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1. Quantization in mathematical physics

Review talk on chiral quantization, partly based on

S.Y., “Derived gluing construction of chiral algebras”,

Lett. Math. Phys., 111 (2021), article 51, 103pp.; arXiv:2004.10055.
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1.1. Quantization in general [1/1]

• Let me use the word quantization to mean a mathematical

formulation of the process of building quantum systems from

classical mechanical/Hamiltonian systems.

• Canonical quantization (in physics).

• For finite-dimensional mechanical system (first quantization):

{A,B} 7−→ 1

iℏ
[Â, B̂],

replacing the Poisson bracket by commutators.

• For field theory (second quantization), the procedure depends on

the fields being quantized and the interaction.

• I first recall a well-known mathematical formulation of

finite-dimensional case: deformation quantization.
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1.2. Deformation quantization [1/1]

For simplicity, I give an algebraic explanation.

• A classical Hamiltonian system can be encoded by

a Poisson algebra (A, ·, {·, ·}) consisting of c.f. Hayami-san’s talk

• (A, ·): a (unital finitely-generated) commutative algebra with product

· encoding the functions on the phase space of the classical system,

• {·, ·}: Poisson bracket, a bi-derivation (bilinear form with Leibniz

rule) satisfying the Jacobi identity.

{·, ·} is called symplectic if it is non-degenerate.

• Given a Poisson algebra (A, ·, {·, ·}), a deformation quantization is a

(non-commutative) algebra (AJℏK := {
∑∞

n=0 anℏn | an ∈ A}, ⋆) s.t.
• f ⋆ g = f · g + O(ℏ),
• [f , g ] = ℏ{f , g}+ O(ℏ2), where [f , g ] := f ⋆ g − g ⋆ f .

A deformation quantization of a Poisson manifold is defined similarly.

[F. Bayen, et. al., Ann. Phys., 1978].

• A universal formula of ⋆-product: Kontsevich’s formula.

[M. Kontsevich, LMP, 2003] c.f. Deligne conjecture in Prof. Kong’s talk
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1.3. Other notions of quantization [1/1]

• Geometric quantization: another finite-dimensional quantization.

• Prequantization: Given a symplectic manifold (= phase space),

construct a line bundle L with connection.

• Polarization: Construct a quantum Hilbert space H from L.

• Half-form correction. c.f. Li-san’s talk

• Feynman path integral: perturbative determination of field

quantization (infinite-dimensional).

• There are other notions of quantization in mathematics.

• Quantization of algebraic groups by Hopf algebras

(quantum groups). c.f. Hattori-san’s talk

• Connes’ noncommutative geometry involving C∗-algebras.

• A version of quantization for functions is q-analogs.

• Chiral quantization is a combination of finite-dimensional and

infinite-dimensional (field theory) cases.
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2.1. 1st example: KK Poisson structure and ... [1/2]

Recall the Kostant-Kirillov Poisson algebra RKK (g) = (R , ·, {·, ·}):

• g: a complex simple Lie algebra with Lie bracket [·, ·].
(R , ·) := Sym(g) =

⊕∞
n=0 g

⊗n/Sn: the symmetric algebra of g.

R ∼= C[g∗]: the coordinate ring (function alg.) of the affine space g∗.

• {·, ·} : R ⊗ R → R : Kostant-Kirillov Poisson bracket on R ,

uniquely determined by {x , y} := [x , y ] for x , y ∈ g,

and {xa, b} := {x , b}a+ x{a, b} for x ∈ g and a, b ∈ R .

• Example: g = sl2 = Ce+Cf +Ch, e = [ 0 1
0 0 ], f = [ 0 0

1 0 ], h =
[
1 0
0 −1

]
.

R = C[e, f , h], {e, f } = h, {h, e} = e, {h, f } = −f .
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2.1. 1st example: ... and affine vertex algebra [2/2]

The chiral quantization of the Kostant-Kirillov Poisson algebra RKK (g) is

the affine vertex algebra Vk(g). c.f. Nishinaka-san’s talk

• g: a complex simple Lie algebra.

ĝ = g[t±1]⊕ CK : the affine Lie algebra associated to g.

(without grading operator D)

Vk(g) := U(ĝ)⊗U(g[t]⊕CK) Ck

with Ck the 1-dim. rep. where g[t] acts trivially and K acts by k .

(k ∈ C: level, U: the universal enveloping algebra)

It has a unique vertex algebra structure such that 1 := 1⊗ 1 is the

vacuum vector and Y (x(−1)1, z) =
∑

n∈Z x(n)z
−n−1, x(n) := x ⊗ tn.

• There is a canonical Li filtration on the vertex algebra Vk(g) s.t.

the C2-Poisson algebra R(Vk(g)) coincides with the Kostant-Kirillov

Poisson algebra RKK (g). [Y. Zhu, JAMS, 1996]
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2.2. Vertex algebras [1/1]

c.f. Nishinaka-san’s talks and

• A vertex algebra (V , |0〉 ,T ,Y ) consists of

• a linear space V , called state space,

• an element |0〉 ∈ V , called vacuum,

• an endomorphism T ∈ EndV , called translation,

• a linear map Y (·, z) : V → (EndV )Jz±1K (state-field corresp.),

denoted as Y (a, z) = a(z) =
∑

n∈Z a(n)z
−n−1, for each a ∈ V ,

satisfying

(i) a(z)b ∈ V ((z)) for any a, b ∈ V , V ((z)) := {
∑∞

n=−k vnz
n | vn ∈ V },

(ii) Y (|0〉 , z) = idV , a(z) |0〉 = a+O(z) for any a ∈ V (vacuum axiom),

(iii) T |0〉 = 0, [T , a(z)] = ∂za(z) for any a ∈ V (translation invariance),

(iv) ∀a, b ∈ V , ∃Na,b ∈ Z≥0 s.t. (z − w)Na,b [a(z), b(w)] = 0

(locality, ⇐⇒ operator product expansion in Nishinaka-san’s talk).

• A vertex algebra can be regarded as a linear space V equipped with

infinitely many binary operations (a, b) 7→ a(n)b (n ∈ Z).
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2.3. Chiral quantization — Definition [1/1]

• Li filtration of a vertex algebra V = (V , |0〉 ,T ,Y ): [H. Li, CMP, 2005]

V = F 0V ⊃ F 1V ⊃ F 2V ⊃ · · · ,

F pV :=
〈
(a1)(−n1) · · · (ar )(−nr )v | ai , v ∈ V , ni ∈ Z>0,

∑
i ni ≥ p

〉
lin

.

• The 0-th graded part

R(V ) := F 0V /F 1V = V /C2(V ), C2(V ) :=
〈
a(−2)b | a, b ∈ V

〉
lin

.

is a Poisson algebra, called Zhu’s C2-algebra. [Y. Zhu, JAMS, 1996]

a·b := a(−1)b, {a, b} := a(0)b (a ∈ R(V ) for a ∈ V ).

The Poisson scheme SpecR(V ) is called the associated scheme.

Definition

A chiral quantization of a Poisson algebra R is a vertex algebra V

such that R(V ) is isomorphic to R .
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2.4. 2nd example: Slodowy slices and W-algebras [1/2]

g: complex simple Lie algebra.

• The affine vertex algebra Vk(g) is a chiral quantization of RKK (g).

• The (regular) W-algebra Wk(g, freg) is a chiral quantization of the

Slodowy slice Sfreg . [T. Arakawa, IMRN, 2015]

Recollection of Slodowy slice and W-algebra:
• f ∈ g: a nilpotent element (:⇔ ad(f ) := [x , ·] ∈ End(g) is nilpotent).

{e, f , h} ⊂ g: sl2-triple, ge := {x ∈ g | [x , e] = 0}: centralizer of e.
Sf := f + ge ⊂ g ' g∗ via Killing form.

Sf with the Kostant-Kirillov Poisson structure is called the Slodowy slice.

• Example: g = sl2 = {
[
a b
c −a

]
| a, b, c ∈ C}, f = freg := [ 0 0

1 0 ],

e = [ 0 1
0 0 ], ge = Ce.

Sfreg = freg + ge = [ 0 ∗
1 0 ] .

• Given a nilpotent element f ∈ g and level k ∈ C, we can construct a

vertex algebra Wk(g, f ) called the W -algebra.

• Example: g = sl2, f = freg, Wk(sl2, freg) = the Virasoro vertex algebra.

[Lm, Ln] = Lm+n +
c
12
(m3 −m)δm,−n.
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2.4. 2nd example: Slodowy slices and W-algebras [2/2]

• Vk(g) is a chiral quantization of RKK (g).

• Wk(g, freg) is a chiral quantization of Sfreg .

These two chiral quantizations are related under Hamiltonian reduction.

Vk(g) RKK (g)

⟳

Wk(g, freg) Sfreg

R(·)
taking C2-algebra

quantum
Hamiltonian
reduction

classical
Hamiltonian
reduction

R(·)
taking C2-algebra

c.f. quantum Hamiltonian reduction = BRST reduction in Hayami-san’s talk
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2.5. Existence theorem of chiral quantization [1/1]

Theorem

For any Poisson algebra R, there exists a vertex algebra V

such that R(V ) ∼= R, i.e., a chiral quantization of R exists.

• For any R , the arc algebra RJtK = {
∑∞

n=0 ant
n | an ∈ R} has the

structure of level 0 Poisson vertex algebra.

[T. Arakawa, Math. Z., 2012]

• For any Poisson vertex algebra P , there exists a vertex algebra V

such that grV = P . c.f. [Tamarkin, PICM, 2002], chiral Deligne conjecture

• The associated graded space grV :=
⊕∞

n=0 F
nV /F n+1V of Li filtration of

any vertex algebra V has a structure of Poisson vertex algebra.

c.f. Hayami-san’s talk

Open problem

∃? explicit description of the above chiral quantization

(like Kontsevich’s formula of deformation quantization)

13/25



3. Application: chiral quantization of Moore-Tachikawa TQFT
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G ,g=0
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3.1. Moore-Tachikawa 2d Topological QFT [1/3]

[G. Moore, Y. Tachikawa, String-Math 2011; arXiv:1106.5698]

Moore and Tachikawa conjectured the existence of a functor

ηG : Bo2 −→ HS

between certain symmetric monoidal categories with duality.

The source category Bo2 is the 2-bordism category.

• Objects: (S1)n for n ∈ Z≥0, identified with n.

• Morphisms: Σg,n1+n2 : n1 → n2, 2-dim. oriented manifolds

with genus g and boundary (S1)n1 t −(S1)n2 .

• Composition := gluing.

(Σ0,2+3 : 2 → 3)

◦

◦ (Σ1,2+2 : 2 → 2)

=

= (Σ2,2+3 : 2 → 3)

• ⊗ := t, disjoint union of manifolds.
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3.1. Moore-Tachikawa 2d Topological QFT [2/3]

The target HS is the category “of holomorphic symplectic varieties”:

• Objects: semisimple algebraic groups over C.

• Morphisms: X : G1 → G2, holomorphic symplectic variety X

with Hamiltonian G1 × G2-action.

G ↷ (Y , ω) is Hamiltonian if ∃µ : Y → g∗ := Lie(G)∗, the moment map, s.t.

⟨dµ(·), ξ⟩ = −ιξY ω with ξY (y) := d
dt
etξ.y

∣∣∣
t=0

for ξ ∈ g,

and µ(g .y) = ad∗
g−1 µ(y) for g ∈ G .

The identity morphism idG := T ∗G = G × g∗.

• Composition: For X12 ∈ HomHS(G1,G2) and X23 ∈ HomHS(G2,G3),

X23 ◦ X12 := (X op
12 × X23)//µ∆(G2) = µ−1(0)/∆(G2).

//µ: Hamiltonian reduction (symplectic quotient) for the moment map

µ : X12 × X23 → g∗2 := Lie(G2)
∗, µ(x , y) := −µ12(x) + µ23(y)

with µ12 the g∗2 -component of momentum map X12 → g∗1 × g∗2 .

• ⊗: given by Cartesian product.
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3.1. Moore-Tachikawa 2d Topological QFT [3/3]

Moore and Tachikawa conjectured that, for each 1-conn. semisimple G ,

there exists a functor ηG : Bo2 → HS with ηG (n) = G n and

ηG (Σg ,n1+n2) : holo. symplectic variety with Ham. G n1+n2 -action

(Moore-Tachikawa symplectic variety).

A functor from Bo2 is called a 2d topological QFT (Atiyah-Segal),

and ηG is called Moore-Tachikawa TQFT. c.f. Wakatsuki-san’s talk

The functoriality of ηG means that taking symplectic quotients of

ηG (Σ)’s is compatible with gluing bordisms Σ’s.

ηG (Σ
′
g ′,n2+n3

◦ Σg ,n1+n2) ηG (Σ
′′
g ′′,n1+n3

)

ηG (Σ
′
g ′,n2+n3

) ◦ ηG (Σg ,n1+n2)

(
ηG (Σg ,n1+n2)

op × ηG (Σ
′
g ′,n2+n3

)
)

//∆(G n2)

functoriality

gluing
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3.2. BFN construction of ηG [1/2]

[A. Braverman, M. Finkelberg, H. Nakajima, Adv. Theor. Math. Phys., 2019]

Theorem (Braverman-Finkelberg-Nakajima)

Moore-Tachikawa 2d TQFT ηG exists.

• They introduced, in some equivariant derived constructible category

DGO (GrG ) on the affine Grassmannian

GrG = GK/GO, GO := G
(
CJzK), GK := G

(
C((z))

)
,

two distinguished objects A,B ∈ DGO (GrG ) which are ring objects

with respect to the convolution product ⋆.

• Using these ring objects for the Langlands dual GL, they showed that

ηG (Σg ,n) := Spec
(
H∗

GL
O
(GrGL , i !∆(A⊠n ⊠ B⊠g )), ⋆

)
has a symplectic structure, and satisfies the gluing condition

ηG (Σ ◦ Σ′) ' ηG (Σ) ◦ ηG (Σ′).
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3.2. BFN construction of ηG [2/2]

A few varieties in genus zero part can be described explicitly.

Denoting W n
G := ηG (Σg=0,n), the gluing condition gives

W n
G ◦Wm

G ' W n+m−2
G .

• The case n = 2 is already explained:

W 2
G = ηG

( )
= idG = T ∗G = G × g∗.

• The case n = 1 is a bit non-trivial.

W 1
G =ηG

( )
= ηG

( )
= G × Sfreg

with Sfreg ⊂ g∗ the Slodowy slice of the regular nilpotent freg ∈ g.

• The case n = 3 for G = SL2 and SL3 is

W 3
SL2

= (C2)×3, W 3
SL3

= Omin in E6.

Omin: closure of coadjoint orbit of minimal nilpotent element
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3.3. Arakawa’s chiral quantization ηchG ,g=0 [1/2]

[T. Arakawa, arXiv:1811.01577]

• Arakawa considered “chiral quantization” of ηG :

ηchG : Bo2 −→ HSch.
• Target category HSch:

• Objects: semisimple algebraic groups (the same as HS).

• Morphisms V : G1 → G2: vertex algebras V equipped with

V−h∨1
(g1)⊗ V−h∨2

(g2) → V (+ some cond.).

• Composition of V12 : G1 → G2 and V23 : G2 → G3:

V23 ◦ V12 := H
∞
2

+0(ĝ−2h∨2
, g2,V

op
12 ⊗ V23),

H
∞
2

+∗(·, ·, ·): relative BRST (semi-infinite) cohomology

(quantum Hamiltonian reduction)

• The functor ηch
G should sit in a commutative diagram

Bo2 HSch

Bo2 HS

ηch
G

Spec R(−):taking associated scheme

ηG
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3.3. Arakawa’s chiral quantization ηchG ,g=0 [2/2]

• Arakawa built genus 0 part ηchG ,g=0 : Bo2|g=0 → HSch.

Theorem (Arakawa)

∃ a family {V S
G ,n = ηchG ,g=0(Σg=0,n) | n ∈ Z≥0} of vertex algebras s.t.

V S
G ,1 ' H0

DS(Dch
G ), V S

G ,2 ' Dch
G , V S

G ,m ◦ V S
G ,n ' V S

G ,m+n−2,

and their associated schemes are Moore-Tachikawa symplectic varieties:

W n
G ' SpecR(V S

G ,n).

• As a corollary, Beem-Rastelli conjecture [C. Beem, L. Rastelli, JHEP, 2018]

MHiggs(T )
?' SpecmR(V (T )) ∀ T : N = 2 4d SCFT

V : {4d N = 2 SCFTs} −→ {conformal vertex algebras}

is affirmatively solved for genus 0 class S theories T = T S
Σ0,n

.
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3.4. Toward higher-genus quantization [1/4]

• In order to extend Arakawa’s functor ηchG ,g=0 to the case g > 0,

the target category HSch should be enlarged.

I built such an enlarged target. [S.Y., Lett. Math. Phys., 2021].

• I constructed an ∞-category MTch which will be the target of the

extension ηchG of Arakawa’s ηchG ,g=0. This MTch sits in the following

commutative diagram.

Bo2 MTch HSch

Bo2 MT HS

ηch
G

ηch
G,g=0

dSpecR(−) R(−)

ηder
G

ηG

H0(·)

• MTch is designed to give a “chiral quantization” of the ∞-category

MT of derived Moore-Tachikawa varieties. [D. Calaque, 2015]
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3.4. Toward higher-genus quantization [2/4]

• The ∞-category MT of derived Moore-Tachikawa varieties [Calaque]:

• Objects: semisimple algebraic groups (same as HS)

• Morphisms X : G1 → G2: derived Poisson scheme X

with Hamiltonian (g1 ⊕ g2)-action.

c.f. Hayami-san’s talk

• Composition of X12 ∈ MapMT(G1,G2) and X23 ∈ MapMT(G2,G3):

X23 ◦̃ X12 :=
(
X op

12 ⊗ X23

)
//Lµ Sym(g2).

//Lµ: derived Hamiltonian reduction of derived Poisson schemes

µ := −µ2
12 ⊗ 1 + 1⊗ µ1

23. The composition ◦̃ is called derived gluing.

• The ∞-category MTch [Y.]:

• Objects: semisimple algebraic groups (same as HS,HSch).

• 1-Morphisms: dg vertex algebras V with µV : Vk(g1)⊗ Vl(g2) → V .

• Compositions of V12 : G1 → G2 and V23 : G2 → G3 is given by

derived quantum Hamiltonian reduction:

V23 ◦̃V12 := BRST(ĝl+m,V
op
12 ⊗V23, µ) (chiral derived gluing).
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3.4. Toward higher-genus quantization [3/4]

Theorem ([S.Y., LMP, 2021])

Taking derived associated scheme gives a functor

dSpecR(−) : MTch −→ MT,

i.e., dSpecR(V ◦̃W ) ' dSpecR(V ) ◦̃ dSpecR(W ).

I also constructed an ∞-category MTco of dg Poisson vertex algebras and

related functors, which sit in the following commutative diagram:

c.f. Hayami-san’s talk

MTch HSch

MTco HSco

MT HS

dSpecR(−)

grF

SpecR(−)

grF

dSpecRco(−) SpecRco(−)

H0(·)
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3.4. Toward higher-genus quantization [4/4]

• I expect the existence of the functors ηchG and ηderG making the

following diagram commute:

Bo2 MTch HSch

Bo2 MT HS

ηch
G

ηch
G,g=0

R(−) R(−)

ηder
G

ηG

H0(·)

Open problem

Describe dg vertex algebras ηchG (Σg>0,n) ∈ MTch,

in particular ηchG (Σ1,1), explicitly.

Thank you.
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