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1.1. Moore-Tachikawa 2-dim Topological Quantum Field Theory

[G. Moore, Y. Tachikawa, “On 2d TQFTs whose values are holomorphic symplectic varieties”,
String-Math 2011, Proc. Sympos. Pure Math. 85 (2012); arXiv:1106.5698]

Moore and Tachikawa conjectured the existence of a functor

ηG : Bo2 −→ HS

between symmetric monoidal categories with duality.

Bo2: the 2-bordism category.
Objects: (S1)n for n ∈ N := Z≥0, identified with n.
Morphisms: Σg ,n1+n2 : n1 → n2, 2-dim. oriented manifolds

with genus g and boundary (S1)n1 t −(S1)n2 .
Composition := gluing.

(Σ0,2+3 : 2 → 3)

◦

◦ (Σ1,2+2 : 2 → 2)

=

= (Σ2,2+3 : 2 → 3)
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1.1. Moore-Tachikawa 2d TQFT ηG : Bo2 → HS [MT, arXiv:1106.5698]

Bo2 is a symmetric monoidal category with duality.
⊗ := t, disjoint union of manifolds.
Duality:

• In general, for each object A, there is a dual object A∗, and there are
pA ∈ Hom(A× A∗, 1), qA ∈ Hom(1,A∗ × A) such that
(pA × idA) ◦ (idA ×qA) = idA, (idA∗ ×pA) ◦ (qA × idA∗) = idA∗ .

In case of Bo2, n∗ := n and pn := (Σ0,2+0)
⊔n, qn := (Σ0,0+2)

⊔n,
which satisfy the relation “S-bordism is equal to the tube”.

(p1 × id1) ◦ (id1 ×q1)

=

= id1
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1.1. Moore-Tachikawa 2d TQFT ηG : Bo2 → HS [MT, arXiv:1106.5698]

HS: category “of holomorphic symplectic varieties”

• Objects: semisimple algebraic groups over C (including the trivial group).

• Morphisms: X : G1 → G2, holomorphic symplectic variety X

with Hamiltonian G1 × G2-action.

G ↷ (Y , ω) is Hamiltonian if ∃µ : Y → g∗ := Lie(G)∗, the moment map, s.t.

⟨dµ(·), ξ⟩ = −ιξY
ω with ξY (y) := d

dt
etξ.y

∣∣∣
t=0

for ξ ∈ g, and µ(g.y) = ad∗
g−1 µ(y) for g ∈ G .

• Composition: For X12 ∈ HomHS(G1,G2) and X23 ∈ HomHS(G2,G3),

X23 ◦ X12 := (X op
12 × X23)//µ∆(G2) = µ−1(0)/∆(G2).

//µ: Hamiltonian reduction (symplectic quotient) for the moment map

µ : X12 × X23 → g∗2 := Lie(G2)
∗, µ(x , y) := −µ12(x) + µ23(y)

with µ12 the g∗2-component of momentum map X12 → g∗1 × g∗2 .

• ⊗: given by Cartesian product.
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1.1. Moore-Tachikawa 2d TQFT ηG : Bo2 → HS [MT, arXiv:1106.5698]

• The identity morphism for G ∈ HS:

(idG : G → G ) := T ∗G = G × g∗

with standard symplectic structure and two commuting G -actions

g .(h, x) := (gh, x), g .(h, x) := (hg−1, g .x).

These are Hamiltonian with moment maps

(µL, µR) : G × g∗ → g∗ × g∗, µL(g , x) = x , µR(g , x) = g .x .

• T ∗G is indeed the identity morphism in HS. For Y ∈ HomHS(G
′,G ),

T ∗G ◦ Y = Y op × (G × g∗)//∆(G )

= {(y , g , x) ∈ Y × G × g∗ | µY (y) = µL(g , x)}/∆(G )

= {(y , g , x) | x = µY (y)}/∆(G ) = G × Y /G = Y .
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1.1. Moore-Tachikawa 2d TQFT ηG : Bo2 → HS [MT, arXiv:1106.5698]

They conjectured that, for each simply-connected semisimple G ,

(SLn, Spinn (univ. cover of SOn), Spn, exceptional groups)

there exists a functor ηG : Bo2 → HS with ηG (n) = G n and

ηG (Σg ,n1+n2) : holo. symplectic variety with Ham. G n1+n2-action

(Moore-Tachikawa symplectic variety).

The functoriality of ηG means that taking symplectic quotients of
ηG (Σ)’s is compatible with gluing bordisms Σ’s.

ηG (Σ
′
n2+n3

◦ Σn1+n2) ηG (Σ
′′
n1+n3

)

ηG (Σ
′
n2+n3

) ◦ ηG (Σn1+n2)

(
ηG (Σn1+n2)

op × ηG (Σ
′
n2+n3

)
)

//∆(G n2)

functoriality

gluing
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1.2. Braverman-Finkelberg-Nakajima construction of ηG
[“Ring objects in the equivariant derived Satake category arising from Coulomb branches”,
Adv. Theor. Math. Phys. (2019); arXiv:1706.02112]

Theorem (Braverman-Finkelberg-Nakajima)
The Moore-Tachikawa 2d TQFT ηG exists.

• They introduced, in some equivariant derived constructible category
DGO (GrG ) on the affine Grassmannian

GrG = GK/GO, GO := G
(
C[[z ]]

)
, GK := G

(
C((z))

)
,

two distinguished objects A,B ∈ DGO (GrG ) which are ring objects
with respect to the convolution product ⋆.

• Using these ring objects for the Langlands dual GL, they showed that

ηG (Σg ,n) := Spec
(
H∗

GL
O
(GrGL , i !∆(A⊠n ⊠ B⊠g )), ⋆

)
has a symplectic structure, and satisfies the gluing condition
ηG (Σ ◦ Σ′) ' ηG (Σ) ◦ ηG (Σ′).
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1.2. Braverman-Finkelberg-Nakajima construction of ηG [BFN, arXiv:1706.02112]

A few varieties in genus zero part can be described explicitly.

Denoting W n
G := ηG (Σg=0,n), the gluing condition gives

W n
G ◦Wm

G ' W n+m−2
G .

• The case n = 2 is already explained:

W 2
G = ηG

( )
= idG = T ∗G = G × g∗.

• The case n = 1 is a bit non-trivial.

W 1
G =ηG

( )
= ηG

( )
= G × Sreg

with Sreg ⊂ g∗ the Slodowy slice of regular nilpotent freg ∈ g.
Sreg := freg + ge ⊂ g ≃ g∗ via Killing form (·|·)

{e, freg, h} ⊂ g an sl2-triple assoc. to freg, ge ⊂ g the centralizer of e.

• The case n = 3 for G = SL2 and SL3 is

W 3
SL2

= (C2)×3, W 3
SL3

= Omin in E6.

Omin: closure of coadjoint orbit of minimal nilpotent element
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Remark for Slodowy slice

• N := {x ∈ g | ad(x) ∈ End(g) is nilpotent}: the nilpotent cone.
N ∋ f : a nilpotent element. {e, f , h} ⊂ g: an sl2-triple assoc. to f .

Sf := f + ge ⊂ g ≃ g∗ via Killing form (·|·)
with ge the centralizer of e in g.

• G acts on g∗ = SpecC[g] by coadjoint action.
χ : g∗ → SpecC[g]G ≃ h∗/W ≃ SpecC[p1, . . . , prank g] by Chevalley.
N = χ−1(0), dimN = dim g− rank g.
N =

⋃
f Of orbit stratification for coadjoint action.

TfOf = f + [g, f ]: tangent space, g = [g, f ] ⊥ ge .
Thus Sf is a transversal slice of Of at f .

• The regular orbit Oreg is the unique orbit of max. dim.
Sreg := Sfreg with freg ∈ Oreg.

• g = sl2 = {
[
a b
c −a

]
}, N = {X =

[
a b
c −a

]
| detX = −a2 − bc = 0}.

f = freg =
[ 0 0

1 0
]
∈ Oreg = {

[
zw −z2

w2 −zw

]
| zw ̸= 0}, e =

[ 0 1
0 0

]
, ge = Ce.

Sreg = freg + g
e =

[
0 ∗
1 0

]
.
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1.3. Arakawa’s chiral quantization ηch
G ,g=0

[T. Arakawa, “Chiral algebras of class S and Moore-Tachikawa symplectic varieties”, arXiv:1811.01577]

• Arakawa considered chiralization of Moore-Tachikawa TQFT ηG :

ηch
G : Bo2 −→ HSch.

• Target category HSch:
• Objects: semisimple algebraic groups (same as HS).
• Morphisms V : G1 → G2: vertex algebras V equipped with

V−h∨1
(g1)⊗ V−h∨2

(g2) → V (+ some cond.).
• Composition of V12 : G1 → G2 and V23 : G2 → G3:

V23 ◦ V12 := H
∞
2 +0(ĝ−2h∨2

, g2,V
op
12 ⊗ V23),

H
∞
2 +∗(·, ·, ·): relative BRST (semi-infinite) cohomology

(vertex algebra analogue of Hamiltonian reduction)

• The functor ηch
G should sit in a commutative diagram

Bo2 HSch

Bo2 HS

ηch
G

Spec R(−):taking associated scheme

ηG
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1.3. Arakawa’s chiral quantization ηch
G ,g=0 [Arakawa, arXiv:1811.01577]

• Arakawa built genus 0 part ηch
G ,g=0 : Bo2|g=0 → HSch.

Theorem (Arakawa)

There is a family {VS
G ,n = ηch

G ,g=0(Σg=0,n) | n ∈ N} of vertex algebras
such that

VS
G ,1 ' H0

DS(Dch
G ), VS

G ,2 ' Dch
G , VS

G ,m ◦ VS
G ,n ' VS

G ,m+n−2,

and their associated schemes are Moore-Tachikawa symplectic varieties:

W n
G ' SpecRVS

G,n
.

• ⇝ Beem-Rastelli conjecture
[“Vertex operator algebras, Higgs branches, and modular differential equations”, arXiv:1707.07679]

MHiggs(T )
?' Specm(RVT ) ∀ T : N = 2 4d SCFT

is affirmatively solved for genus 0 class S theories T = T S
Σ0,n

.
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1.4. Motivation and main result
• I learned these theories in Arakawa’s intensive lectures at Nagoya

Univ., November 2019, with many comments and problems.
Today’s talk stems from one of them.

• There is a subtlety on the construction of ηG : Bo2 → HS for higher
genus cases due to the non-flatness of the moment map.
Composition of morphisms in HS

X23 ◦ X12 := (Xop
12 × X23)//µ∆(G2) = µ−1(0)/∆(G2).

• To construct ηch
G : Bo2 → HSch for higher genus cases, it would be

necessary to modify HSch and HS, since BRST reduction for a
non-flat moment map does NOT yield a stalk complex.
Composition of morphisms in HSch:

V23 ◦ V12 := H
∞
2 +0(ĝ−2h∨2

, g2,V
op
12 ⊗ V23).

• In the intensive lectures, Arakawa commented:

derived symplectic geometryを使うとできるかもしれない.
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1.4. Motivation and main result

• What is derived symplectic geometry ?
In this talk, it means the study of shifted symplectic derived
schemes/stacks in the realm of derived algebraic geometry (DAG).

• Very naively speaking, one can transfer objects in classical algebraic
geometry (scheme theory) to DAG by the next replacement.

classical derived
set ∞-category (simplicial set)
comm. ring A simplicial/dg comm. ring A•

scheme (X ,OX ) derived scheme (X ,O•
X )

HomSch(X ,Y ): morphism set MapdSch(X ,Y ): morphism space

• As we should replace algebras by dg algebras, the notion of
symplectic/Poisson structure in DAG should admit shift (as
complex)... ⇝ shifted symplectic/Poisson structure.
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1.4. Motivation and main result

• The idea of using derived symplectic geometry to construct ηG in
full genera is originally due to Calaque, who introduced the
∞-category MT of derived Moore-Tachikawa varieties:
[“Lagrangian structures on mapping stacks and semi-classical TFTs”, arXiv:1306.3235]

• Objects: semisimple algebraic groups (same as HS)
• Morphisms R : G1 → G2: dg Poisson commutative algebras R

with Hamiltonian (g1 ⊕ g2)-action.
• Composition of R12 ∈ MapMT(G1,G2) and R23 ∈ MapMT(G2,G3):

R23 ◦̃ R12 :=
(
Rop

12 ⊗ R23
)
//Lµ Sym(g2).

//Lµ: derived Hamiltonian reduction of dg Poisson algebras
µ := −µ2

12 ⊗ 1 + 1 ⊗ µ1
23. We call R23 ◦̃ R12 derived gluing.
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1.4. Motivation and main result
The main statement of this talk: I define the ∞-category MTch by

• Objects: semisimple algebraic groups (same as HS,HSch).

• Morphisms: dg vertex algebras V with µV : Vk(g1)⊗ Vl(g2) → V .

• Compos. of V12 : G1 → G2 and V23 : G2 → G3 is given by BRST reduction:
V23 ◦̃ V12 := BRST(ĝl+m,V

op
12 ⊗ V23, µ) (chiral derived gluing).

Theorem ( [Y. “Derived gluing construction of chiral algebras”, Lett. Math. Phys. 2021, arXiv:2004.10055] )
Taking associated derived scheme gives a functor

dSpecR(−) : MTch −→ MT,

i.e., RV ◦̃W ≃ RV ◦̃ RW in MT.

Bo2 MTch HSch

Bo2 MT HS

ηch
G

ηch
G,g=0

dSpec R(−) Spec R(−)

ηder
G

ηG

H0(·)
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2.1. Recollection on vertex algebras

c.f. [Frenkel, Ben-Zvi, “Vertex Algebras and Algebraic Curves”, AMS (2001)]

• A vertex algebra (V , |0〉 ,T ,Y ) consists of
• a linear space V , called state space,
• an element |0⟩ ∈ V , called vacuum,
• an endomorphism T ∈ EndV , called translation,
• a linear map Y (·, z) : V → (EndV )[[z±1]], called state-field corresp.,

denoted as Y (a, z) = a(z) =
∑

n∈Z a(n)z
−n−1 for each a ∈ V ,

satisfying
(i) a(z)b ∈ V ((z)) for any a, b ∈ V ,
(ii) Y (|0⟩ , z) = idV , a(z) |0⟩ = a+ O(z) for any a ∈ V ,
(iii) T |0⟩ = 0, [T , a(z)] = ∂za(z) for any a ∈ V ,
(iv) ∀a, b ∈ V , ∃Na,b ∈ N s.t. (z − w)Na,b [a(z), b(w)] = 0.

• A vertex algebra can be regarded as a linear space V equipped with
infinitely-many binary operations (a, b) 7→ a(n)b (n ∈ Z).
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2.1. Recollection on vertex algebras

• A vertex algebra (V , |0〉 ,T ,Y ) consists of
• state space V ,
• vacuum |0⟩ ∈ V ,
• translation T ∈ EndV ,
• state-field correspondence Y (a, z) = a(z) =

∑
n∈Z a(n)z

−n−1,

satisfying (i), (ii), (iii) and
(iv) [locality] ∀a, b ∈ V , ∃Na,b ∈ N s.t. (z − w)Na,b [a(z), b(w)] = 0.

• V = (V , |0〉 ,T ,Y ) is called commutative if Na,b = 0 ∀a, b ∈ V .
Such V is equivalent to a commutative algebra (V , ·) with unit |0〉
and derivation T under the correspondence a(z)b = ezT a · b, i.e.,

a(n)b =
1

(−n − 1)!
(T−n−1a) · b (n ≤ −1).

In particular, a(−1)b = a · b.
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2.2. Li filtration, Zhu’s C2-algebra, and associated scheme

• Li filtration of a vertex algebra V = (V , |0〉 ,T ,Y ).
[H. Li, “Abelianizing vertex algebras”, 2005]

V = F 0V ⊃ F 1V ⊃ F 2V ⊃ · · ·

F pV :=
〈
(a1)(−n1) · · · (ar )(−nr )v | ai , v ∈ V , ni ∈ Z>0,

∑
i ni ≥ p

〉
lin .

• The 0-th graded part

RV := F 0V /F 1V = V /C2(V ), C2(V ) :=
〈
a(−2)b | a, b ∈ V

〉
lin .

is a Poisson (commutative) algebra, called Zhu’s C2-algebra.
[Y. Zhu, “Modular invariance of characters of vertex operator algebras”, 1996]

Multiplication · and Poisson bracket {−,−} are

a·b := a(−1)b, {a, b} := a(0)b (a ∈ RV for a ∈ V ).

SpecRV is a Poisson scheme, called the associated scheme of V .
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2.3. dg version [Y. arXiv:2004.10055]

I introduced dg (:= differential graded) version of these notions.

• A complex (V , d) means V =
⊕

i∈Z V
i with a sequence

{di : V i → V i+1 | i ∈ Z} of linear maps satisfying di+1di = 0.

• A dg vertex algebra is a complex (V , d) equipped with a vertex
superalgebra structure (|0⟩ ,T ,Y ) on V even ⊕ V odd such that

• |0⟩ ∈ V 0 and T ∈ End(V )0 = HomdgVec(V ,V ).
• d is an odd derivation (a la Kac) of (V even ⊕ V odd, |0⟩ ,T ,Y ).
• a(n)V

j ⊂ V i+j for any a ∈ V i and n ∈ Z.

• Li filtration F •V is defined by the same formula as non-dg.

Lemma [Y]
For a dg vertex algebra V , F •V is a decreasing filtration of complexes.

• Zhu’s C2-algebra RV := F 0V /F 1V = V /C2(V ) is a dg Poisson alg.

dSpec(RV ) is a derived Poisson scheme, which I call the associated
derived scheme of V .
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3.1. dg n-Poisson algebras (shifted Poisson structures)

[Pantev, Toën, Vaquié, Vezzosi, “Shifted symplectic structures”, PIHES (2013)]

[Calaque, Pantev, Toën, Vaquié, Vezzosi,
“Shifted Poisson structures and deformation quantization”, J. Top. (2017)]

• For n ∈ Z, a dg n-Poisson algebra (R , ·, { , }) consist of
• dg commutative algebra (R, ·)
• dg morphism { , } : R ⊗ R −→ R[1 − n] (n-Poisson bracket)

satisfying
• { , } is a Lie bracket on R[n − 1].
• {f , g · h} = {f , g} · h + (−1)|g||h|{f , h} · g for homog. f , g , h ∈ R.

In the case n = 1, we call it a dg Poisson algebra.

• Examples. l: dg Lie algebra.
• Kirillov-Kostant dg Poisson algebra (Sym(l), { , }KK)

• Chevalley-Eilenberg complex CE(l, Sym(l)) = Sym(l∗[−1])⊗ Sym(l)

is a dg 2-Poisson algebra with ∪ product and Schouten bracket.
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3.2. Safronov’s derived Hamiltonian reduction

[Safronov, “Poisson reduction as a coisotropic intersection”, High. Struct. (2017)]

• R : dg Poisson algebra, l: dg Lie algebra.
A morphism µ : l → R of dg Lie algebras is called momentum map.
It induces CE(µ) : CE(l, Sym(l)) → CE(l,R).

• Taking R = C, trivial dg Poisson algebra, we also have
CE(0) : CE(l, Sym(l)) → CE(l,C)

• CE(0) and CE(µ) are coisotropic, and the derived tensor product

R//Lµ Sym(l) := CE(l,R)⊗L
CE(l,Sym(l)) CE(l,C)

is a (homotopy) dg Poisson commutative algebra.
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3.3. Relation to non-derived Hamiltonian reduction [Safronov, 2017]

• l: dg Lie algebra ⇝ a dg Poisson commutative algebra

Cl(l) = (Sym(l[1]⊕ l∗[−1]), dCl(l)),

called the classical Clifford algebra.

• R : dg Poisson commutative algebra, µ : l → R : momentum map
⇝ classical BRST complex, a dg Poisson commutative algebra

BRSTcl(l,R , µ) = (Cl(l)⊗ R , dCl(l)⊗R + {Q,−}),

tensor product as graded Poisson algebras and BRST differential.

Theorem [Safronov]
For l = g, a finite dimensional Lie algebra,

R//Lµ Sym(g) ' BRSTcl(g,R , µ)

as (homotopy) dg Poisson algebras
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3.3. Relation to non-derived Hamiltonian reduction [Safronov, 2017]

• Non-derived Hamiltonian reduction X//G , appearing in the
composition in HS X23 ◦ X12 =

(
X op

12 ⊗ X23
)
//µ∆(G2) is a special

case of classical BRST:

R23 ◦ R12 = H0 BRSTcl(g2,R12 ⊗ R23, µ),

where Rij is a non-dg Poisson algebra with Xij = SpecRij .

• By Safronov’s Theorem, composition in MT can be regarded as
classical BRST reduction:

R23 ◦̃ R12 =
(
Rop

12 ⊗ R23
)
//Lµ Sym(g2) ' BRSTcl(g2,R12 ⊗ R23, µ).

As a result, we have a Quillen adjunction

MT HS
H0

i
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4.1. Vertex Poisson algebras and arc spaces
• For a vertex algebra V ,

V ↠ grF V =
⊕

n F
nV /F n+1V ↠ RV = F 0V /F 1V .

grF V has a structure of vertex Poisson algebra.
• vertex Poisson algebra (P, |0⟩ ,T ,Y+,Y−) :=

comm. vertex algebra (P, |0⟩ ,T ,Y+) + vertex Lie algebra (P, d ,T ,Y−)

[Frenkel, Ben-Zvi, “Vertex Algebras and Algebraic Curves”, AMS (2001)]

• Example of vertex Poisson algebra from arc space (∞-jet scheme).
[Arakawa, “A remark on the C2 cofiniteness condition on vertex algebras”, 2012]

• For a commutative algebra A, there is a commutative algebra J∞(A)

with derivation T s.t.

HomComAlg(J∞(A),−) = HomComAlg(A,−⊗ C[[z]]).

• Proposition [Arakawa] (level 0 vertex Poisson structure)
For a Poisson algebra R, J∞(R) is a vertex Poisson algebra with

u(n)(T
lv) =

 l!
(l−n)!

T l−n{u, v}R (l ≥ n) (u, v ∈ R ⊂ J∞(R)

0 (l < n) l, n ∈ N).
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4.2. dg vertex Poisson algebra from derived arc space [Y. arXiv:2004.10055]

• For a dg commutative algebra A, ∃J∞(A) with derivation T s.t.

MapdSch(−, dSpec J∞(A)) ' MapdSch(−×L dSpecC[[z ]], dSpecA).

• dg vertex Poisson algebra (P , d , |0〉 ,T ,Y+,Y−)

:= dg commutative vertex algebra + dg vertex Lie algebra
• dgVA: ∞-category of dg vertex algebras
• dgVP: ∞-category of dg vertex Poisson algebras
• dgPA: ∞-category of dg Poisson algebras

• Sequence of functors

R(−) =
(
dgVA

grF−−→ dgVP
Rco
(−)−−−→ dgPA

)
V 7−→

⊕
n F

nV /F n+1V 7−→ RV := F 0V /F 1V

' Rco
grF V := (grF V )/(ImT ).

• Lemma [Y] (level 0 dg vertex Poisson structure):
For a dg Poisson algebra P , J∞(P) is a dg vertex Poisson algebra
satisfying Rco

J∞(P) = P .
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4.3. Coisson BRST reduction for dg vertex Poisson algebra [Y. arXiv:2004.10055]

As a “vertex Poisson lift” of MT, I introduced the ∞-category MTco with

• Objects: semisimple algebraic groups (same as MT)

• Morphisms P : G1 → G2: dg vertex Poisson algebras P with
morphism J∞(Sym(g1 ⊕ g2)) → P in dgVP.

• J∞(Sym(g)) = Sym(g[[t]]) with level 0 dg vertex Poisson structure.

• Composition of P12 : G1 → G2 and P23 : G2 → G3:

R23 ◦̃ R12 := BRSTco(g2,P12 ⊗ P23, µco).

coisson BRST reduction (vertex Poisson analogue of Hamiltonian reduction).
• l: dg Lie algebra ⇝ Clifford vertex Poisson algebra

Clco(J∞(l)) = Sym(J∞(l)[1]⊕ J∞(l)∗[−1]) ∈ dgVP.
• P ∈ dgVP with µco : J∞(Sym(l)) → P (coisson momentum map)
⇝ BRSTco(l,P, µco) = (Clco(J∞(l))⊗ P, dco): coisson BRST cplx.
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4.3. Coisson BRST reduction for dg vertex Poisson algebra [Y. arXiv:2004.10055]

Proposition [Y]
Given a momentum map µ : l → R (morphism in dgPA), we have a
coisson momentum map µco = J∞(µ) : J∞(Sym(l)) → J∞(R)

(morphism in dgVP) and

Rco
BRSTco(J∞(l),J∞(R),J∞(µ)) ' BRSTcl(l,R , µ).

• At this stage, we have a commutative diagram

MTch HSch

MTco HSco

MT HS

R(−)

grF

Rco
(−) Rco

(−)

H0(·)
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5. Chiral derived gluing
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5.1. BRST reduction

• Back to the setting in part 1.
G : semisimple group. g = Lie(G ).
Vk(g): universal affine vertex algebra at level k ∈ C

• As a linear space, Vk(g) = U(ĝ)⊗U(g[[t]]⊕CK) Ck with
ĝ = g((t))⊕ CK affine Lie alg., Ck = C |0⟩, K |0⟩ = k |0⟩.

• For a = (x ⊗ tn) |0⟩ ∈ Vk(g) (x ∈ g, n ≤ −1),
Y (a, z) := 1

(−n−1)!∂
−n−1
z

∑
m(x ⊗ tm)z−m−1.

• V ∈ dgVA with µ : Vk(g) → V (chiral momentum map),

BRST(ĝk ,V , µ) = (V ⊗
∧∞

2 (g), dch) ∈ dgVA: BRST complex.
c.f. [Frenkel, Ben-Zvi, “Vertex Algebras and Algebraic Curves”, AMS (2001)]

Proposition [Y], compatibility of reductions

grF BRST(ĝk ,V , µ) ' BRSTco(J∞(g), grF V , grF µ) in dgVP,

RBRST(ĝk ,V ,µ) ' BRSTcl(g,RV ,Rµ) in dgPA.
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5.2. Definition of MTch
[Y. arXiv:2004.10055]

Definition of MTch [Y]

• Objects: simply connected semi-simple groups G .

• Morphism (V , µV ) : G1 → G2: V ∈ dgVA with chiral momentum
map µV : Vk(g1)⊗ Vl(g2) → V .

• Composition of (V , µV ) : G1 → G2 and (W , µW ) : G2 → G3:

W ◦̃ V := BRST(ĝ2l+m,V
op ⊗W , µ),

where V op with YV op(a, z) := YV (a,−z) and µ := −µ2
V + µ1

W .
chiral derived gluing (dg vertex algebra analogue of Hamiltonian reduction).

• ⊗ is the tensor product of dg vertex algebras.

• There is a natural duality structure.
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5.3. Main statement [Y. arXiv:2004.10055]

Theorem ([Y])
The functors
grF : dgVA → dgVP, Rco : dgVP → dgPA and R : dgVA → dgPA
yield functors
MTch → MTco, MTco → MT, MTch → MT respectively,
which sit in a commutative diagram of ∞-categories

MTch HSch

MTco HSco

MT HS

R(−)

grF

R(−)

grF

Rco
(−) Rco

(−)

H0(·)
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5.4. Concluding remark

• We may expect to have the following commutative diagram:

Bo2 MTch HSch

Bo2 MT HS

ηch
G

ηch
G,g=0

dSpecR(−) SpecR(−)

ηder
G

ηG

H0(·)

• There seems no explicit description of higher genus
Moore-Tachikawa varieties ηG (Σg ,n) ∈ HS (g ≥ 1).

Thank you.
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