{ch}}:\left.\mathrm{Bo}_{2}\right|_{g=0} \rightarrow \mathrm{HS}^{\mathrm{ch}}$.

Theorem (Arakawa)

\exists a family $\left\{V_{G, n}^{S}=\eta_{G, g=0}^{c h}\left(\Sigma_{g=0, n}\right) \mid n \in \mathbb{Z}_{\geq 0}\right\}$ of vertex algebras s.t.

$$
V_{G, 1}^{S} \simeq H_{\mathrm{DS}}^{0}\left(\mathcal{D}_{G}^{\mathrm{ch}}\right), \quad V_{G, 2}^{S} \simeq \mathcal{D}_{G}^{\mathrm{ch}}, \quad V_{G, m}^{S} \circ V_{G, n}^{S} \simeq V_{G, m+n-2}^{S},
$$

and their associated schemes are Moore-Tachikawa symplectic varieties:

$$
W_{G}^{n} \simeq \operatorname{Spec} R\left(V_{G, n}^{S}\right) .
$$

- As a corollary, Beem-Rastelli conjecture [C. Beem, L. Rastelli, JHEP, 2018]

$$
\begin{aligned}
& \mathcal{M}_{\text {Higgs }}(\mathcal{T}) \stackrel{?}{\simeq} \text { Specm } R(V(\mathcal{T})) \quad \forall \mathcal{T}: \mathcal{N}=24 \mathrm{~d} \text { SCFT } \\
& V:\{4 \mathrm{~d} \mathcal{N}=2 \text { SCFTs }\} \longrightarrow \text { conformal vertex algebras }\}
\end{aligned}
$$

is affirmatively solved for genus 0 class \mathcal{S} theories $\mathcal{T}=\mathcal{T}_{\Sigma_{0, n}}^{\mathcal{S}}$.

3.4. Toward higher-genus quantization

- In order to extend Arakawa's functor $\eta_{G, g=0}^{\mathrm{ch}}$ to the case $g>0$, the target category $\mathrm{HS}^{\text {ch }}$ should be enlarged. I built such an enlarged target. [S.Y., Lett. Math. Phys., 2021].
- I constructed an ∞-category $\mathrm{MT}^{\text {ch }}$ which will be the target of the extension η_{G}^{ch} of Arakawa's $\eta_{G, g=0}^{\mathrm{ch}}$. This $M T^{\text {ch }}$ sits in the following commutative diagram.

- $\mathrm{MT}^{\mathrm{ch}}$ is designed to give a "chiral quantization" of the ∞-category MT of derived Moore-Tachikawa varieties.
[D. Calaque, 2015]

3.4. Toward higher-genus quantization

- The ∞-category MT of derived Moore-Tachikawa varieties [Calaque]:
- Objects: semisimple algebraic groups (same as HS)
- Morphisms $X: G_{1} \rightarrow G_{2}$: derived Poisson scheme X with Hamiltonian $\left(\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}\right)$-action.
c.f. Hayami-san's talk
- Composition of $X_{12} \in \operatorname{Map}_{\mathrm{MT}}\left(G_{1}, G_{2}\right)$ and $X_{23} \in \operatorname{Map}_{\mathrm{MT}}\left(G_{2}, G_{3}\right)$:

$$
X_{23} \widetilde{\mathrm{o}} X_{12}:=\left(X_{12}^{\mathrm{op}} \otimes X_{23}\right) / /{ }_{\mu}^{\mathrm{L}} \operatorname{Sym}\left(\mathfrak{g}_{2}\right)
$$

$/ /{ }_{\mu}^{\mathbb{L}}$: derived Hamiltonian reduction of derived Poisson schemes $\mu:=-\mu_{12}^{2} \otimes 1+1 \otimes \mu_{23}^{1}$. The composition \widetilde{o} is called derived gluing.

- The ∞-category $\mathrm{MT}^{\text {ch }}[\mathrm{Y}$.$] :$
- Objects: semisimple algebraic groups (same as HS, HS ${ }^{\text {ch }}$).
- 1-Morphisms: dg vertex algebras V with $\mu_{V}: V_{k}\left(\mathfrak{g}_{1}\right) \otimes V_{l}\left(\mathfrak{g}_{2}\right) \rightarrow V$.
- Compositions of $V_{12}: G_{1} \rightarrow G_{2}$ and $V_{23}: G_{2} \rightarrow G_{3}$ is given by derived quantum Hamiltonian reduction:

$$
V_{23} \widetilde{\circ} V_{12}:=\operatorname{BRST}\left(\widehat{\mathfrak{g}}_{/+m}, V_{12}^{\mathrm{op}} \otimes V_{23}, \mu\right) \quad \text { (chiral derived gluing). }
$$

3.4. Toward higher-genus quantization

Theorem ([S.Y., LMP, 2021])
Taking derived associated scheme gives a functor

$$
\mathrm{dSpec} R(-): \mathrm{MT}^{\mathrm{ch}} \longrightarrow \mathrm{MT}
$$

i.e., $\mathrm{dSpec} R(V \widetilde{\circ} W) \simeq \mathrm{dSpec} R(V) \widetilde{\mathrm{o}} \mathrm{d} \operatorname{spec} R(W)$.

I also constructed an ∞-category $\mathrm{MT}^{\mathrm{co}}$ of dg Poisson vertex algebras and related functors, which sit in the following commutative diagram:

3.4. Toward higher-genus quantization

- I expect the existence of the functors η_{G}^{ch} and $\eta_{G}^{\text {der }}$ making the following diagram commute:

Open problem

Describe dg vertex algebras $\eta_{G}^{\mathrm{ch}}\left(\Sigma_{g>0, n}\right) \in \mathrm{MT}^{\mathrm{ch}}$, in particular $\eta_{G}^{\mathrm{ch}}\left(\Sigma_{1,1}\right)$, explicitly.

Thank you.

