Derived gluing construction of chiral algebras

Shintaro Yanagida (Nagoya University) 2021/05/24
© Nagoya AG Seminar

Contents

Based on
Y. "Derived gluing construction of chiral algebras",

Lett. Math. Phys. 2021; arXiv:2004.10055.

1. Introduction (14 pages)
1.1. Moore-Tachikawa TQFT η_{G}
1.2. Braverman-Finkelberg-Nakajima construction of η_{G}
1.3. Arakawa's chiralization $\eta_{G, g=0}^{\mathrm{ch}}$
1.4. Motivation and main statement: higher genus chiralization and derived algebraic geometry
2. Vertex algebras in derived setting
3. dg Poisson algebras and derived Hamiltonian reduction
4. dg vertex Poisson algebras and derived arc spaces
5. Chiral derived gluing

1.1. Moore-Tachikawa 2-dim Topological Quantum Field Theory

[G. Moore, Y. Tachikawa, "On 2d TQFTs whose values are holomorphic symplectic varieties", String-Math 2011, Proc. Sympos. Pure Math. 85 (2012); arXiv:1106.5698]

Moore and Tachikawa conjectured the existence of a functor

$$
\eta_{G}: \mathrm{Bo}_{2} \longrightarrow \mathrm{HS}
$$

between symmetric monoidal categories with duality.
Bo_{2} : the 2-bordism category.
Objects: $\left(S^{1}\right)^{n}$ for $n \in \mathbb{N}:=\mathbb{Z}_{\geq 0}$, identified with n.
Morphisms: $\Sigma_{g, n_{1}+n_{2}}: n_{1} \rightarrow n_{2}$, 2-dim. oriented manifolds with genus g and boundary $\left(S^{1}\right)^{n_{1}} \sqcup-\left(S^{1}\right)^{n_{2}}$.
Composition := gluing.

Bo_{2} is a symmetric monoidal category with duality.
$\otimes:=\sqcup$, disjoint union of manifolds.
Duality:

- In general, for each object A, there is a dual object A^{*}, and there are $p_{A} \in \operatorname{Hom}\left(A \times A^{*}, 1\right), q_{A} \in \operatorname{Hom}\left(1, A^{*} \times A\right)$ such that $\left(p_{A} \times \mathrm{id}_{A}\right) \circ\left(\mathrm{id}_{A} \times q_{A}\right)=\mathrm{id}_{A},\left(\mathrm{id}_{A^{*}} \times p_{A}\right) \circ\left(q_{A} \times \mathrm{id}_{A^{*}}\right)=\mathrm{id}_{A^{*}}$.
In case of $\mathrm{Bo}_{2}, n^{*}:=n$ and $p_{n}:=\left(\Sigma_{0,2+0}\right)^{\sqcup n}, q_{n}:=\left(\Sigma_{0,0+2}\right)^{\sqcup n}$, which satisfy the relation "S-bordism is equal to the tube".

1.1. Moore-Tachikawa 2d TQFT $\eta_{G}: \mathrm{Bo}_{2} \rightarrow \mathrm{HS}$ [mT, arxiv:1106.5698]

HS: category "of holomorphic symplectic varieties"

- Objects: semisimple algebraic groups over \mathbb{C} (including the trivial group).
- Morphisms: $X: G_{1} \rightarrow G_{2}$, holomorphic symplectic variety X with Hamiltonian $G_{1} \times G_{2}$-action.
$G \curvearrowright(Y, \omega)$ is Hamiltonian if $\exists \mu: Y \rightarrow \mathfrak{g}^{*}:=\operatorname{Lie}(G)^{*}$, the moment map, s.t. $\langle d \mu(\cdot), \xi\rangle=-\iota \xi_{Y} \omega$ with $\xi_{Y}(y):=\left.\frac{d}{d t} e^{t \xi} \cdot y\right|_{t=0}$ for $\xi \in \mathfrak{g}$, and $\mu(g \cdot y)=\operatorname{ad}_{g}^{*}-1 \mu(y)$ for $g \in G$.
- Composition: For $X_{12} \in \operatorname{Hom} \operatorname{Hs}^{(}\left(G_{1}, G_{2}\right)$ and $X_{23} \in \operatorname{Hom} m_{H S}\left(G_{2}, G_{3}\right)$,

$$
X_{23} \circ X_{12}:=\left(X_{12}^{\circ \mathrm{op}} \times X_{23}\right) / / \mu \Delta\left(G_{2}\right)=\mu^{-1}(0) / \Delta\left(G_{2}\right) .
$$

$/ / \mu$: Hamiltonian reduction (symplectic quotient) for the moment map

$$
\mu: X_{12} \times X_{23} \rightarrow \mathfrak{g}_{2}^{*}:=\operatorname{Lie}\left(G_{2}\right)^{*}, \quad \mu(x, y):=-\mu_{12}(x)+\mu_{23}(y)
$$

with μ_{12} the \mathfrak{g}_{2}^{*}-component of momentum map $X_{12} \rightarrow \mathfrak{g}_{1}^{*} \times \mathfrak{g}_{2}^{*}$.

- \otimes : given by Cartesian product.
- The identity morphism for $G \in H S$:

$$
\left(\operatorname{id}_{G}: G \rightarrow G\right):=T^{*} G=G \times \mathfrak{g}^{*}
$$

with standard symplectic structure and two commuting G-actions

$$
g .(h, x):=(g h, x), \quad g .(h, x):=\left(h g^{-1}, g \cdot x\right) .
$$

These are Hamiltonian with moment maps

$$
\left(\mu_{L}, \mu_{R}\right): G \times \mathfrak{g}^{*} \rightarrow \mathfrak{g}^{*} \times \mathfrak{g}^{*}, \quad \mu_{L}(g, x)=x, \quad \mu_{R}(g, x)=g . x .
$$

- $T^{*} G$ is indeed the identity morphism in HS. For $Y \in \operatorname{Hom} \operatorname{HS}^{(}\left(G^{\prime}, G\right)$,

$$
\begin{aligned}
T^{*} G \circ Y & =Y^{\mathrm{op}} \times\left(G \times \mathfrak{g}^{*}\right) / / \Delta(G) \\
& =\left\{(y, g, x) \in Y \times G \times \mathfrak{g}^{*} \mid \mu_{Y}(y)=\mu_{L}(g, x)\right\} / \Delta(G) \\
& =\left\{(y, g, x) \mid \times=\mu_{Y}(y)\right\} / \Delta(G)=G \times Y / G=Y .
\end{aligned}
$$

They conjectured that, for each simply-connected semisimple G,
(SL ${ }_{n}, \mathrm{Spin}_{n}$ (univ. cover of SO_{n}), Sp_{n}, exceptional groups)
there exists a functor $\eta_{G}: \mathrm{Bo}_{2} \rightarrow \mathrm{HS}$ with $\eta_{G}(n)=G^{n}$ and

$$
\eta_{G}\left(\Sigma_{g, n_{1}+n_{2}}\right) \text { : holo. symplectic variety with Ham. } G^{n_{1}+n_{2}} \text {-action }
$$ (Moore-Tachikawa symplectic variety).

The functoriality of η_{G} means that taking symplectic quotients of $\eta_{G}(\Sigma)$'s is compatible with gluing bordisms Σ 's.

$$
\begin{array}{cc}
\eta_{G}\left(\Sigma_{n_{2}+n_{3}}^{\prime} \circ \Sigma_{n_{1}+n_{2}}\right) & \text { gluing } \\
\eta_{G}\left(\Sigma_{n_{1}+n_{3}}^{\prime \prime}\right) \\
\eta_{\text {functoriality }}\left(\Sigma_{n_{2}+n_{3}}^{\prime}\right) \circ \eta_{G}\left(\Sigma_{n_{1}+n_{2}}\right)=\left(\eta_{G}\left(\Sigma_{n_{1}+n_{2}}\right)^{\mathrm{op}} \times \eta_{G}\left(\Sigma_{n_{2}+n_{3}}^{\prime}\right)\right) \\
/ / \Delta\left(G^{n_{2}}\right)
\end{array}
$$

1.2. Braverman-Finkelberg-Nakajima construction of η_{G}

["Ring objects in the equivariant derived Satake category arising from Coulomb branches",
Adv. Theor. Math. Phys. (2019); arXiv:1706.02112]

Theorem (Braverman-Finkelberg-Nakajima)

The Moore-Tachikawa 2d TQFT η_{G} exists.

- They introduced, in some equivariant derived constructible category $D_{G_{\mathcal{O}}}\left(\mathrm{Gr}_{G}\right)$ on the affine Grassmannian

$$
\operatorname{Gr}_{G}=G_{\mathcal{K}} / G_{\mathcal{O}}, \quad G_{\mathcal{O}}:=G(\mathbb{C}[[z]]), \quad G_{\mathcal{K}}:=G(\mathbb{C}((z))),
$$

two distinguished objects $\mathcal{A}, \mathcal{B} \in D_{G_{\mathcal{O}}}\left(\mathrm{Gr}_{G}\right)$ which are ring objects with respect to the convolution product *.

- Using these ring objects for the Langlands dual G^{L}, they showed that

$$
\eta_{G}\left(\Sigma_{g, n}\right):=\operatorname{Spec}\left(H_{G_{O}^{L}}^{*}\left(\operatorname{Gr}_{G}, i_{\Delta}^{1}\left(\mathcal{A}^{\boxtimes n} \boxtimes \mathcal{B}^{\boxtimes g}\right)\right), \star\right)
$$

has a symplectic structure, and satisfies the gluing condition $\eta_{G}\left(\Sigma \circ \Sigma^{\prime}\right) \simeq \eta_{G}(\Sigma) \circ \eta_{G}\left(\Sigma^{\prime}\right)$.
1.2. Braverman-Finkelberg-Nakajima construction of η_{G} [BFN, arXiv:1706.02112]

A few varieties in genus zero part can be described explicitly.
Denoting $W_{G}^{n}:=\eta_{G}\left(\Sigma_{g=0, n}\right)$, the gluing condition gives

$$
W_{G}^{n} \circ W_{G}^{m} \simeq W_{G}^{n+m-2} .
$$

- The case $n=2$ is already explained:

$$
W_{G}^{2}=\eta_{G}(0)=\operatorname{id}_{G}=T^{*} G=G \times \mathfrak{g}^{*} .
$$

- The case $n=1$ is a bit non-trivial.

$$
W_{G}^{1}=\eta_{G}(D)=\eta_{G}(\bigcirc)=G \times S_{\text {reg }}
$$

with $\delta_{\text {reg }} \subset \mathfrak{g}^{*}$ the Slodowy slice of regular nilpotent $f_{\text {reg }} \in \mathfrak{g}$. $\delta_{\text {reg }}:=f_{\text {reg }}+\mathfrak{g}^{e} \subset \mathfrak{g} \simeq \mathfrak{g}^{*}$ via Killing form ($\left.\cdot \cdot\right)$
$\left\{e, f_{r e g}, h\right\} \subset \mathfrak{g}$ an s_{2}-triple assoc. to $f_{\text {reg }}, \mathfrak{g}^{e} \subset \mathfrak{g}$ the centralizer of e.

- The case $n=3$ for $G=S L_{2}$ and SL_{3} is

$$
W_{S_{L_{2}}}^{3}=\left(\mathbb{C}^{2}\right)^{\times 3}, \quad W_{S_{3}}^{3}=\overline{O_{\text {min }}} \text { in } E_{6} .
$$

$\overline{O_{\text {min }}}$: closure of coadjoint orbit of minimal nilpotent element

Remark for Slodowy slice

- $\mathcal{N}:=\{x \in \mathfrak{g} \mid \operatorname{ad}(x) \in \operatorname{End}(\mathfrak{g})$ is nilpotent $\}$: the nilpotent cone. $\mathcal{N} \ni f$: a nilpotent element. $\{e, f, h\} \subset \mathfrak{g}$: an $\mathfrak{s l}_{2}$-triple assoc. to f.

$$
\mathcal{S}_{f}:=f+\mathfrak{g}^{e} \subset \mathfrak{g} \simeq \mathfrak{g}^{*} \quad \text { via Killing form }(\cdot \mid \cdot)
$$

with \mathfrak{g}^{e} the centralizer of e in \mathfrak{g}.

- G acts on $\mathfrak{g}^{*}=\operatorname{Spec} \mathbb{C}[\mathfrak{g}]$ by coadjoint action.
$\chi: \mathfrak{g}^{*} \rightarrow \operatorname{Spec} \mathbb{C}[\mathfrak{g}]^{G} \simeq \mathfrak{h}^{*} / W \simeq \operatorname{Spec} \mathbb{C}\left[p_{1}, \ldots, p_{\text {rank } \mathfrak{g}}\right]$ by Chevalley.
$\mathcal{N}=\chi^{-1}(0), \operatorname{dim} \mathcal{N}=\operatorname{dim} \mathfrak{g}-\operatorname{rank} \mathfrak{g}$.
$\mathcal{N}=\bigcup_{f} O_{f}$ orbit stratification for coadjoint action.
$T_{f} O_{f}=f+[\mathfrak{g}, f]:$ tangent space, $\mathfrak{g}=[\mathfrak{g}, f] \perp \mathfrak{g}^{e}$.
Thus δ_{f} is a transversal slice of O_{f} at f.
- The regular orbit $O_{\text {reg }}$ is the unique orbit of max. dim.
$\oint_{\text {reg }}:=\oint_{f_{\text {reg }}}$ with $f_{\text {reg }} \in O_{\text {reg }}$.
- $\mathfrak{g}=\mathfrak{s l}_{2}=\left\{\left[\begin{array}{cc}a & b \\ c & -a\end{array}\right]\right\}, \mathcal{N}=\left\{\left.X=\left[\begin{array}{cc}a & b \\ c & -a\end{array}\right] \right\rvert\, \operatorname{det} X=-a^{2}-b c=0\right\}$.
$f=f_{\text {reg }}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right] \in O_{\mathrm{reg}}=\left\{\left.\left[\begin{array}{cc}z w & -z^{2} \\ w^{2} & -z w\end{array}\right] \right\rvert\, z w \neq 0\right\}, e=\left[\begin{array}{lll}0 & 1 \\ 0 & 0\end{array}\right], \mathfrak{g}^{e}=\mathbb{C} e$.

$$
S_{\mathrm{reg}}=f_{\mathrm{reg}}+\mathfrak{g}^{e}=\left[\begin{array}{ll}
0 & * \\
1 & 0
\end{array}\right] .
$$

1.3. Arakawa's chiral quantization $\eta_{G, g=0}^{\mathrm{ch}}$

[T. Arakawa, "Chiral algebras of class \mathcal{S} and Moore-Tachikawa symplectic varieties", arXiv:1811.01577]

- Arakawa considered chiralization of Moore-Tachikawa TQFT η_{G} :

$$
\eta_{G}^{\mathrm{ch}}: \mathrm{BO}_{2} \longrightarrow \mathrm{HS}^{\mathrm{ch}}
$$

- Target category HS ${ }^{\text {ch }}$:
- Objects: semisimple algebraic groups (same as HS).
- Morphisms $V: G_{1} \rightarrow G_{2}$: vertex algebras V equipped with $V_{-h_{1}^{\vee}}\left(\mathfrak{g}_{1}\right) \otimes V_{-h_{2}^{\vee}}\left(\mathfrak{g}_{2}\right) \rightarrow V(+$ some cond. $)$.
- Composition of $V_{12}: G_{1} \rightarrow \mathcal{G}_{2}$ and $V_{23}: G_{2} \rightarrow G_{3}$:

$$
V_{23} \circ V_{12}:=H^{\frac{\infty}{2}+0}\left(\widehat{\mathfrak{g}}_{-2 h_{2}^{\vee}}, \mathfrak{g}_{2}, V_{12}^{\mathrm{op}} \otimes V_{23}\right),
$$

$H^{\frac{\infty}{2}+*}(\cdot, \cdot, \cdot)$: relative BRST (semi-infinite) cohomology (vertex algebra analogue of Hamiltonian reduction)

- The functor η_{G}^{ch} should sit in a commutative diagram

1.3. Arakawa's chiral quantization $\eta_{G, g=0}^{\mathrm{ch}}$ [Arakawa, arxiv: 1811.01577]
- Arakawa built genus 0 part $\eta_{G, g=0}^{\mathrm{ch}}:\left.\mathrm{Bo}_{2}\right|_{g=0} \rightarrow \mathrm{HS}^{\mathrm{ch}}$.

Theorem (Arakawa)

There is a family $\left\{\mathrm{V}_{G, n}^{\mathcal{S}}=\eta_{G, g=0}^{\mathrm{ch}}\left(\Sigma_{g=0, n}\right) \mid n \in \mathbb{N}\right\}$ of vertex algebras such that

$$
\mathrm{V}_{G, 1}^{S} \simeq H_{\mathrm{DS}}^{0}\left(\mathcal{D}_{G}^{\mathrm{ch}}\right), \quad \mathrm{V}_{G, 2}^{S} \simeq \mathcal{D}_{G}^{\mathrm{ch}}, \quad \mathrm{~V}_{G, m}^{S} \circ \mathrm{~V}_{G, n}^{\mathcal{S}} \simeq \mathrm{V}_{G, m+n-2}^{S},
$$

and their associated schemes are Moore-Tachikawa symplectic varieties:

$$
W_{G}^{n} \simeq \operatorname{Spec} R_{\mathrm{V}_{G, n}^{s}} .
$$

- \rightsquigarrow Beem-Rastelli conjecture
["Vertex operator algebras, Higgs branches, and modular differential equations", arXiv:1707.07679]

$$
\mathcal{M}_{\mathrm{Higgs}}(\mathcal{T}) \stackrel{?}{\simeq} \operatorname{Specm}\left(R_{V_{\mathcal{T}}}\right) \quad \forall \mathcal{T}: \mathcal{N}=24 \mathrm{~d} \operatorname{SCFT}
$$

is affirmatively solved for genus 0 class \mathcal{S} theories $\mathcal{T}=\mathcal{T}_{\Sigma_{0, n}}^{\mathcal{S}}$.

1．4．Motivation and main result

－I learned these theories in Arakawa＇s intensive lectures at Nagoya Univ．，November 2019，with many comments and problems．
Today＇s talk stems from one of them．
－There is a subtlety on the construction of $\eta_{G}: \mathrm{Bo}_{2} \rightarrow \mathrm{HS}$ for higher genus cases due to the non－flatness of the moment map．
Composition of morphisms in HS

$$
X_{23} \circ X_{12}:=\left(X_{12}^{\mathrm{op}} \times X_{23}\right) / / \mu \Delta\left(G_{2}\right)=\mu^{-1}(0) / \Delta\left(G_{2}\right) .
$$

－To construct $\eta_{G}^{\mathrm{ch}}: \mathrm{Bo}_{2} \rightarrow \mathrm{HS}^{\mathrm{ch}}$ for higher genus cases，it would be necessary to modify HS ${ }^{\text {ch }}$ and HS，since BRST reduction for a non－flat moment map does NOT yield a stalk complex． Composition of morphisms in HS ${ }^{\text {ch }}$

$$
V_{23} \circ V_{12}:=H^{\frac{\infty}{2}+0}\left(\widehat{\mathfrak{g}}_{-2 h_{2}^{\vee}}, \mathfrak{g}_{2}, V_{12}^{\mathrm{op}} \otimes V_{23}\right) .
$$

－In the intensive lectures，Arakawa commented：
derived symplectic geometry を使うとできるかもしれない．

1.4. Motivation and main result

- What is derived symplectic geometry ?

In this talk, it means the study of shifted symplectic derived schemes/stacks in the realm of derived algebraic geometry (DAG).

- Very naively speaking, one can transfer objects in classical algebraic geometry (scheme theory) to DAG by the next replacement.

classical	derived
set	∞-category (simplicial set)
comm. ring A	simplicial/dg comm. ring A^{\bullet}
scheme $\left(X, \mathcal{O}_{X}\right)$	derived scheme $\left(X, \mathcal{O}_{X}^{\bullet}\right)$
Homsch (X, Y) : morphism set	$\operatorname{Map}_{\mathrm{dSch}}(X, Y):$ morphism space

- As we should replace algebras by dg algebras, the notion of symplectic/Poisson structure in DAG should admit shift (as complex)... \rightsquigarrow shifted symplectic/Poisson structure.

1.4. Motivation and main result

- The idea of using derived symplectic geometry to construct η_{G} in full genera is originally due to Calaque, who introduced the ∞-category MT of derived Moore-Tachikawa varieties:
["Lagrangian structures on mapping stacks and semi-classical TFTs", arXiv:1306.3235]
- Objects: semisimple algebraic groups (same as HS)
- Morphisms R : $G_{1} \rightarrow G_{2}$: dg Poisson commutative algebras R with Hamiltonian $\left(\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}\right)$-action.
- Composition of $R_{12} \in \operatorname{Map}_{\mathrm{MT}}\left(G_{1}, G_{2}\right)$ and $R_{23} \in \operatorname{Map}_{\mathrm{MT}}\left(G_{2}, G_{3}\right)$:

$$
R_{23} \widetilde{\circ} R_{12}:=\left(R_{12}^{\mathrm{op}} \otimes R_{23}\right) / /_{\mu}^{\mathrm{L}} \operatorname{Sym}\left(\mathfrak{g}_{2}\right) .
$$

$/ /{ }_{\mu}^{\mathbb{L}}$: derived Hamiltonian reduction of dg Poisson algebras $\mu:=-\mu_{12}^{2} \otimes 1+1 \otimes \mu_{23}^{1}$. We call $R_{23} \widetilde{\circ} R_{12}$ derived gluing.

1.4. Motivation and main result

The main statement of this talk: I define the ∞-category $\mathrm{MT}^{\text {ch }}$ by

- Objects: semisimple algebraic groups (same as $\mathrm{HS}, \mathrm{HS}^{\mathrm{ch}}$).
- Morphisms: dg vertex algebras V with $\mu V: V_{k}\left(\mathfrak{g}_{1}\right) \otimes V_{l}\left(\mathfrak{g}_{2}\right) \rightarrow V$.
- Compos. of $V_{12}: G_{1} \rightarrow G_{2}$ and $V_{23}: G_{2} \rightarrow G_{3}$ is given by BRST reduction: $V_{23} \widetilde{\circ} V_{12}:=\operatorname{BRST}\left(\widehat{\mathfrak{g}}_{1+m}, V_{12}^{\mathrm{op}} \otimes V_{23}, \mu\right) \quad$ (chiral derived gluing).

Theorem ([Y. "Deived gluing construction of chiral algebras", Lett. Math. Phys. 2021, arxiv:2004.10055])
Taking associated derived scheme gives a functor

$$
\mathrm{dSpec} R_{(-)}: \mathrm{MT}^{\mathrm{ch}} \longrightarrow \mathrm{MT}
$$

i.e., $R_{V \widetilde{ } W} \simeq R_{V} \widetilde{\circ} R_{W}$ in MT .

2. Vertex algebras in derived setting

1. Introduction
2. Vertex algebras in derived setting (4 pages)
2.1. Vertex algebras
2.2. Li filtration, Zhu's C_{2}-algebra, and associated scheme 2.3. dg version.
3. dg Poisson algebras and derived Hamiltonian reduction
4. dg vertex Poisson algebras and derived arc spaces
5. Chiral derived gluing

2.1. Recollection on vertex algebras

c.f. [Frenkel, Ben-Zvi, "Vertex Algebras and Algebraic Curves", AMS (2001)]

- A vertex algebra $(V,|0\rangle, T, Y)$ consists of
- a linear space V, called state space,
- an element $|0\rangle \in V$, called vacuum,
- an endomorphism $T \in$ End V, called translation,
- a linear map $Y(\cdot, z): V \rightarrow($ End $V)\left[\left[z^{ \pm 1}\right]\right]$, called state-field corresp., denoted as $Y(a, z)=a(z)=\sum_{n \in \mathbb{Z}} a_{(n)} z^{-n-1}$ for each $a \in V$,
satisfying
(i) $a(z) b \in V((z))$ for any $a, b \in V$,
(ii) $Y(|0\rangle, z)=\mathrm{id}_{V}, a(z)|0\rangle=a+O(z)$ for any $a \in V$,
(iii) $T|0\rangle=0,[T, a(z)]=\partial_{z} a(z)$ for any $a \in V$,
(iv) $\forall a, b \in V, \exists N_{a, b} \in \mathbb{N}$ s.t. $(z-w)^{N_{a, b}}[a(z), b(w)]=0$.
- A vertex algebra can be regarded as a linear space V equipped with infinitely-many binary operations $(a, b) \mapsto a_{(n)} b(n \in \mathbb{Z})$.

2.1. Recollection on vertex algebras

- A vertex algebra $(V,|0\rangle, T, Y)$ consists of
- state space V,
- vacuum $|0\rangle \in V$,
- translation $T \in$ End V,
- state-field correspondence $Y(a, z)=a(z)=\sum_{n \in \mathbb{Z}} a_{(n)} z^{-n-1}$,
satisfying (i), (ii), (iii) and
(iv) [locality] $\forall a, b \in V, \exists N_{a, b} \in \mathbb{N}$ s.t. $(z-w)^{N_{a, b}}[a(z), b(w)]=0$.
- $V=(V,|0\rangle, T, Y)$ is called commutative if $N_{a, b}=0 \forall a, b \in V$. Such V is equivalent to a commutative algebra (V, \cdot) with unit $|0\rangle$ and derivation T under the correspondence $a(z) b=e^{z T} a \cdot b$, i.e.,

$$
a_{(n)} b=\frac{1}{(-n-1)!}\left(T^{-n-1} a\right) \cdot b \quad(n \leq-1) .
$$

In particular, $a_{(-1)} b=a \cdot b$.

2.2. Li filtration, Zhu's C_{2}-algebra, and associated scheme

- Li filtration of a vertex algebra $V=(V,|0\rangle, T, Y)$.
[H. Li, "Abelianizing vertex algebras", 2005]

$$
\begin{aligned}
& V=F^{0} V \supset F^{1} V \supset F^{2} V \supset \cdots \\
& F^{p} V:=\left\langle\left(a_{1}\right)_{\left(-n_{1}\right)}^{\cdots\left(a_{r}\right)_{\left(-n_{r}\right)} v\left|a_{i}, v \in V, n_{i} \in \mathbb{Z}>0, \sum_{i} n_{i} \geq p\right\rangle_{\operatorname{lin}} .} .\right.
\end{aligned}
$$

- The 0-th graded part

$$
R_{V}:=F^{0} V / F^{1} V=V / C_{2}(V), \quad C_{2}(V):=\langle a(-2) b \mid a, b \in V\rangle_{\operatorname{lin}} .
$$

is a Poisson (commutative) algebra, called Zhu's C_{2}-algebra.
[Y. Zhu, "Modular invariance of characters of vertex operator algebras", 1996]
Multiplication • and Poisson bracket $\{-,-\}$ are

$$
\bar{a} \cdot \bar{b}:=\overline{a_{(-1)} b}, \quad\{\bar{a}, \bar{b}\}:=\overline{a_{(0)} b} \quad\left(\bar{a} \in R_{V} \text { for } a \in V\right) .
$$

Spec R_{V} is a Poisson scheme, called the associated scheme of V.

2.3. dg version [y. axXiv:2004.10055]

I introduced dg (:= differential graded) version of these notions.

- A complex (V, d) means $V=\bigoplus_{i \in \mathbb{Z}} V^{i}$ with a sequence $\left\{d_{i}: V^{i} \rightarrow V^{i+1} \mid i \in \mathbb{Z}\right\}$ of linear maps satisfying $d_{i+1} d_{i}=0$.
- A dg vertex algebra is a complex (V, d) equipped with a vertex superalgebra structure $(|0\rangle, T, Y)$ on $V^{\text {even }} \oplus V^{\text {odd }}$ such that
- $|0\rangle \in V^{0}$ and $T \in \operatorname{End}(V)^{0}=\operatorname{Hom}_{\mathrm{dg}} \mathrm{Vec}^{(}(V, V)$.
- d is an odd derivation (a la Kac) of ($\left.V^{\text {even }} \oplus V^{\text {odd }},|0\rangle, T, Y\right)$.
- $a_{(n)} V^{j} \subset V^{i+j}$ for any $a \in V^{i}$ and $n \in \mathbb{Z}$.
- Li filtration $F^{\bullet} V$ is defined by the same formula as non-dg.

Lemma [Y]

For a dg vertex algebra $V, F^{\bullet} V$ is a decreasing filtration of complexes.

- Zhu's C_{2}-algebra $R_{V}:=F^{0} V / F^{1} V=V / C_{2}(V)$ is a dg Poisson alg. $\mathrm{dSpec}\left(R_{V}\right)$ is a derived Poisson scheme, which I call the associated derived scheme of V.

3. dg Poisson algebras and derived Hamiltonian reduction

1. Introduction
2. Vertex algebras in derived setting
3. dg Poisson alg. \& derived Hamiltonian reduction (4 pp.)
3.1. dg n-Poisson algebras
3.2. Safronov's derived Hamiltonian reduction
3.3. Relation to non-derived Hamiltonian reduction.
4. dg vertex Poisson algebras and derived arc spaces
5. Chiral derived gluing

3.1. dg n-Poisson algebras (shifted Poisson structures)

[Pantev, Toën, Vaquié, Vezzosi, "Shifted symplectic structures", PIHES (2013)]
[Calaque, Pantev, Toën, Vaquié, Vezzosi,
"Shifted Poisson structures and deformation quantization", J. Top. (2017)]

- For $n \in \mathbb{Z}$, a dg n-Poisson algebra $(R, \cdot,\{\}$,$) consist of$
- dg commutative algebra (R, \cdot)
- dg morphism $\{\}:, R \otimes R \longrightarrow R[1-n]$ (n-Poisson bracket) satisfying
- $\{$,$\} is a Lie bracket on R[n-1]$.
- $\{f, g \cdot h\}=\{f, g\} \cdot h+(-1)^{|g||h|}\{f, h\} \cdot g$ for homog. $f, g, h \in R$. In the case $n=1$, we call it a dg Poisson algebra.
- Examples. l: dg Lie algebra.
- Kirillov-Kostant dg Poisson algebra (Sym($\left.\mathfrak{l}),\{,\}_{\mathrm{KK}}\right)$
- Chevalley-Eilenberg complex $\operatorname{CE}(\mathrm{l}, \operatorname{Sym}(\mathfrak{l}))=\operatorname{Sym}\left(\mathrm{l}^{*}[-1]\right) \otimes \operatorname{Sym}(\mathfrak{l})$ is a dg 2-Poisson algebra with \cup product and Schouten bracket.

3.2. Safronov's derived Hamiltonian reduction

[Safronov, "Poisson reduction as a coisotropic intersection", High. Struct. (2017)]

- R : dg Poisson algebra, $\mathfrak{l}: \mathrm{dg}$ Lie algebra.

A morphism $\mu: \mathfrak{l} \rightarrow R$ of dg Lie algebras is called momentum map. It induces $\operatorname{CE}(\mu): \operatorname{CE}(\mathfrak{l}, \operatorname{Sym}(\mathfrak{l})) \rightarrow \mathrm{CE}(\mathrm{l}, R)$.

- Taking $R=\mathbb{C}$, trivial dg Poisson algebra, we also have $\operatorname{CE}(0): \operatorname{CE}(\mathrm{l}, \operatorname{Sym}(\mathfrak{l})) \rightarrow \operatorname{CE}(\mathrm{l}, \mathbb{C})$
- $\mathrm{CE}(0)$ and $\mathrm{CE}(\mu)$ are coisotropic, and the derived tensor product

$$
R / \|_{\mu}^{\mathrm{L}} \operatorname{Sym}(\mathfrak{l}):=\operatorname{CE}(\mathfrak{l}, R) \otimes_{\mathrm{CE}(\mathrm{l}, \operatorname{Sym}(\mathrm{l}))}^{\mathrm{L}} \mathrm{CE}(\mathfrak{l}, \mathbb{C})
$$

is a (homotopy) dg Poisson commutative algebra.
3.3. Relation to non-derived Hamiltonian reduction [Safronov, 2017]

- l: dg Lie algebra \rightsquigarrow a dg Poisson commutative algebra

$$
\overline{\mathrm{Cl}}(\mathfrak{l})=\left(\operatorname{Sym}\left(\mathrm{l}[1] \oplus \mathfrak{l}^{*}[-1]\right), d_{\overline{\mathrm{Cl}(\mathrm{I})}}\right),
$$

called the classical Clifford algebra.

- R : dg Poisson commutative algebra, $\mu: \mathfrak{l} \rightarrow R$: momentum map \rightsquigarrow classical BRST complex, a dg Poisson commutative algebra

$$
\operatorname{BRST}_{\mathrm{cl}}(\mathfrak{l}, R, \mu)=\left(\overline{\mathrm{Cl}}(\mathfrak{l}) \otimes R, d_{\mathrm{Cl}(\mathrm{l}) \otimes R}+\{\bar{Q},-\}\right),
$$

tensor product as graded Poisson algebras and BRST differential.

Theorem [Safronov]

For $\mathfrak{l}=\mathfrak{g}$, a finite dimensional Lie algebra,

$$
R\left\|\|_{\mu}^{\mathrm{L}} \operatorname{Sym}(\mathfrak{g}) \simeq \operatorname{BRST}_{\mathrm{cl}}(\mathfrak{g}, R, \mu)\right.
$$

as (homotopy) dg Poisson algebras

- Non-derived Hamiltonian reduction $X / / G$, appearing in the composition in HS $X_{23} \circ X_{12}=\left(X_{12}^{\mathrm{op}} \otimes X_{23}\right) / / \mu \Delta\left(G_{2}\right)$ is a special case of classical BRST:

$$
R_{23} \circ R_{12}=H^{0} \operatorname{BRST}_{\mathrm{cl}}\left(\mathfrak{g}_{2}, R_{12} \otimes R_{23}, \mu\right),
$$

where $R_{i j}$ is a non-dg Poisson algebra with $X_{i j}=\operatorname{Spec} R_{i j}$.

- By Safronov's Theorem, composition in MT can be regarded as classical BRST reduction:

$$
R_{23} \widetilde{\circ} R_{12}=\left(R_{12}^{\mathrm{op}} \otimes R_{23}\right) / /{ }_{\mu}^{\mathrm{L}} \operatorname{Sym}\left(\mathfrak{g}_{2}\right) \simeq \mathrm{BRST}_{\mathrm{cl}}\left(\mathfrak{g}_{2}, R_{12} \otimes R_{23}, \mu\right) .
$$

As a result, we have a Quillen adjunction

$$
\text { MT } \underset{H^{\circ}}{\stackrel{i}{\longrightarrow}} \mathrm{HS}
$$

4. dg vertex Poisson algebras and derived arc spaces

1. Introduction
2. Vertex algebras in derived setting
3. dg Poisson algebras and derived Hamiltonian reduction
4. dg vertex Poisson algebras \& derived arc spaces (4 pp.)
4.1. Vertex Poisson algebras and arc spaces
4.2. dg versions
4.3. Coisson BRST reduction for dg vertex Poisson algebra
5. Chiral derived gluing

4.1. Vertex Poisson algebras and arc spaces

- For a vertex algebra V,

$$
V \rightarrow \operatorname{gr} F V=\bigoplus_{n} F^{n} V / F^{n+1} V \rightarrow R_{V}=F^{0} V / F^{1} V .
$$

gr ${ }^{F} V$ has a structure of vertex Poisson algebra.

- vertex Poisson algebra $\left(P,|0\rangle, T, Y_{+}, Y_{-}\right):=$ comm. vertex algebra $\left(P,|0\rangle, T, Y_{+}\right)+$vertex Lie algebra $\left(P, d, T, Y_{-}\right)$ [Frenkel, Ben-Zvi, "Vertex Algebras and Algebraic Curves", AMS (2001)]
- Example of vertex Poisson algebra from arc space (∞-jet scheme). [Arakawa, "A remark on the C_{2} cofiniteness condition on vertex algebras", 2012]
- For a commutative algebra A, there is a commutative algebra $J_{\infty}(A)$ with derivation T s.t.

$$
\operatorname{Hom}_{\text {ComAlg }}\left(J_{\infty}(A),-\right)=\operatorname{Hom}_{\text {ComAlg }}(A,-\otimes \mathbb{C}[[z]])
$$

- Proposition [Arakawa] (level 0 vertex Poisson structure) For a Poisson algebra $R, J_{\infty}(R)$ is a vertex Poisson algebra with

$$
u_{(n)}\left(T^{\prime} v\right)=\left\{\begin{array}{lll}
\frac{!!}{(I-n)!} T^{I-n}\{u, v\}_{R} & (I \geq n) \\
0 & (I<n) & \left(u, v \in R \subset J_{\infty}(R)\right. \\
I, n \in \mathbb{N})
\end{array}\right.
$$

4.2. dg vertex Poisson algebra from derived arc space [Y. arXiv:2004.10055]

- For a dg commutative algebra $A, \exists J_{\infty}(A)$ with derivation T s.t.
$\operatorname{Map}_{\mathrm{dSch}}\left(-, \operatorname{dSpec} J_{\infty}(A)\right) \simeq \operatorname{Map}_{\mathrm{dSch}}\left(-x^{\mathrm{L}} \mathrm{dSpec} \mathbb{C}[[z]], \mathrm{dSpec} A\right)$.
- dg vertex Poisson algebra $\left(P, d,|0\rangle, T, Y_{+}, Y_{-}\right)$
$:=\mathrm{dg}$ commutative vertex algebra +dg vertex Lie algebra
- dgVA: ∞-category of dg vertex algebras
- dgVP: ∞-category of dg vertex Poisson algebras
- dgPA: ∞-category of dg Poisson algebras
- Sequence of functors

$$
\begin{aligned}
& R_{(-)}=\left(\operatorname{dg} V A \xrightarrow{\mathrm{gr}^{F}} \mathrm{dg} V P \xrightarrow{R_{(-)}^{\mathrm{co}}} \mathrm{dgPA}\right) \\
& V \longmapsto \bigoplus_{n} F^{n} V / F^{n+1} V \longmapsto R_{V}:=F^{0} V / F^{1} V \\
& \simeq R_{\mathrm{g} F^{\mathrm{F}} V}^{\mathrm{co}}:=(\mathrm{gr} F) /(\operatorname{lm} T) .
\end{aligned}
$$

- Lemma [Y] (level 0 dg vertex Poisson structure):

For a dg Poisson algebra $P, J_{\infty}(P)$ is a dg vertex Poisson algebra satisfying $R_{J_{\infty}(P)}^{\mathrm{co}}=P$.

4.3. Coisson BRST reduction for dg vertex Poisson algebra [Y. arXiv:2004.10055]

As a "vertex Poisson lift" of MT, I introduced the ∞-category $\mathrm{MT}^{\mathrm{co}}$ with

- Objects: semisimple algebraic groups (same as MT)
- Morphisms $P: G_{1} \rightarrow G_{2}$: dg vertex Poisson algebras P with morphism $J_{\infty}\left(\operatorname{Sym}\left(\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}\right)\right) \rightarrow P$ in dgVP.
- $J_{\infty}(\operatorname{Sym}(\mathfrak{g}))=\operatorname{Sym}(\mathfrak{g}[[t]])$ with level 0 dg vertex Poisson structure.
- Composition of $P_{12}: G_{1} \rightarrow G_{2}$ and $P_{23}: G_{2} \rightarrow G_{3}$:

$$
R_{23} \widetilde{\circ} R_{12}:=\operatorname{BRST}_{\mathrm{co}}\left(\mathfrak{g}_{2}, P_{12} \otimes P_{23}, \mu_{\mathrm{co}}\right) .
$$

coisson BRST reduction (vertex Poisson analogue of Hamiltonian reduction).

- l: dg Lie algebra \rightsquigarrow Clifford vertex Poisson algebra $\mathrm{Cl}_{\mathrm{co}}\left(J_{\infty}(\mathfrak{l})\right)=\operatorname{Sym}\left(J_{\infty}(\mathfrak{l})[1] \oplus J_{\infty}(\mathfrak{l})^{*}[-1]\right) \in \operatorname{dgVP}$.
- $P \in \operatorname{dgVP}$ with $\mu_{\mathrm{co}}: J_{\infty}(\operatorname{Sym}(\mathfrak{l})) \rightarrow P$ (coisson momentum map) $\rightsquigarrow \operatorname{BRST}_{\mathrm{co}}\left(\mathfrak{l}, P, \mu_{\mathrm{co}}\right)=\left(\mathrm{Cl}_{\mathrm{co}}\left(J_{\infty}(\mathfrak{l})\right) \otimes P, d_{\mathrm{co}}\right):$ coisson BRST cplx.
4.3. Coisson BRST reduction for dg vertex Poisson algebra [Y. arXiv:2004.10055]

Proposition [Y]

Given a momentum map $\mu: \mathfrak{l} \rightarrow R$ (morphism in dgPA), we have a coisson momentum map $\mu_{\mathrm{co}}=J_{\infty}(\mu): J_{\infty}(\operatorname{Sym}(\mathfrak{l})) \rightarrow J_{\infty}(R)$ (morphism in dgVP) and

$$
R_{\mathrm{BRST}}^{c o}\left(J_{\infty}(\mathrm{I}), J_{\infty}(R), J_{\infty}(\mu)\right) \simeq \operatorname{BRST}_{\mathrm{cl}}(\mathrm{I}, R, \mu) .
$$

- At this stage, we have a commutative diagram

5. Chiral derived gluing

1. Introduction
2. Vertex algebras in derived setting
3. Dg Poisson algebras and derived Hamiltonian reduction
4. Dg vertex Poisson algebras and derived arc spaces
5. Chiral derived gluing (4 pages)
5.1. BRST reduction
5.2. Definition of $M T^{\mathrm{ch}}$
5.3. Main statement
5.4. Concluding remark

5.1. BRST reduction

- Back to the setting in part 1.
G : semisimple group. $\mathfrak{g}=\operatorname{Lie}(G)$.
$V_{k}(\mathfrak{g})$: universal affine vertex algebra at level $k \in \mathbb{C}$
- As a linear space, $V_{k}(\mathfrak{g})=U(\widehat{\mathfrak{g}}) \otimes_{U(\mathfrak{g}[t t]] \oplus \mathbb{C} k)} \mathbb{C}_{k}$ with $\widehat{\mathfrak{g}}=\mathfrak{g}((t)) \oplus \mathbb{C} K$ affine Lie alg., $\mathbb{C}_{k}=\mathbb{C}|0\rangle, K|0\rangle=k|0\rangle$.
- For $a=\left(x \otimes t^{n}\right)|0\rangle \in V_{k}(\mathfrak{g})(x \in \mathfrak{g}, n \leq-1)$,

$$
Y(a, z):=\frac{1}{(-n-1)!} \partial_{z}^{-n-1} \sum_{m}\left(x \otimes t^{m}\right) z^{-m-1}
$$

- $V \in \operatorname{dgVA}$ with $\mu: V_{k}(\mathfrak{g}) \rightarrow V$ (chiral momentum map),
$\operatorname{BRST}\left(\widehat{\mathfrak{g}}_{\mathrm{k}}, V, \mu\right)=\left(V \otimes \Lambda^{\frac{\infty}{2}}(\mathfrak{g}), d_{\mathrm{ch}}\right) \in \operatorname{dgVA}$ BRST complex.
c.f. [Frenkel, Ben-Zvi, "Vertex Algebras and Algebraic Curves", AMS (2001)]

Proposition [Y], compatibility of reductions

$\operatorname{gr}^{F} \operatorname{BRST}\left(\widehat{\mathfrak{g}}_{k}, V, \mu\right) \simeq \operatorname{BRST}_{\mathrm{co}}\left(J_{\infty}(\mathfrak{g}), \mathrm{gr}^{F} V, \mathrm{gr}^{F} \mu\right)$ in dgVP,
$R_{\mathrm{BRST}\left(\widehat{\mathfrak{g}}_{k}, V, \mu\right)} \simeq \operatorname{BRST}_{\mathrm{cl}}\left(\mathfrak{g}, R_{V}, R_{\mu}\right)$ in dgPA.

5.2. Definition of $\mathrm{MT}^{\mathrm{ch}}{ }_{[\mathrm{Y} .}$ arXiv:2004.10055]

Definition of $\mathrm{MT}^{\mathrm{ch}}[\mathrm{Y}]$

- Objects: simply connected semi-simple groups G.
- Morphism $(V, \mu \vee): G_{1} \rightarrow G_{2}: V \in \operatorname{dgVA}$ with chiral momentum $\operatorname{map} \mu_{V}: V_{k}\left(\mathfrak{g}_{1}\right) \otimes V_{l}\left(\mathfrak{g}_{2}\right) \rightarrow V$.
- Composition of $\left(V, \mu_{V}\right): G_{1} \rightarrow G_{2}$ and $\left(W, \mu_{W}\right): G_{2} \rightarrow G_{3}$:

$$
W \widetilde{\circ} V:=\operatorname{BRST}\left(\widehat{\mathfrak{g}}_{2 /+m}, V^{\mathrm{op}} \otimes W, \mu\right),
$$

where V^{op} with $Y_{V \mathrm{pp}}(a, z):=Y_{V}(a,-z)$ and $\mu:=-\mu_{V}^{2}+\mu_{W}^{1}$.
chiral derived gluing ($d g$ vertex algebra analogue of Hamiltonian reduction).

- \otimes is the tensor product of dg vertex algebras.
- There is a natural duality structure.
5.3. Main statement [r. arXiv:2004.10055]

Theorem ([Y])

The functors
$\operatorname{gr}^{F}: \operatorname{dgVA} \rightarrow \mathrm{dgVP}, R^{\mathrm{co}}: \operatorname{dgVP} \rightarrow \operatorname{dgPA}$ and $R: \operatorname{dgVA} \rightarrow \operatorname{dgPA}$ yield functors
$\mathrm{MT}^{\mathrm{ch}} \rightarrow \mathrm{MT}^{\mathrm{co}}, \mathrm{MT}^{\mathrm{co}} \rightarrow \mathrm{MT}, \mathrm{MT}^{\mathrm{ch}} \rightarrow \mathrm{MT}$ respectively, which sit in a commutative diagram of ∞-categories

5.4. Concluding remark

- We may expect to have the following commutative diagram:

- There seems no explicit description of higher genus Moore-Tachikawa varieties $\eta_{G}\left(\Sigma_{g, n}\right) \in \mathrm{HS}(g \geq 1)$.

Thank you.

