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0 Introduction
The derived Hall algebra introduced by Toën (2006) is a version of Ringel-Hall

algebra. Roughly it is a “Hall algebra for complexes”.

In the case of ordinary Ringel-Hall algebra, we know Lusztig’s geometric formulation

using the theory of derived categories of constructible sheaves on moduli spaces of

quiver representations, which are realized as Artin stacks.

I will explain a geometric formulation of derived Hall algebras using the theory of

derived categories of constructible sheaves on moduli spaces of complexes of Quiver

representations, which are realized as geometric derived stacks.

Based on my preprint

S. Yanagida, “Geometric derived Hall algebra”, arXiv:1912.05442.

See also

柳田伸太郎, 「幾何学的導来Hall代数」代数学シンポジウム講演集 (2020).

1



Contents

Part I: motivation and outline

• Ringel-Hall algebras and Lusztig’s geometric construction (§1)
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1 Ringel-Hall algebra

A: an Fq-linear abelian category of finite global dim. with ExtiA(·, ·) finite dim.

Iso(A): the set of isomorphism classes [M ] of objects M in A.

Cc(A): the linear space of C-valued functions on Iso(A) with finite supports.

1[M ]: the characteristic function of [M ] ∈ Iso(A), forming a basis of Cc(A).

Theorem (Ringel (1990)). R(A) :=
(
Cc(A), ∗, 1[0]

)
is a unital assoc. C-algebra with

1[L] ∗ 1[M ] := νχ(L,M)
∑

[N ]∈Iso(A)
gNL,M1[N ],

ν := q1/2 ∈ C, χ(·, ·) :=
∑

i≥0(−1)
i dimFq Ext

i
A(·, ·) the Euler form, and

gNL,M := eNL,Ma−1
L a−1

M ,

eNL,M := |{0 → M → N → L → 0 | exact in A}| , aM := |Aut(M)| .

This is the Ringel-Hall algebra of A.

Another definition of gNL,M : counting the number of certain subobjects M ′ ⊂ N .

gNL,M = |{M ′ ∈ Ob(A) | M ′ ⊂ N, M ′ ' M, N/M ′ ' L}| .
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Theorem (Green (1995), Xiao (1997)). If A is hereditary (global dimension ≤ 1),

then the Ringel-Hall algebra R(A) has a structure of Hopf algebra.

Example: classical Hall algebra

• QJor: the Jordan quiver •a :: .

• RepnilFq
QJor: the category of nilpotent representations of QJor over Fq.

⇝ Hopf algebra Hcl := R(RepnilFq
QJor), called the classical Hall algebra.

• For a partition λ = (λ1, λ2, . . . , λr), λi ∈ N, λ1 ≥ λ2 ≥ · · · ≥ λr,

Iλ := (F|λ|
q , Jλ) ∈ Ob(A), Jλ := Jλ1

⊕ Jλ2
⊕ · · · ⊕ Jλr

∈ End(F|λ|
q )

with |λ| :=
∑r

i=1 λi and Jn the Jordan matrix of 0 diagonals and size n.

• The underlying linear space of Hcl is
⊕

λ∈Par C[Iλ].
• Hcl ' C

[
[I(1)], [I(1,1)], [I(1,1,1)], . . .

]
as C-algebra.

Fact (Steiniz, Hall, Macdonald, . . . ). Hcl is isomorphic to the ring of symmetric

functions Λ = C[x1, x2, . . . , ]
S∞ .

(Lecture, Day 1)
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The extended Ringel-Hall algebra R̃(A) := CK0(A)⊗C R(A)

• kα ∈ CK0(A): the element associated to α ∈ K0(A).

• kα ∗ [M ] = ν(α,M)a [M ] ∗ kα, (α, β)a := χ(α, β) + χ(β, α), M ∈ K0(A).

Ringel’s realization of Borel subalgebras of quantum groups

• Q: a quiver without loops. RepnilpFq
Q: category of nilpotent representations of Q.

⇝ the extended Ringel-Hall algebra R̃(RepnilpFq
Q).

• Q: underlying graph. ⇝ AQ: symmetric generalized Cartan matrix. ⇝
Uν(gQ) = 〈Ei, Fi,K

±1
i 〉: quantum group of the Kac-Moody Lie algebra gQ.

Uν(bQ) = 〈Ei,K
±1
i 〉 ⊂ Uν(gQ): Borel subalgebra.

Theorem (Ringel, 1990). There is an algebra embedding

Uν(bQ) ↪−→ R̃(RepnilpFq
Q), Ei 7−→ [Si], Ki 7−→ kSi

.

If Q is of finite type ( ⇐⇒ Q is Dynkin), then it is an isomorphism.

(Lecture, Day 2–3)
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1.2 Lusztig’s geometric construction of Ringel-Hall algebras

A geometric reformulation of the Ringel-Hall algebra R(RepFq
Q) for a quiver Q.

Fix an algebraically closed field k = Fq.

• Q = (I,H): a quiver without loops. I: vertex set. H: arrow set.

h ∈ H connects the start s(h) ∈ I and the target t(h) ∈ I.

• The moduli space of representations of Q over k of dimension α ∈ NI :

Mα
Q := Eα/Gα, Eα :=

⊕
h∈H

Hom(kαs(h) , kαt(h)), Gα :=
∏

i∈I
GL(αi, k),

regarded as an algebraic stack (quotient stack). It is the moduli space since

{isom. classes of reps. of Q of dimension α} = {Gα-orbits in Eα}.
• Recalling gNL,M = |{M ′ ⊂ N | M ′ ' M,N/M ′ ' L}| in R(A), we consider

G
α,β
Q M

α+β
Q (M ⊂ N) N

Mα
Q ×M

β
Q (N/M,M)

c

p

with G
α,β
Q the moduli space parametrizing (M ⊂ N), dimM = β, dimN = α+ β.
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• Using the above diagram. define the induction functor as

µ : Db(Mα
Q ×M

β
Q) −→ Db(Mα+β

Q ), F 7−→ c!p
∗(F )[dim p].

Here, for a quotient stack E/G (Gα,β
Q is also a quotient stack),

Db(E/G) := Db
G(E) : G-equiv. derived category of Ql-constructible complexes,

and c!, p
∗ are derived functors (p needs a technical modification).

• On MQ :=
⊔

α∈NI Mα
Q, µ induces an associative operation

F1 ? F2 := µ(F1 ⊠ F2) for F1, F2 ∈ Db(MQ).

• MQ can be written in the form M0 ⊗Fq k with M0 defined over Fq.

Using the sheaf-function dictionary, for F ∈ Db(MQ) attached with a Weil

structure, we have a constructible function Tr(F ) on M0(Fq) by

Tr(F ) : M0(Fq) −→ Ql
∼−→ C, x 7−→

∑
i≥0

(−1)i Tr(Frob, Hi(F )
∣∣
x
),

• ? can be restricted to a certain QQ ⊂ Db(MQ)
ss consisting of semisimple objects

with Weil structure, and have ({Tr(F ) | F ∈ QQ}, ?) ' R(RepFq
Q).
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1.3 Bridgeland-Hall algebra

For a Dynkin quiver Q = Q(ADE), we have a realization of the Borel subalgebra of

Uν(bQ) by the extended Ringel-Hall algebra R̃(A) for A = RepFq
Q).

Uν(bQ) R̃(RepFq
Q) Ei,Ki [Si], kSi

Uν(gQ) ? Ei,Ki, Fi ?

∼

∼

Theorem (Bridgeland, 2013). Let P ⊂ A be the full subcategory of projective

objects. Using the category C2(P) of two-periodic complexes M•

M1 M0 M i ∈ Ob(P), di+1 ◦ di = 0,
d1

d0

one can construct the Bridgeland-Hall algebra by non-commutative (Ore) localization

BH(A) := R[C2(P)]
[
[M•] | H∗(M•) = 0

]
,

which is isomorphic to Uν(gQ) in the case A = RepFq
Q.

(Lecture, Day 3–4)
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Motivation of today’s talk

• The original motivation is to make an analogue of Lusztig’s geometric construction

of Ringel-Hall algebras for Bridgeland-Hall algebras.

I have not reached this goal yet.

(The difficult point is to have a geometric interpretation of the non-commutative

localization.)

• Aside to Bridgeland-Hall algebras, there are several versions of Hall algebras of

complexes.

Among them, I will explain Toën’s derived Hall algebras, which seems to admit an

analogous geometric construction.

• A geometric construction of Hall algebra of complexes, in any sense, would take the

following steps.

1. The moduli spaces of complexes of representations/modules,

2. The derived categories and derived functors of Q
l
-constructible complexes over

the moduli spaces.

3. Sheaf-function dictionary, the theory of weights, perverse t-structures, . . .

• I will explain the item 1 and 2 for derived Hall algebras.

(3 is not yet established.)
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2 Derived Hall algebra

Toën introduced an analogue of Ringel-Hall algebra of complexes

using the category of DG modules over a DG category.

2.1 DG category

A DG category over a commutative ring k is a category D whose morphism set is

equipped with the structure of differential graded k-module and whose composition of

morphisms is a homomorphism of differential graded k-modules.

HomD(M,N) =
⊕

n∈Z
Homn

D(M,N), d : Homn
D(·, ·) −→ Homn+1

D (·, ·), d2 = 0.

Example: The DG category Cdg(A) of complexes over an additive category A.

• Recall that in the Ringel-Hall algebra R(A) for an abelian category A, the structure

constant gNL,M counts pairs M ⊂ N of an object and its subobject.

• For a DG category D, we can do an analogous counting, using the model structure

of the category M(D) of DG modules over D.

• Rough idea: instead of counting subobjects, count cofibrations up to homotopy.
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Model structure

• A model structure on a category C consists of 3 classes of morphisms:

fibrations, cofibrations, and weak equivalences, which are subject to certain axioms.

• It is designed to provide a natural setting of homotopy theory.

• Localization of C by weak equivalences gives the homotopy category Ho(C).

Examples:

1. C(k): the category of complexes of modules over a commutative ring k.

It has a projective model structure with

• A fibration is defined to be an epimorphism of complexes.

• A weak equivalence is defined to be a quasi-isomorphism.

2. For a DG category D over k, a DG D-module is a DG functor Dop → Cdg(k).

M(D): the category of DG Dop-modules.

It has a model structure induced by the projective model structure of C.
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2.2 The diagram of correspondence

Let D be a DG category over k = Fq.

• P(D) ⊂ M(D): the full subcategory of perfect objects.

• M(D)I := Fun(I,M(D)) with I = ∆1 the 1-simplex. It has the model structure

induced levelwise by that of M(D).

We have a diagram (of left Quillen functors)

M(D)I M(D) (x → y) y

M(D)×M(D) (y
∐

x 0, x)

c

p

Restricting to the subcategories of cofibrant and perfect objects and of equivalences,

w
(
P(D)I

)cof
wP(D)cof (x↣ y) y

wP(D)cof × wP(D)cof (y
∐

x 0, y)

c

p
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Simplicial sets and the homotopy category of spaces

• Given a category C, the nerve construction yields a simplicial set N(C) ∈ sSet.

• sSet := Fun(∆op, Set): the category of simplicial sets and simplicial maps.

It has the Kan model structure where a fibration is a Kan fibration and a weak

equivalence is a homotopy equivalence of geom. realizations.

• H := Ho(sSet): the homotopy category of spaces. [·] : sSet → H.

An object X ∈ Ob(H) is called a homotopy type.

CG: the category of compactly generated Hausdorff spaces.

The standard Quillen adjunction | | : sSet −−→←−− CG : Sing yields Ho(sSet) ≃ Ho(CG).

Define X(0)(D), X(1)(D) ∈ H by

X(0)(D) :=
[
N(wP(D)cof)

]
, X(1)(D) :=

[
N
(
w(P(D)I)cof

)]
.

Then we have the diagram of homotopy types

X(1)(D)
c //

p

��

X0(D)

X(0)(D)×X(0)(D)
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Lemma. If the DG category D is locally finite, then

1. p is proper (: ⇐⇒ for each y ∈ π0(Y ), |{x ∈ π0(X) | f(x) = y}| < ∞).

2. The homotopy types X(i)(D) ∈ H are locally finite.

Here we used:

Definition. A DG category D is called locally finite if the complex HomD(M,N) is

cohomologically bounded with finite-dimensional cohomology groups for any M,N ∈ D.

Definition. A homotopy type X ∈ Ob(H) is called locally finite if for any x ∈ X the group

πi(X,x) is finite and there exists an n ∈ N such that πi(X,x) is trivial for i > n.

Hlf: the full subcategory of H spanned by locally finite objects
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2.3 The definition of derived Hall algebra

For X ∈ Hlf, we denote Cc(X) := {α : π0(X)→ C | having finite support}.
For a proper morphism f : X → Y in Hlf, define f∗ : Cc(Y )→ Cc(X) by

f∗(α)(x) := α(f(x)) (α ∈ Cc(Y ), x ∈ π0(X)).

Also, for a morphism f : X → Y in Hlf, define f! : Cc(X)→ Cc(Y ) by

f!(α)(y) :=
∑

x∈π0(X), f(x)=y

α(x) ·
∏
i>0

(
|πi(X,x)|(−1)i |πi(Y, y)|(−1)i+1

)
.

Theorem (Toën 2006). Let D be a locally finite DG category over Fq. Then

H(D) = Cc(X
(0)(D))

has a structure of a unital associative Q-algebra with the multiplication

µ := c! ◦ p∗ : H(D)⊗Q H(D) −→ H(D).

We call H(D) the derived Hall algebra of D.
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2.4 An example of derived Hall algebra

The derived Hall algebra DHcl for the DG category of perfect complexes in

RepnilFq
QJor is a unital associative algebra with generators

{Z [n]
λ | n ∈ Z, λ ∈ Par \ {∅}} t {Z [n]

∅ = 1},

and the relations

Z
[n]
λ ∗ Z [n]

µ =
∑

ν∈Par

gνλ,µZ
[n]
ν , Z

[n]
λ ∗ Z [m]

µ = Z [m]
µ ∗ Z [n]

λ , (|n−m| > 1),

Z
[n]
λ ∗ Z [n+1]

µ =
∑

α,β∈Par

γα,β
λ,µZ

[n+1]
α ∗ Z [n]

β , (])

Proposition (Shimoji-Y.). The relation (]) is equivalent to the following Heisenberg

relation: For k ∈ Z>0, define b
[n]
±k ∈ DHcl by

b
[n]
k :=

∑
|λ|=k

(q; q)ℓ(λ)−1Z
[n]
λ , b

[n]
−k :=

∑
|λ|=k

(q; q)ℓ(λ)−1Z
[n+1]
λ .

Also set b
[n]
0 := 1 ∈ DHcl. Then

b
[n]
k ∗ b[n]l − b

[n]
k ∗ b[n]l = δk+l,0

k

qk − 1
.
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Hcl[2] Hcl[1] Hcl[0] Hcl[−1] Hcl[−2]

Heis[2] Heis[0] Heis[−2]

Heis[3] Heis[1] Heis[−1]

Figure 1 Infinite family of Heisenberg subalgebras in DHcl

(Lecture, Day 4–5)
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3 Outline of geometric construction

D: a locally finite DG category over Fq

Theorem (Toën-Vaquié (2009)). The moduli stack P(D) of perfect DG Dop-modules

over exists as a derived stack, locally geometric and locally of finite type.

We can also construct the moduli stack G(D) of cofibrations X → Y of perfect DG

Dop-modules, and have the diagram of geometric correspondence

G(D) P(D) (x↣ y) y

P(D)× P(D) (y
∐

x 0, x)

c

p

Next, we construct the theory of the derived category Db
c(X,Qℓ) of constructible

lisse-étale Qℓ-sheaves over a locally geometric derived stack X, and Grothendieck’s six

operations.
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Applying the general theory to the present situation, we have

Db
c(G(D),Qℓ)

c! // Db
c(P(D),Qℓ)

Db
c(P(D)× P(D),Qℓ)

p∗

OO

Now we set

µ : Db
c(P(D)× P(D),Qℓ) −→ Db

c(P(D),Qℓ), M 7−→ c!p
∗(M)[dim p]

Main Theorem. The operation M ?N := µ(M ⊠N) is associative.

• We have an associative operation on complexes, but the rest part is yet to be done.

In order to recover the derived Hall algebra, we need to determine a small enough

subcategory Q ⊂ Db
c(P(D),Qℓ) on which we have the sheaf-function dictionary.
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4 Derived stacks
4.1 Derived schemes and derived stacks

Notations on ∞-categories:

• Λn
j ⊂ ∆n denotes the j-th horn of the n-simplex ∆n (0 ≤ j ≤ n).

• An ∞-category is a simplicial set K such that for any n ∈ N and any 0 < i < n,

any map f0 : Λn
i → K of simplicial sets admits an extension f : ∆n → K.

Notations on commutative simplicial algebras:

• k: a commutative ring.

• sCom: the category of commutative simplicial k-algebra.

• sCom∞: the ∞-category obtained by localizing sCom via the set of weak

equivalences in the Kan model category sCom ⊂ sSet.

Definition. We call dAff∞ := (sCom∞)op the ∞-category of affine derived schemes.
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Turn to the definition of derived stacks.

Definition. A morphism A → B in sCom∞ is called étale [smooth] if

• the induced π0(A) → π0(B) is an étale [smooth] map of commutative k-algebras,

• the induced πi(A)⊗π0(A) π0(B) → πi(B) is an isomorphism for any i.

Étale morphisms endow dAff∞ = (sCom∞)op with a Grothendieck topology et.

(I will explain Grothendieck topologies on ∞-categories in the next page.)

Definition. The ∞-category of derived stacks is defined to be

dSt∞ := Sh∞,et(dAff∞) ⊂ PSh∞(dAff∞) := Fun∞((dAff∞)op, S).

S: the ∞-category of spaces. (See [Lurie, ”Higher Topos Theory”] for the detail.)

• Kan ⊂ sSet: the full subcategory of Kan complexes, which is a simplicial category.

• Nsp( ): simplicial nerve construction,

a functor mapping a simplicial category to a simplicial set.

• S := Nsp(Kan).

• The homotopy category of the ∞-category S is equivalent to

H := Ho(sSet), the homotopy category of spaces (Quillen equivalence).
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Grothendieck topology on an ∞-category [Lurie, HTT, §6.2.2], [Toën-Vezzosi].

Definition. 1. A sieve on an ∞-category C is a full sub-∞-category C(0) ⊂ C

s.t. X ∈ C(0) holds for any Y ∈ C(0) and any morphism f : X → Y in C.

2. A sieve on X ∈ C is a sieve on the over-∞-category C/X .

• For a functor F : C→ D of ∞-categories and a sieve D(0) ⊂ D,

the homotopy fiber product gives a sieve F−1D(0) := D(0) ×D C ⊂ C on C.

• For a morphism f : X → Y in C and a sieve C
(0)

/Y on Y ,

we have a sieve f∗C
(0)

/Y := (f∗)
−1C

(0)

/Y on X.

(f∗ : C/X → C/Y : the natural functor of over-∞-categories.)

Definition. A Grothendieck topology τ on an ∞-category C is a choice of a collection

Cov(X) of sieves on each X ∈ C (covering sieves on X) s.t.

• For any X ∈ C, C/X ∈ Cov(X).

• For any f : X → Y in C and any C
(0)

/Y ∈ Cov(Y ), f∗C
(0)

/Y ∈ Cov(X).

• For Y ∈ C and C
(0)

/Y ∈ Cov(Y ), if C
(1)

/Y is a sieve on Y s.t. f∗C
(1)

/Y ∈ Cov(X) holds for any

(f : X → Y ) ∈ C
(0)

/Y , then C
(1)

/Y ∈ Cov(Y ).

If C is a nerve of a category C, then a Grothendieck topology on C is equiv. to that on C.
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Back to the definition of derived stacks:

dSt∞ := Sh∞,et(dAff∞) ⊂ PSh∞(dAff∞) := Fun∞((dAff∞)op, S),

where Sh∞,et(dAff∞) denotes the ∞-category of sheaves with respect to the

Grothendieck topology et.

A derived stack corresponds to a stack in the ordinary algebraic geometry.

In the next subsection, I explain geometric derived stacks in the sense of

Toën-Vezzosi, which corresponds to an algebraic/Artin stack.

Remark. I use the terminology “geometric derived stacks” following

[Toën-Vezzosi, Homotopical Algebraic Geometry II, Mem. AMS, 2008].

It is equivalent to “derived Artin stacks” in

[Toën, Derived algebraic geometry, EMS Surv. Math. Sci., 2014].
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4.2 Geometric derived stacks

For n ∈ Z≥−1, one defines an n-geometric derived stack inductively on n.

At the same time one also defines an n-atlas, a n-representable morphism and a

n-smooth morphism of derived stacks.

• Let n = −1.

1. A (−1)-geometric derived stack is defined to be an affine derived scheme.

2. A morphism f : X → Y of derived stacks is called (−1)-representable

if for any affine derived scheme U and any morphism U → Y of derived stacks,

the pullback X×Y U is an affine derived scheme.

3. A morphism f : X → Y of derived stacks is called (−1)-smooth

if it is (−1)-representable, and if for any affine derived scheme U and any

morphism U → Y of derived stacks, the induced morphism X×Y U → U is a

smooth morphism of affine derived schemes.

4. A (−1)-atlas of a stack X is defined to be the one-member family {X}.

Recall: A morphism A→ B in sCom∞ is called étale [smooth] if

• the induced π0(A)→ π0(B) is an étale [smooth] map of commutative k-algebras,

• the induced πi(A)⊗π0(A) π0(B)→ πi(B) is an isomorphism for any i.
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• Let n ∈ N.
1. Let X be a derived stack. An n-atlas of X is a small family {Ui → X}i∈I of

morphisms of derived stacks satisfying the following three conditions.

– Each Ui is an affine derived scheme.

– Each morphism Ui → X is (n− 1)-smooth.

– The morphism
∐

i∈I Ui → X is an epimorphism.

2. A derived stack X is called n-geometric if the following two conditions are

satisfied.

– The diagonal morphism X → X× X is (n− 1)-representable.

– There exists an n-atlas of X.

3. A morphism f : X → Y of derived stacks is called n-representable if for any affine

derived scheme U and for any morphism U → Y of derived stacks, the derived

stack X×Y U is n-geometric.

4. A morphism f : X → Y of derived stacks is called n-smooth if for any affine

derived scheme U and any morphism U → Y of derived stacks, there exists an

n-atlas {Ui}i∈I of X×Y U such that for each i ∈ I the composition

Ui → X×Y U → U is a smooth morphism of affine derived schemes.
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To an algebraic stack X in the ordinary sense, one can attach a derived stack j(X)

functorially.

Fact (Toën-Vezzossi (2008)). For an algebraic stack X, the derived stack j(X) is

1-geometric.

Remark. To schemes and algebraic spaces X, we can also attach derived stacks j(X).

For affine schemes X, the derived stack j(X) is (−1)-geometric.

For schemes and algebraic spaces X, the derived stacks j(X) are 1-geometric.
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5 Moduli spaces of complexes

In this section we review the theory of moduli stacks of modules over DG categories

via derived stacks [Toen-Vaquié].

5.1 Moduli functor of perfect objects

• A ∈ sCom: a commutative simplicial k-algebra.

• N(A) the normalized chain complex with the structure of a comm. DG k-algebra.

• Regarding N(A) as a DG category, we have the DG category of DG N(A)-modules:

M(A) := M(N(A))

• The full sub-DG category of cofibrant and perfect objects in M(A):

P(A) := P(N(A)) ⊂ M(A).

Definition. For a DG category D over k and A ∈ sCom, we set

MD(A) := MapdgCat(D
op,P(A)),

where MapdgCat denotes the mapping space in the model category dgCat of DG

categories, which is regarded as a simplicial set.
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MD(A) := MapdgCat(D
op,P(A)),

Here the model structure is the one introduced by [Tabuada, 2005]:

A DG functor f : D→ D′ is

• a weak equivalence if f is a quasi-isomorphism, and

• a fibration if

(i) for any M,N ∈ D, the morphism fMN : HomD(M,N)→ HomD′(f(M), f(N)) is an

epimorphism of DG k-modules, and

(ii) for any M ∈ D and any isomorphism v : N → f(M) in H0(D′), there is an isomorphism

u : M →M ′ in H0(D) such that H0(fM,N )(u) = v.

For a morphism A → B in sCom, we obtain a morphism MD(A) → MD(B) in sSet by

composition with N(B)⊗N(A) − : P(A) → P(B). Thus we obtain a functor

MD : sCom −→ sSet, MD(A) := MapdgCat(D
op,P(A)).
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This construction gives rise to a functor of ∞-categories

MD ∈ PSh∞(dAff∞) = Fun∞((dAff∞)op, S).

Fact ([Toën-Vaquié, Lemma 3.1]). The presheaf MD ∈ PSh∞(dAff∞) is a derived

stack over k. We call it the moduli stack of perfect DG Dop-modules

Remark. • The 0-th homotopy π0(MD(k)) is bijective to the set of isomorphism classes of

compact DG D-modules in Ho(M(D)).

• For each x ∈ Ho(M(D)), we have

π1(MD, x) ≃ AutHo(M(D))(x, x), πi(MD, x) ≃ Ext−i
Ho(M(D))(x, x) (i ∈ Z≥2),

where Ho(M(D)) is regarded as a triangulated category.
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5.2 Geometricity of moduli stacks of perfect objects

We explain the main result in [Toën-Vaquié, 2009].

Definition. A DG category D over k is of finite type if there exists a DG k-algebra B

which is homotopically finitely presented in the model category dgAlgk of DG

algebras s.t. P(D) is quasi-equivalent to Moddg(B).

Fact (Toën-Vaquié). If D is a DG category over k of finite type, then the derived

stack MD is locally geometric and locally of finite presentation.

Here I used

Definition. A derived stack X is called locally geometric if X is equivalent to a filtered

colimit lim−→i∈I
Xi of derived stacks {Xi}i∈I s.t.

• each derived stack Xi is ni-geometric for some ni ∈ Z≥−1,

• each morphism Xi → Xi ×X Xi of derived stacks induced by Xi → X is an equivalence in

the ∞-category dSt∞ of derived stacks.
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Definition. 1. An n-geometric derived stack X is called locally of finite presentation if it has

an n-atlas {Ui}i∈I such that for each representable derived stack Ui ≃ SpecAi the

simplicial k-algebra Ai is finitely presented (see below).

2. A locally geometric derived stack X is locally of finite presentation if each geometric

derived stack Xi in X ≃ lim−→i
Xi can be chosen to be locally of finite presentation in the

sense of 1.

Definition. 1. A morphism f : A→ B in sCom∞ is called finitely presented if for any filtered

system {Ci}i∈I of objects in (sCom∞)A/ the natural morphism

lim−→
i∈I

Map(sCom∞)A/
(B,Ci) −→ Map(sCom∞)A/

(B, lim−→
i∈I

Ci)

is an isomorphism in H.

2. A ∈ sCom∞ is called finitely presented or of finite presentation if the morphism k → A is

finitely presented in the sense of 1.

31



5.3 Moduli stack of complexes of quiver representations

• kQ: the path algebra of a quiver Q over k.

• Regard kQ as a DG algebra over k, and as a DG category over k.

• Moddg(kQ) is the DG category of complexes of representations of Q over k.

Definition. We call the derived stack MkQ the derived stack of perfect complexes of

representations of Q and denote it by

P(Q) := MkQ.

Fact 1. Let Q be a finite quiver with no loops. Then the derived stack P(Q) is

locally geometric and locally of finite presentation over k.

π0(P(Q)(k)) is the set of isom. classes of perfect complexes of reps. of Q over k.
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6 Constructible sheaves on derived stacks
6.1 Lisse-étale ∞-site

We will introduce the lisse-étale ∞-site for a geometric derived stack, an analogue of

the lisse-étale site for an algebraic stack [Laumon, Moret-Bailly, 2000].

• (dSt∞)/X: the over-∞-category of derived stacks over a derived stack X.

• dAff∞/X ⊂ (dSt∞)/X: the full sub-∞-category spanned by affine derived schemes

Definition. Let n ∈ Z≥−1 and X be an n-geometric derived stack.

The lisse-étale ∞-site
Lis-Etn∞(X) = (Lisn∞(X) , lis-et)

on X is the ∞-site given by the following description.

• Lisn∞(X) is the full sub-∞-category of dAff∞/X spanned by (U, u) where the

morphism u : U → X is n-smooth.

• The set Covlis-et(U, u) of covering sieves on (U, u) consists of

{(Ui, ui) → (U, u)}i∈I in Lisn∞(X) s.t. {Ui → U}i∈I is an étale covering.

Recall: A morphism A→ B in sCom∞ is called étale [smooth] if

• the induced π0(A)→ π0(B) is an étale [smooth] map of commutative k-algebras,

• the induced πi(A)⊗π0(A) π0(B)→ πi(B) is an isomorphism for any i.
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6.2 Constructible lisse-étale sheaves
Recall the notion of a constructible sheaf on an ordinary scheme:

A sheaf F on a scheme X is called constructible if for any affine Zariski open U ⊂ X there is a finite

decomposition U = ∪iUi into constructible locally closed subschemes Ui such that F|Ui
is a locally

constant sheaf with value in a finite set.

We introduce an analogue of this notion for derived stacks.

Definition. Let X be a geometric derived stack. An object of the ∞-category

Sh∞,lis-et(Lis∞(X)) is called a lisse-étale sheaf.

For an affine derived scheme U , we denote by π0(U) the associated affine scheme.

Definition. A lisse-étale sheaf F on X is called constructible if

(i) it is cartesian, i.e., for any morphism f : T → T ′ in Xlis-et, the natural morphism

f−1FT → FT ′ is an equivalence, and

(ii) for any U ∈ Lis∞(X) the restriction π0(F)|π0(U) is a constructible sheaf on π0(U).

34



Definition. Λ: a commutative ring.

A lisse-étale sheaf of Λ-modules is an object of the ∞-category

Sh∞,lis-et(Lis∞(X) ,N(Mod(Λ))).

We then have the DG category of complexes consisting of lisse-étale sheaves of

Λ-modules. By the dg nerve construction, we obtain an ∞-category.

Definition. We denote the obtained ∞-category of complexes of lisse-étale sheaves by

Mod∞(Xlis-et,Λ) .

For ∗ ∈ {+,−, b} we denote by

Mod∗∞(Xlis-et,Λ) ⊂ Mod∞(Xlis-et,Λ)

the full sub-∞-category spanned by complexes whose homologies are bounded below

(resp. bounded above, resp. bounded).

The full sub-∞-categories with constructible homologies are denoted by

Modc∞(Xlis-et,Λ) , Modc,∗∞ (Xlis-et,Λ) := Modc∞(Xlis-et,Λ) ∩Mod∗∞(Xlis-et,Λ) .

35



7 Derived category and derived functors

7.1 Derived ∞-category of constructible lisse-étale sheaves

Proposition. X: a locally geometric derived stack. Λ: a commutative ring.

The ∞-category of complexes of constructible lisse-étale Λ-sheaves

Modc,∗∞ (Xlis-et,Λ)

is stable in the sense of [Lurie, Higher Algebra].

In particular, the homotopy category HoModc,∗∞ (Xlis-et,Λ) has a structure of a

triangulated category (explained below).

Definition. The (left bounded, resp. right bounded, resp. bounded) derived category

of constructible sheaves of Λ-modules on X is defined to be

D∗
c (X,Λ) := HoModc,∗∞ (Xlis-et,Λ) (∗ ∈ {∅,+,−, b}).

Below we give a brief recollection on stable ∞-categories.
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Definition (Lurie, HA, §1.1.1). An ∞-category is stable if

(i) it has a zero object 0 ∈ C,

(ii) any morphism has a fiber and cofiber, and

(iii) a triangle in C is a pullback square iff it is a pushout square.

A triangle in C is a square of the following form:

X //

��
Y

��
0 / / Z

For a stable ∞-category C, we can define a suspension functor Σ : C → C and a loop

functor Ω : C → C [Lurie, HA, §1.1.2].

Fact (Lurie, HA, §1.1.2). For a stable ∞-category C, the homotopy category HoC

has a structure of a triangulated category with [1] = Σ : HoC → HoC and the

distinguished triangles in the next page.
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A distinguished triangle in HoC is a diagram of the form

X
f // Y

g // Z
h // X[1]

such that there is a diagram in C of the form

X
f̃

//

��

Y //

g̃��

0

��
0′ // Z

h̃ // W

satisfying the following 4 conditions.

(i) 0, 0′ ∈ C are zero objects.

(ii) The two squares are pushout square in C.

(iii) Morphisms f̃ , g̃ in C represent f, g in HoC respectively.

(iv) h is equal to the composition of the homotopy class of h̃ and the equivalence

W ' X[1] given by the outer rectangle.

Using this fact, we can lift notions on triangulated categories to those on stable

∞-categories. For example:
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Definition. A t-structure of a stable ∞-category C is a t-structure on the homotopy

category HoC.

Below we explain derived ∞-categories [Lurie, HA, §1.3.2].
• A: an abelian category with enough injectives.

• C(A): the DG category of complexes in A (with injective model structure).

• C+(Ainj) ⊂ C(A): the full subcat. of complexes bounded below of injectives.

The dg nerve construction gives an ∞-category

D+
∞(A) := Ndg(C

+(Ainj)),

which is known to be stable. It is called the derived ∞-category of A.

D+
∞(A) has a t-structure determined by (D+

∞(A)≤0,D
+
∞(A)≥0) with

D+
∞(A)≥0: the full sub-∞-cat. of Hn(M) := π0(M [n]) ≃ 0 in N(A) for n < 0,

D+
∞(A)≤0: similarly defined.

This t-structure enjoys the following properties.

1. The core D+
∞(A)♡ := D+

∞(A)≤0 ∩ D+
∞(A)≥0 is equivalent to N(A).

2. HoD+
∞(A) ≃ D+(A) as triangulated categories, and the t-structure on HoD+

∞(A) is equivalent to

the standard t-structure on D+(A).
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7.2 Derived functors

On the derived category of constructible lisse-étale sheaves

D∗
c (X,Qℓ) := HoModc,∗∞

(
Xlis-et,Qℓ

)
(∗ ∈ {∅,+,−, b}),

we can construct analogue of Grothendieck’s six derived functors.

Precisely speaking, for

• X,Y: locally geometric derived stacks locally of finite presentation,

• f : X → Y: a morphism locally of finite presentation,

we can define triangulated functors

Rf∗ : D+
c (X,Qℓ) −→ D+

c (Y,Qℓ), Rf! : D
−
c (X,Qℓ) −→ D−

c (Y,Qℓ),

Lf∗ : Dc(Y,Qℓ) −→ Dc(X,Qℓ), Rf ! : Dc(Y,Qℓ) −→ Dc(X,Qℓ)

and RHom, ⊗L. These functors are compatible with those for algebraic stacks

developed by Laszlo and Olsson (2008).
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7.3 Base-change theorem

The constructed derived functors satisfy the standard properties. Today I only explain

the base-change theorem, which will be used to show the associativity of Hall algebra.

Assume that we have the following cartesian diagram in the ∞-category of locally

geometric derived stacks, and that f is locally of finite presentation.

X′
π

//

φ ��

X

f��
Y′ p // Y

We have a morphism p∗f! → ϕ!π
∗ in Fun∞(Modc,−∞

(
Xlis-et,Qℓ

)
,Modc,−∞

(
Y′
lis-et,Qℓ

)
),

and p!f∗ → φ∗π
! in Fun∞(Modc,+∞

(
Xlis-et,Qℓ

)
,Modc,+∞

(
Y′
lis-et,Qℓ

)
).

Proposition (Y., §6.6). If p is smooth, then

(p∗f! → ϕ!π
∗) ' (p!f∗ → φ∗π

!) in Fun∞(Modc,b∞
(
Xlis-et,Qℓ

)
,Modc,b∞

(
Y′
lis-et,Qℓ

)
).

As a consequence, we have

(Lp∗Rf! → Rϕ!Lπ
∗) ' (Lp!Rf∗ → Rφ∗Lπ

!) in Fun(Db
c(X,Qℓ),D

b
c(Y

′,Qℓ)).
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8 Geometric construction of derived Hall algebras

D: a DG category of finite type (in the sense of Toën-Vaquié) over k = Fq.

(E.g. the DG category Moddg(kQ) of complexes of reps. of a quiver Q without loops.)

P(D): the moduli space of perfect DG Dop-modules.

: a locally geometric derived stack locally of finite presentation.

Decomposition of P(D):

P(D) =
⋃

a≤b P(D)
[a,b], P(D)[a,b] =

⊔
α∈K0(HoP(D)) P(D)

[a,b],α.

The component P(D)[a,b],α parametrizes DG modules M whose cohomologies

concentrate in [a, b] and M = α.

Decomposition of the moduli space G(D) of cofibrations:

G(D) =
⋃

a≤b G(D)
[a,b], G(D)[a,b] =

⊔
α,β∈K0(HoP(D)) G(D)

[a,b],α,β

G(D)[a,b],α,β parametrizes cofibrations X ↪→ Y such that cohomologies of Y

concentrate in [a, b] and α = X, β = Y
∐X

0.
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Diagram of correspondence:

G(D)[a,b],α,β
c //

p

��

P(D)[a,b],α+β (X ↪→ Y ) � //
_

��

Y

P(D)[a,b],α × P(D)[a,b],β (X,Y
∐X

0)

The multiplication µ of derived Hall algebra:

µα,β : Db
c(P(D)

α,Qℓ)× Db
c(P(D)

β ,Qℓ) −→ Db
c(P(D)

α+β ,Qℓ)

M 7−→ Rc! Lp
∗(M)[dim p].

(` is invertible in Fq.)

Associativity:

µα,β+γ ◦ (id×µβ,γ) ' µα+β,γ ◦ (µα,β × id).
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Outline of the proof of associativity.

The LHS µα,β+γ ◦ (id×µβ,γ) corresponds to the rigid arrows in

Gα,(β,γ) p′′
2 //

p′′
1

��

Gα,β+γ p′
2 //

p′
1

��

Pα+β+γ

Pα ×Gβ,γ
p2

//

p1

��

Pα ×Pβ+γ

Pα ×Pβ ×Pγ

The dotted arrows are determined by

Gα,(β,γ) := (Pα ×Gβ,γ)×Pα ×Pβ+γ Gα,β+γ ,

which parametrizes (N ↪→ M,M ↪→ L) such that N = γ, M = β+ γ, L = α+β+ γ.

By the smoothness of p′′1 , the base-change theorem implies

µα,β+γ ◦ (id×µβ,γ) ' R(p′2p
′′
2)! L(p1p

′′
1)

∗[dim(p1p
′′
1)].
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The RHS µα+β,γ ◦ (µα,β × id) corresponds to

G(α,β),γ q′′2 //

q′′1
��

Gα+β,γ q′2 //

q′1
��

Pα+β+γ

Gα,β ×Pγ
q2

//

q1
��

Pα+β ×Pγ

Pα ×Pβ ×Pγ

The dotted arrows are determined by

G(α,β),γ := (Gα,β ×Pγ)×Pα+β ×Pγ Gα+β,γ

which parametrizes (R → L
∐M

0,M → L) such that M = γ, R = β, L = α+β+γ.

By the smoothness of q′′1 , the base-change theorem implies

µα+β,γ ◦ (µα,β × id) ' R(q′2q
′′
2 )! L(q1q

′′
1 )

∗[dim(q1q
′′
1 )].
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Thus LHS and RHS are given by

µα,β+γ ◦ (id×µβ,γ) ' Rp! L(p
′)∗[dim p′], µα+β,γ ◦ (µα,β × id) ' Rq! L(q

′)∗[dim q′]

with

Gα,(β,γ) p //

p′

��

Pα+β+γ G(α,β),γ q //

q′

��

Pα+β+γ

Pα ×Pβ ×Pγ Pα ×Pβ ×Pγ

Then the associativity follows from the isomorphism of the derived stacks

Gα,(β,γ) ' G(α,β),γ .

This isomorphism is shown by reduction to the values on the closed points.

Thank you for the listening.
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