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1.1. Racah polynomial

The (generalized) hypergeometric series

𝑟+1𝐹𝑟[
𝛼1, 𝛼2, … , 𝛼𝑟+1
𝛽1, 𝛽2, … , 𝛽𝑟

; 𝑧] ≔
∞

∑
𝑖=0

(𝛼1)𝑖(𝛼2)𝑖 ⋯ (𝛼𝑟+1)𝑖
(𝛽1)𝑖(𝛽2)𝑖 ⋯ (𝛽𝑟)𝑖(1)𝑖

𝑧𝑖

with (𝑎)𝑖 ∶= 𝑎(𝑎 + 1)⋯ (𝑎 + 𝑖 − 1) the rising factorial.

Racah polynomial 𝑅𝑛(𝑧) of variable 𝑧 and degree 𝑛 = 0, 1, … , 𝑁 for 𝑁 ∈ ℤ≥0:

𝑅𝑛(𝑧; 𝛼, 𝛽, 𝛾, 𝛿) ≔ 4𝐹3[
−𝑛, 𝑛 + 𝛼 + 𝛽 + 1, − 𝑧, 𝑧 + 𝛾 + 𝛿 + 1

𝛼 + 1, 𝛽 + 𝛿 + 1, 𝛾 + 1 ; 1]

with 𝛼 + 1 = −𝑁 or 𝛽 + 𝛾 + 1 = −𝑁 or 𝛿 + 1 = −𝑁.

• The family {𝑅𝑛(𝑧) ∣ 𝑛 = 0, 1, … , 𝑁} is
orthogonal with respect to some dis-
crete weight function 𝑤:
∑𝑁𝑖=0 𝑅𝑚(𝑖)𝑅𝑛(𝑖)𝑤(𝑖) = 𝛿𝑚,𝑛.

• It sits in the top line of Askey scheme
of hypergeometric orthogonal poly-
nomials.

Wilson Racah

cont.
dual Hahn

cont.
Hahn Hahn dual Hahn

Meixner-
Pollaczek Jacobi

pseudo-
Jacobi MeixnerKrawtchouk

Laguerre Bessel Charlier

Hermite
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1.1. Conclusion: The discrete probability distribution 𝑃𝑛,𝑚,𝑘,𝑙 (1/4)

Racah polynomial of degree 𝑛 = 0, 1, … , 𝑁:

𝑅𝑛(𝑧; 𝛼, 𝛽, 𝛾, 𝛿) ≔ 4𝐹3[
−𝑛, 𝑛 + 𝛼 + 𝛽 + 1, − 𝑧, 𝑧 + 𝛾 + 𝛿 + 1

𝛼 + 1, 𝛽 + 𝛾 + 1, 𝛿 + 1 ; 1]

with 𝛼 + 1 = −𝑁 or 𝛽 + 𝛿 + 1 = −𝑁 or 𝛾 + 1 = −𝑁.

Theorem 1
For 𝑛,𝑚, 𝑘, 𝑙 ∈ ℤ satisfying 0 ≤ 2𝑚, 𝑘, 𝑙 ≤ 𝑛, 𝑚 − 𝑙 ≥ 0 and 𝑛 − 𝑚 − 𝑘 + 𝑙 ≥ 0,

𝑝(𝑥) ≔ (
𝑛 − 𝑘
𝑚 − 𝑙)

(𝑛𝑥)
(𝑛𝑚)

𝑛 − 2𝑥 + 1
𝑛 − 𝑥 + 1 𝑅𝑥(𝑚 − 𝑙; −𝑚 − 1, −𝑛 + 𝑚 − 1, −(𝑛 − 𝑘) − 1, 0)

gives a discrete probability distribution 𝑃𝑛,𝑚,𝑘,𝑙 for 𝑥 ∈ {0, 1, … , 𝑛}.

(𝑎𝑘) ≔
1
𝑘! 𝑎(𝑎 − 1)⋯ (𝑎 − 𝑘 + 1) ∈ ℚ[𝑎] for 𝑘 ∈ ℤ≥0.

• Theorem 1 says that the Racah part = ∑𝑀∧𝑁𝑖=0 (−1)𝑖 (
𝑥
𝑖)(𝑛+1−𝑥𝑖 )(𝑀𝑖 )(𝑁𝑖 )
(𝑚𝑖 )(𝑛−𝑚𝑖 )(𝑀+𝑁𝑖 )

≥ 0 for 0 ≤ 𝑥 ≤ 𝑛.

• Theorem 1 also says that the total sum ∑𝑛𝑥=0 𝑝(𝑥) = 1.
It is generalized to a nontrivial summation formula in the next page.
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1.1. Conclusion: The discrete probability distribution 𝑃𝑛,𝑚,𝑘,𝑙 (2/4)

The probability distribution function (pdf) again:

𝑃𝑛,𝑚,𝑘,𝑙[𝑋 = 𝑥] = (
𝑛 − 𝑘
𝑚 − 𝑙)

(𝑛𝑥)
(𝑛𝑚)

𝑛 − 2𝑥 + 1
𝑛 − 𝑥 + 1 4𝐹3[

−𝑥, 𝑥 − 𝑛 − 1, − 𝑀, − 𝑁
−𝑚, 𝑚 − 𝑛, − 𝑀 − 𝑁 ; 1].

(𝑛,𝑚, 𝑘, 𝑙 ∈ ℤ, 0 ≤ 2𝑚, 𝑘, 𝑙 ≤ 𝑛, 𝑀 ≔ 𝑚 − 𝑙 ≥ 0 and 𝑁 ≔ 𝑛 − 𝑚 − 𝑘 + 𝑙 ≥ 0. 𝑥 = 0, 1, … , 𝑛.)

Theorem 2
The cumulative distribution function (cdf) satisfies

𝑃𝑛,𝑚,𝑘,𝑙[𝑋 ≤ 𝑥] = (
𝑛 − 𝑘
𝑚 − 𝑙)

(𝑛𝑥)
(𝑛𝑚)

4𝐹3[
−𝑥, 𝑥 − 𝑛, − 𝑀, − 𝑁
−𝑚, 𝑚 − 𝑛, − 𝑀 − 𝑁; 1].

Moreover, we have 𝑃[𝑋 ≤ 𝑚] = 𝑃[𝑋 ≤ 𝑚 + 1] = ⋯ = 𝑃[𝑋 ≤ 𝑛] = 1.

• The 4𝐹3-part in the cdf = ∑𝑀∧𝑁𝑖=0 (−1)
𝑖 (𝑥𝑖)(𝑛−𝑥𝑖 )(𝑀𝑖 )(𝑁𝑖 )
(𝑚𝑖 )(𝑛−𝑚𝑖 )(𝑀+𝑁𝑖 )

.
• Theorem 2 can be regarded as a kind of hypergeometric summation formula

𝑛

∑
𝑥=0

𝑛 − 2𝑥 + 1
𝑛 − 𝑥 + 1 4𝐹3[

−𝑥, 𝑥 − 𝑛 − 1, − 𝑀, − 𝑁
−𝑚, 𝑚 − 𝑛, − 𝑀 − 𝑁 ; 1] = 4𝐹3[

−𝑥, 𝑥 − 𝑛, − 𝑀, − 𝑁
−𝑚, 𝑚 − 𝑛, − 𝑀 − 𝑁; 1].
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1.1. Conclusion: The discrete probability distribution 𝑃𝑛,𝑚,𝑘,𝑙 (3/4)

Summary:

• Our discrete distribution 𝑃𝑛,𝑚,𝑘,𝑙 has four integer parameters 𝑛,𝑚, 𝑘, 𝑙.
• For our distribution 𝑃𝑛,𝑚,𝑘,𝑙, both pdf and cdf are 4𝐹3-polynomials.
Such a distribution seems to be new.

distribution pdf Pr[𝑋 = 𝑥] cdf Pr[𝑋 ≤ 𝑥]

binomial (𝑛𝑥)𝑝
𝑥(1 − 𝑝)𝑥 ∼ 1𝐹0[

−𝑛; 𝑝
1−𝑝 ]≤𝑥

hypergeometric (𝑚𝑥 )(
𝑛−𝑚
𝑙−𝑥 )/(

𝑛
𝑙 ) ∼ 3𝐹2[

1, 𝑥+1−𝑚, 𝑥+1−𝑙
𝑥+2, 𝑛+𝑥+2−𝑚−𝑙; 1]

our ∼ 4𝐹3[
−𝑥, 𝑥−𝑛−1, −𝑀, −𝑁
−𝑚, 𝑚−𝑛, −𝑀−𝑁 ] ∼ 4𝐹3[

−𝑥, 𝑥−𝑛, −𝑀, −𝑁
−𝑚, 𝑚−𝑛, −𝑀−𝑁; 1]distribution

(∼ denotes that some factor is suppressed.)
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1.1. Conclusion: The discrete probability distribution 𝑃𝑛,𝑚,𝑘,𝑙 (4/4)
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pdf 𝑃𝑛,𝑚,𝑘,𝑙[𝑋 = 𝑥] with (𝑛,𝑚, 𝑘, 𝑙) = (100, 30, 40, 20) in left and (100, 40, 60, 30) in right.
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1.2. Setting: The state Ξ𝑛,𝑚|𝑘,𝑙 in the Schur-Weyl bimodule (ℂ2)⊗𝑛 (1/3)

Consider the classical Schur-Weyl duality of SU(2) and 𝔖𝑛.

• SU(2) ↷ ℂ2: the vector repr. of the special unitary group SU(2).
SU(2) ↷ (ℂ2)⊗𝑛: the 𝑛-th fold tensor representation.

• (ℂ2)⊗𝑛 ↶ 𝔖𝑛: permuting tensor factors by the symmetric group 𝔖𝑛.
• These two actions of SU(2) and 𝔖𝑛 commute:

SU(2) ↷ H ∶= (ℂ2)⊗𝑛 ↶ 𝔖𝑛,

• The irreducible decomposition of the bimodule is

(ℂ2)⊗𝑛 =
⌊𝑛/2⌋
⨁
𝑥=0
U𝑛−2𝑥+1 ⊠ V(𝑛−𝑥,𝑥).

where U𝑟 is the highest weight SU(2)-irrep of dimension 𝑟,
and V(𝑛−𝑥,𝑥) is 𝔖𝑛-irrep corresponding to the partition (𝑛 − 𝑥, 𝑥).
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1.2. Setting: The state Ξ𝑛,𝑚|𝑘,𝑙 in the Schur-Weyl bimodule (ℂ2)⊗𝑛 (2/3)

• The decomp. (ℂ2)⊗𝑛 = ⨁⌊𝑛/2⌋
𝑥=0 U𝑛−2𝑥+1 ⊠ V(𝑛−𝑥,𝑥) gives projectors

π𝑥 ∶ H = (ℂ2)⊗𝑛 −−↠ U𝑛−2𝑥+1 ⊠ V(𝑛−𝑥,𝑥) (𝑥 = 0, 1, … , ⌊𝑛/2⌋).

Then any normalized element |𝑣⟩ ∈ (ℂ2)⊗𝑛 with respect to the standard
hermitian pairing gives rise to a discrete probability by

Pr[𝑋 = 𝑥] ∶= ⟨𝑣| π𝑥 |𝑣⟩ (𝑥 = 0, 1, … , ⌊𝑛/2⌋).

• Our choice of the normalized element: using the basis ℂ2 = ℂ |0⟩ + ℂ |1⟩,

|Ξ𝑛,𝑚|𝑘,𝑙⟩ ≔ |1𝑙 0𝑘−𝑙⟩ ⊗ |Ξ𝑛−𝑘,𝑚−𝑙⟩ ∈ (ℂ2)⊗𝑛,

|1𝑙 0𝑘−𝑙⟩ ∈ (ℂ2)⊗𝑘, |Ξ𝑛−𝑘,𝑚−𝑙⟩ ≔
1

(𝑛−𝑘𝑚−𝑙)
1/2 ∑

𝑤∈|1𝑚−𝑙0𝑛−𝑚−𝑘+𝑙⟩.𝔖𝑛−𝑘

𝑤 ∈ (ℂ2)⊗(𝑛−𝑘).

We have the natural conditions

𝑙 ≥ 0, 𝑘 − 𝑙 ≥ 0, 𝑀 ≔ 𝑚 − 𝑙 ≥ 0 and 𝑁 ≔ 𝑛 − 𝑚 − 𝑘 + 𝑙 ≥ 0.
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1.2. Setting: The state Ξ𝑛,𝑚|𝑘,𝑙 in the Schur-Weyl bimodule (ℂ2)⊗𝑛 (3/3)

Definitions again:

π𝑥 ∶ (ℂ2)⊗𝑛 −−↠ U𝑛−2𝑥+1 ⊠ V(𝑛−𝑥,𝑥) (𝑥 = 0, 1, … , ⌊𝑛/2⌋).

|Ξ𝑛,𝑚|𝑘,𝑙⟩ ∶= |1𝑙 0𝑘−𝑙⟩ ⊗
1

(𝑛−𝑘𝑚−𝑙)
1/2 ∑

𝑤∈|1𝑚−𝑙0𝑛−𝑚−𝑘+𝑙⟩.𝔖𝑛−𝑘

𝑤 ∈ (ℂ2)⊗𝑛.

Main Theorem (coincise form of Theorem 1)
The discrete probability associated to |Ξ𝑛,𝑚|𝑘,𝑙⟩ is 𝑃𝑛,𝑚,𝑘,𝑙 in Theorem 1, i.e.,

⟨Ξ𝑛,𝑚|𝑘,𝑙| π𝑥 |Ξ𝑛,𝑚|𝑘,𝑙⟩= (
𝑛 − 𝑘
𝑚 − 𝑙)

(𝑛𝑥)
(𝑛𝑚)

𝑛 − 2𝑥 + 1
𝑛 − 𝑥 + 1 4𝐹3[

−𝑥, 𝑥 − 𝑛 − 1, − 𝑀, − 𝑁
−𝑚, 𝑚 − 𝑛, − 𝑀 − 𝑁 ; 1]

for 𝑥 = 0, 1, … , ⌊𝑛/2⌋. (𝑀 ∶= 𝑚 − 𝑙, 𝑁 ∶= 𝑛 − 𝑚 − 𝑘 + 𝑙, 𝑀 + 𝑁 = 𝑛 − 𝑘.)

End of first half.
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2. How to prove Main Theorem

1. Conclusion and setting
2. How to prove Main Theorem (5 pages), based on §4 of our paper [HHY].

2.1. Projector formula
2.2. Gelfand pairs and zonal spherical functions.
2.3. Hahn summation formula
2.4. Main Theorem — Racah formula
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4. Concluding remarks
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2.1. Projector formula (1/1)

Recollection of Main Theorem: Using 𝑀 ∶= 𝑚 − 𝑙 and 𝑁 ∶= 𝑛 − 𝑚 − 𝑘 + 𝑙, define
π𝑥 ∶ (ℂ2)⊗𝑛 −−↠ U𝑛−2𝑥+1 ⊠ V(𝑛−𝑥,𝑥) (𝑥 = 0, 1, … , ⌊𝑛/2⌋).

|Ξ𝑛,𝑚|𝑘,𝑙⟩ ∶= |1𝑙 0𝑘−𝑙⟩ ⊗ (
𝑀+𝑁
𝑀 )

−1/2
∑𝑤∈|1𝑀0𝑁⟩.𝔖𝑀+𝑁

𝑤 ∈ (ℂ2)⊗𝑛.

Then we have

⟨Ξ𝑛,𝑚|𝑘,𝑙| π𝑥 |Ξ𝑛,𝑚|𝑘,𝑙⟩ = (
𝑛 − 𝑘
𝑚 − 𝑙)

(𝑛𝑥)
(𝑛𝑚)

𝑛 − 2𝑥 + 1
𝑛 − 𝑥 + 1 4𝐹3[

−𝑥, 𝑥 − 𝑛 − 1, − 𝑀, − 𝑁
−𝑚, 𝑚 − 𝑛, − 𝑀 − 𝑁 ; 1].

We will calculate ⟨Ξ𝑛,𝑚|𝑘,𝑙| π𝑥 |Ξ𝑛,𝑚|𝑘,𝑙⟩ by regarding the decomposition as 𝔖𝑛-representation:

π𝑥 ∶ (ℂ2)⊗𝑛 −−↠ V(𝑛−𝑥,𝑥)⊗ dimℂ U𝑛−2𝑥+1 = V(𝑛−𝑥,𝑥)⊗(𝑛−2𝑥+1).
To calculate ⟨Ξ𝑛,𝑚|𝑘,𝑙| π𝑥 |Ξ𝑛,𝑚|𝑘,𝑙⟩, we want some formula for π𝑥.

Fact (projector formula)
Denoting by 𝜑 the 𝔖𝑛-action, we have

π𝑥 =
dimℂ V(𝑛−𝑥,𝑥)⊗(𝑛−2𝑥+1)

|𝔖𝑛|
∑
𝜎∈𝔖𝑛

𝜒(𝑛−𝑥,𝑥)(𝜎)𝜑(𝜎)

with 𝜒(𝑛−𝑥,𝑥) the character of the irreducible representation V(𝑛−𝑥,𝑥).

dimℂ V(𝑛−𝑥,𝑥) is given by the hook length formula. What about ∑𝜎 ⋯𝜒
(𝑛−𝑥,𝑥)(𝜎)𝜑(𝜎)?
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2.2. Gelfand pairs and zonal spherical functions

Consider the subgroup 𝔖𝑚 ×𝔖𝑛−𝑚 ⊂ 𝔖𝑛.

The pair (𝐺, 𝐾) ∶= (𝔖𝑛,𝔖𝑚 ×𝔖𝑛−𝑚) is a Gelfand pair, i.e., the induced
representation Ind𝐺𝐾 ℂtriv has multiplicity free irreducible decomposition.

For this Gelfand pair, zonal spherical function 𝜔(𝑛−𝑥,𝑥) ∶ 𝐺 → ℂ is

𝜔(𝑛−𝑥,𝑥)(𝑔) ∶=
1
|𝐾| ∑

𝑘∈𝐾
𝜒(𝑛−𝑥,𝑥)(𝑘𝑔−1).

The value 𝜔(𝑛−𝑥,𝑥)(𝑔) depends only on the double coset 𝐾𝑔𝐾,
and we have the induced 𝜔(𝑛−𝑥,𝑥) ∶ 𝐾\𝐺/𝐾 → ℂ.

Fact [Delsarte 1973, 1978]
The set 𝐺/𝐾, equipped with a certain distance function, has the structure of
Johnson graph 𝐽(𝑛,𝑚), which induces bijections

𝐾\𝐺/𝐾 = {𝐾-orbits of 𝐽(𝑛,𝑚)} = {0, 1, … ,𝑚}.
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2.3. Hahn summation formula

The zonal spherical function 𝜔(𝑛−𝑥,𝑥) ∶ 𝐾\𝐺/𝐾 → ℂ is now totally determined by
the values {𝜔(𝑛−𝑥,𝑥)(𝑖) ∣ 𝑖 = 0, 1, … ,𝑚}.

Fact [Delsarte]
The value 𝜔(𝑛−𝑥,𝑥)(𝑖) is given by

𝜔(𝑛−𝑥,𝑥)(𝑖) = 3𝐹2[
−𝑖, − 𝑥, 𝑥 − 𝑛 − 1

−𝑚, 𝑚 − 𝑛 ; 1] ∶= ∑
𝑎≥0

(−𝑖)𝑎(−𝑥)𝑎(𝑥 − 𝑛 − 1)𝑎
(1)𝑎(−𝑚)𝑎(𝑚 − 𝑛)𝑎

.

The RHS is the Hahn polynomial with variable 𝑖 and degree 𝑥.

Hahn summation formula [Hayashi-Hora-Y., Theorem 4.1.1]
Using 𝑀 ∶= 𝑚 − 𝑙 and 𝑁 ∶= 𝑛 − 𝑚 − 𝑘 + 𝑙, we have

⟨Ξ𝑛,𝑚|𝑘,𝑙| π𝑥 |Ξ𝑛,𝑚|𝑘,𝑙⟩ =
(𝑛𝑥)
(𝑛𝑚)

𝑛 − 2𝑥 + 1
𝑛 − 𝑥 + 1

𝑀∧𝑁

∑
𝑖=0

(
𝑀
𝑖 )(

𝑁
𝑖 )𝜔(𝑛−𝑥,𝑥)(𝑖).
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2.4. Main Theorem — Racah formula

The Hahn summation formula is a double sum, and difficult to use for analysis.

⟨Ξ| π𝑥 |Ξ⟩ =
(𝑛𝑥)
(𝑛𝑚)

𝑛 − 2𝑥 + 1
𝑛 − 𝑥 + 1

𝑀∧𝑁

∑
𝑖=0

(
𝑀
𝑖 )(

𝑁
𝑖 )3𝐹2[

−𝑖, − 𝑥, 𝑥 − 𝑛 − 1
−𝑚, 𝑚 − 𝑛 ; 1].

(𝑀 ≔ 𝑚 − 𝑙, 𝑁 ≔ 𝑛 − 𝑚 − 𝑘 + 𝑙.)

Racah formula (Main Theorem) [Hayashi-Hora-Y., Theorem 4.2.1]
We have the following hypergeometric summation formula

𝑀∧𝑁

∑
𝑖=0

(
𝑀
𝑖 )(

𝑁
𝑖 )3𝐹2[

−𝑖, − 𝑥, 𝑥 − 𝑛 − 1
−𝑚, 𝑚 − 𝑛 ; 1] = (

𝑀 + 𝑁
𝑀 )4𝐹3[

−𝑥, 𝑥 − 𝑛 − 1, − 𝑀, − 𝑁
−𝑚, 𝑚 − 𝑛, − 𝑀 − 𝑁 ; 1],

where 𝑅𝑥(𝑀) = 4𝐹3[
−𝑥, 𝑥−𝑛−1, −𝑀, −𝑁
−𝑚, 𝑚−𝑛, −𝑀−𝑁 ; 1] is Racah polynomial. It yields Main Theorem:

⟨Ξ𝑛,𝑚|𝑘,𝑙| π𝑥 |Ξ𝑛,𝑚|𝑘,𝑙⟩ =
(𝑛𝑥)
(𝑛𝑚)

𝑛 − 2𝑥 + 1
𝑛 − 𝑥 + 1 (

𝑛 − 𝑘
𝑚 − 𝑙)𝑅𝑥(𝑚 − 𝑙).
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3. Asymptotic behavior of 𝑃𝑛,𝑚,𝑘,𝑙

1. Conclusion and setting
2. How to prove Main Theorem (Racah formula)

𝑃𝑛,𝑚,𝑘,𝑙[𝑋 = 𝑥] =
(𝑛𝑥)
(𝑛𝑚)

𝑛 − 2𝑥 + 1
𝑛 − 𝑥 + 1 (

𝑛 − 𝑘
𝑚 − 𝑙)4𝐹3[

−𝑥, 𝑥 − 𝑛 − 1, − 𝑀, − 𝑁
−𝑚, 𝑚 − 𝑛, − 𝑀 − 𝑁 ; 1].

(𝑛,𝑚, 𝑘, 𝑙 ∈ ℤ, 0 ≤ 2𝑚, 𝑘, 𝑙 ≤ 𝑛, 𝑀 ∶= 𝑚 − 𝑙 ≥ 0, 𝑁 ∶= 𝑛 − 𝑚 − 𝑘 + 𝑙 ≥ 0, 𝑥 ∈ {0, 1, … , 𝑛}.)

3. Asymptotic behavior of 𝑃𝑛,𝑚,𝑘,𝑙 (3 pages), based on §5 of our paper [HHY].
3.1. What is Racah formula useful for?
3.2. Central limit theorem

4. Concluding remarks
A. 𝑞-analogue
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3.1. What is Racah formula useful for?

Racah polynomial 𝑅𝑥 of degree 𝑥 (and variable M) in Main Theorem

𝑃𝑛,𝑚,𝑘,𝑙[𝑋 = 𝑥] =
(𝑛𝑥)
(𝑛𝑚)

𝑛 − 2𝑥 + 1
𝑛 − 𝑥 + 1 (

𝑛 − 𝑘
𝑚 − 𝑙)𝑅𝑥, 𝑅𝑥 ∶= 4𝐹3[

−𝑥, …
−𝑚, …; 1]

is an orthogonal polynomial, and satisfies three-term recursive formula of the
form 𝑎𝑥𝑅𝑥+1 + 𝑏𝑥𝑅𝑥 + 𝑐𝑥𝑅𝑥−1 = 0. It is rewritten as:

Three-term recursive formula
𝑝(𝑥) = 𝑃𝑛,𝑚,𝑘,𝑙[𝑋 = 𝑥] satisfies the recursive formula

𝐴𝑥𝑝(𝑥 + 1) + 𝐵𝑥𝑝(𝑥) + 𝐶𝑥𝑝(𝑥 − 1) = 0,

𝐴𝑥 ≔
(𝑚 − 𝑥)(𝑛 − 𝑚 − 𝑥)(𝑛 − 𝑘 − 𝑥)(𝑛 − 𝑥 + 1)

(𝑛 − 2𝑥)(𝑛 − 2𝑥 + 1)
𝑛 − 2𝑥 − 1
𝑛 − 𝑥

𝑥 + 1
𝑛 − 𝑥 ,

𝐶𝑥 ≔
𝑥(𝑥 − 𝑘 − 1)(𝑚 − 𝑥 + 1)(𝑛 − 𝑚 − 𝑥 + 1)

(𝑛 − 2𝑥 + 1)(𝑛 − 2𝑥 + 2)
𝑛 − 2𝑥 + 3
𝑛 − 𝑥 + 2

𝑥 − 1
𝑛 − 𝑥 + 1 ,

𝐵𝑥 ≔ 𝐴𝑥 + 𝐶𝑥 − 𝑀𝑁.

It enables us to do asymptotic analysis for 𝑃𝑛,𝑚,𝑘,𝑙, 𝑛 → ∞.
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3.2. Central limit theorem (1/2)

Consider the limit 𝑛 → ∞ with the ratios 𝑚
𝑛 ,

𝑘
𝑛 ,

𝑙
𝑛 fixed. We use

𝛼 = 𝑙
𝑛 , 𝛽 = 𝑚 − 𝑙

𝑛 , 𝛾 = 𝑘 − 𝑙𝑛 , 𝛿 = 𝑛 − 𝑚 − 𝑘 + 𝑙
𝑛 .

Central limit theorem for generic type II limit [Hayashi-Hora-Y., Thm 5.2.9]
In the above limit 𝑛 → ∞ with 𝛼 + 𝛾, 𝛽, 𝛿 > 0, we have

lim
𝑛→∞

𝑃𝑛,𝑚,𝑘,𝑙[𝑟 ≤
𝑋 − 𝑛𝜇
√𝑛𝜎

≤ 𝑠] =
1
√2𝜋

∫
𝑠

𝑟
𝑒−𝑢2/2 𝑑𝑢

with 𝜇 and 𝜎 given by

𝜇 ∶= 1 −
√𝐷
2 , 𝜎 ∶= √

(𝛼 + 𝛾)𝛽𝛿
𝐷 , 𝐷 ∶= 1 − 4(𝛼𝛾 + 𝛼𝛿 + 𝛽𝛾).

We guessed the expectation value 𝜇 and the variance 𝜎 by taking a formal limit of the recursive formula
𝐴𝑥𝑝(𝑥 + 1) + 𝐵𝑥𝑝(𝑥) + 𝐶𝑥𝑝(𝑥 − 1) = 0 to get a differential equation

𝑑
𝑑𝑡 log 𝑝(𝑛𝑡) ≈ −

𝑡 − 𝜇
𝜎/√𝑛

(𝑛 → ∞).
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3.2. Central limit theorem (2/2)

20 30 40 50
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Pdf 𝑃𝑛,𝑚,𝑘,𝑙[𝑋 = 𝑥] by cyan dots and the limit normal distribution by pink lines with
(𝑚𝑛 ,

𝑘
𝑛 ,

𝑙
𝑛 ) = (0.4, 0.6, 0.3) fixed and 𝑛 = 100 (left), 1000 (middle), 10000 (right). The limit

distribution has 𝜇 = 0.3 and 𝜎 = 0.3354....
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4. Concluding remarks (1/2)

Conclusions again:

• We found a discrete probability distribution 𝑃𝑛,𝑚,𝑘,𝑙 whose pdf is a Racah
4𝐹3-polynomial, and cdf is a 4𝐹3-polynomial. ← the first (?) example of
distribution whose pdf and cdf are higher HG polynomials.

• Central limit theorem holds for generic type II limit:
𝑛 → ∞ with ratios 𝑚

𝑛 ,
𝑘
𝑛 ,

𝑙
𝑛 fixed, satisfying a generic condition.

Topics in [HHY] not explained in this talk:

• Asymptotic analysis beyond central limit theorem [§5.5]
• Another limit of 𝑃𝑛,𝑚,𝑘,𝑙: 𝑛 → ∞ with 𝑚

𝑛 , 𝑘, 𝑙 fixed. [§5.1]
• Meanings and applications in quantum information theory. [§1, §3]
• Computation using 𝔰𝔩2-Casimir operator. [§4.4, §5.5]
• 𝑞-analogue of the distribution 𝑃𝑛,𝑚,𝑘,𝑙. [Appendix C]
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4. Concluding remarks (2/2)

Logically we started with the distinguished element

|Ξ𝑛,𝑚|𝑘,𝑙⟩ ∶= |0𝑙1𝑘−𝑙⟩ ⊗ |Ξ𝑛−𝑘,𝑚−𝑙⟩ ∈ H = (ℂ2)⊗𝑛

and succeeded in the computation of ⟨Ξ𝑛,𝑚|𝑘,𝑙| π𝑥 |Ξ𝑛,𝑚|𝑘,𝑙⟩, obtaining explicit and useful
hypergeometric formulas.

However, at this moment, we do not have a conceptual reason why we were able to get nice
formulas of the distribution.

Naive open problem
What property of the state |Ξ𝑛,𝑚|𝑘,𝑙⟩ enabled us to get nice formulas?

Is there some characterization of |Ξ𝑛,𝑚|𝑘,𝑙⟩ among all the normalized states of H so that
the associated distribution can be expressed by a hypergeometric orthogonal polynomial?

(I expect some hidden “integrability” of the state |Ξ𝑛,𝑚|𝑘,𝑙⟩.)
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Appendix: 𝑞-analogue of the distribution 𝑃𝑛,𝑚,𝑘,𝑙

𝑞-hypergeometric series and 𝑞-binomial coefficient:

(𝑎; 𝑞)𝑛 ∶= (1 − 𝑎)(1 − 𝑎𝑞)⋯ (1 − 𝑎𝑞𝑛−1), [𝑛]𝑞 ∶= 1 + 𝑞 + ⋯ + 𝑞𝑛−1,

𝑟+1𝜙𝑟[
𝑎1, … , 𝑎𝑟+1
𝑏1, … , 𝑏𝑟

; 𝑞, 𝑧] ∶= ∑
𝑖≥0

(𝑎1, … , 𝑎𝑟; 𝑞)𝑖
(𝑏1, … , 𝑏𝑠; 𝑞)𝑖

𝑧𝑖, [
𝑛
𝑚]

𝑞

∶= (𝑞; 𝑞)𝑛
(𝑞; 𝑞)𝑚(𝑞; 𝑞)𝑛−𝑚

.

[Hayashi-Hora-Y., Theorems C.3.1, C.3.2]
Let 𝑛,𝑚, 𝑘, 𝑙 ∈ ℤ s.t. 0 ≤ 2𝑚, 𝑘, 𝑙 ≤ 𝑛, 𝑀 ∶= 𝑚 − 𝑙, 𝑁 ∶= 𝑛 − 𝑚 − 𝑘 + 𝑙 ≥ 0.
Then, for 𝑞 ∈ ℝ, 0 < 𝑞 < 1, the function having the 𝑞-Racah polynomial part

𝑝(𝑥; 𝑞) ≔ [
𝑛 − 𝑘
𝑚 − 𝑙]

𝑞

[𝑛𝑥]𝑞
[𝑛𝑚]𝑞

𝑞𝑥
[𝑛 − 2𝑥 + 1]𝑞
[𝑛 − 𝑥 + 1]𝑞 4𝜙3[

𝑞−𝑥, 𝑞𝑥−𝑛−1, 𝑞−𝑀, 𝑞−𝑁

𝑞−𝑚, 𝑞𝑚−𝑛, 𝑞−𝑀−𝑁 ; 𝑞, 𝑞]

defines a discrete probability distribution for 𝑥 ∈ {0, 1, … , 𝑛}.
Moreover, the cdf is also expressed by a 4𝜙3-polynomial:

𝑥

∑
𝑢=0

𝑝(𝑢; 𝑞) = [
𝑛 − 𝑘
𝑚 − 𝑙]

𝑞

[𝑛𝑥]𝑞
[𝑛𝑚]𝑞

4𝜙3[
𝑞−𝑥, 𝑞𝑥−𝑛, 𝑞−𝑀, 𝑞−𝑁

𝑞−𝑚, 𝑞𝑚−𝑛, 𝑞−𝑀−𝑁 ; 𝑞, 𝑞].

Thank you for your attention.
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