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0 Introduction
In the first talk, I explained Toën’s derived Hall algebra (§1) and what will be needed

to construct it geometrically (§2).
• D: a dg-category of finite type over Fq

• P(D): the moduli stack of perfect dg-modules over Dop.

• G(D): the moduli stack of cofibrations X ↪→ Y of perfect dg-modules over Dop.

Diagram of correspondence

G(D)
c //

p

��

P(D) (X ↪→ Y )
� //

_

��

Y

P(D)× P(D) (X,Y
⨿X 0)

• Db
c(X,Qℓ): the bounded derived category of constructible lisse-étale `-adic sheaves over a locally

geometric derived stack X, and Grothendieck’s six operations Rf∗,Lf∗,Rf!,Lf
!,⊗L,RHom.

Db
c(G(D),Qℓ)

Rc! // Db
c(P(D),Qℓ)

Db
c(P(D)× P(D),Qℓ)

Lp∗

OO

• Geometric Hall-algebra multiplication µ will be associative.

µ : Db
c(P(D),Qℓ)

×2 −→ Db
c(P(D),Qℓ), M 7−→ Rc! Lp

∗(M)[dim p]



Today I will explain

• Moduli spaces of complexes via geometric derived stacks [Toën-Vaquié] (§4).
• Lisse-étale constructible `-adic sheaves over derived stacks (§5).
• Derived category and derived functors (§6).
• Geometric construction of derived Hall algebras (§7).
• Toward canonical bases for derived Hall algebras (§8).
The constructions in §5 and §6 are natural analogue of those for algebraic stacks

developed by [Laszlo-Olsson, 2008].

Based on my preprint

S. Yanagida, “Geometric derived Hall algebra”, arXiv:1912.05442.

See also

柳田伸太郎, 「幾何学的導来Hall代数」代数学シンポジウム講演集 (2020).



4 Moduli spaces of complexes

Everything is defined over a commutative ring k.

4.1 Recollection: Moduli functor of perfect objects

For a dg-category D over k and A ∈ sCom, we consider

MD(A) := MapdgCat(D
op,P(A)), P(A) := Moddg(Ndg(A))◦perf,

which gives rise to a functor of ∞-categories

MD ∈ PSh∞(dAff∞) := Fun∞((dAff∞)op, S) = Fun∞(sCom∞, S).

Fact ([Toën-Vaquié). MD ∈ PSh∞(dAff∞) is a derived stack over k. We call it the

moduli stack of perfect Dop-dg-modules

Remark. • The 0-th homotopy π0(MD(k)) is bijective to the set of isomorphism classes of

perfect Dop-dg-modules in Ho(M(D)).

• For each x ∈ M(D), we have

π1(MD, x) ≃ AutHo(M(D))(x, x), πi(MD, x) ≃ Ext−i
Ho(M(D))(x, x) (i ∈ Z≥2).



4.2 Geometricity of moduli stacks of perfect objects

We explain the main result in [Toën-Vaquié, 2009].

Definition. A dg-category D over k is of finite type if there exists a k-dg-algebra B

which is homotopically finitely presented in the model category dgAlgk of dg-algebras

s.t. P(D) = Moddg(D)
◦
perf is quasi-equivalent to Moddg(B)◦.

Fact (Toën-Vaquié). If D is a dg-category over k of finite type, then the derived stack

MD is locally geometric and locally of finite presentation.

Here I used

Definition. A derived stack X is called locally geometric if X is equivalent to a filtered

colimit lim−→i∈I
Xi of derived stacks {Xi}i∈I s.t.

• each derived stack Xi is ni-geometric for some ni ∈ Z≥−1,

• each morphism Xi → Xi ×X Xi of derived stacks induced by Xi → X is an equivalence in

the ∞-category dSt∞ of derived stacks.



Definition. 1. An n-geometric derived stack X is called locally of finite presentation if it has

an n-atlas {Ui}i∈I such that for each representable derived stack Ui ≃ SpecAi the

simplicial k-algebra Ai is finitely presented (see below).

2. A locally geometric derived stack X is locally of finite presentation if each geometric

derived stack Xi in X ≃ lim−→i
Xi can be chosen to be locally of finite presentation in the

sense of 1.

Definition. 1. A morphism f : A → B in sCom∞ is called finitely presented if for any filtered

system {Ci}i∈I of objects in (sCom∞)A/ the natural morphism

lim−→
i∈I

Map(sCom∞)A/
(B,Ci) −→ Map(sCom∞)A/

(B, lim−→
i∈I

Ci)

is an isomorphism in H.

2. A ∈ sCom∞ is called finitely presented or of finite presentation if the morphism k → A is

finitely presented in the sense of 1.



4.3 Moduli stack of complexes of quiver representations

• kQ: the path algebra of a quiver Q over k.

• Regard kQ as a dg-algebra over k, and as a dg-category over k.

• Moddg(kQ) is the dg-category of complexes of representations of Q over k.

Definition. We call the derived stack MkQ the derived stack of perfect complexes of

representations of Q and denote it by

P(Q) := MkQ.

Fact 1. Let Q be a finite quiver with no loops. Then the derived stack P(Q) is

locally geometric and locally of finite presentation over k.

π0(P(Q)(k)) is the set of isom. classes of perfect complexes of reps. of Q over k.



5 Constructible sheaves on derived stacks
5.1 Lisse-étale ∞-site

We will introduce the lisse-étale ∞-site for a geometric derived stack, an analogue of

the lisse-étale site for an algebraic stack [Laumon, Moret-Bailly, 2000].

• (dSt∞)/X: the over-∞-category of derived stacks over a derived stack X.

• dAff∞/X ⊂ (dSt∞)/X: the full sub-∞-category spanned by affine derived schemes

Definition. Let n ∈ Z≥−1 and X be an n-geometric derived stack.

The lisse-étale ∞-site
Lis-Etn∞(X) = (Lisn∞(X) , lis-et)

on X is the ∞-site given by the following description.

• Lisn∞(X) is the full sub-∞-category of dAff∞/X spanned by (U, u) where the

morphism u : U → X is n-smooth.

• The set Covlis-et(U, u) of covering sieves on (U, u) consists of

{(Ui, ui)→ (U, u)}i∈I in Lisn∞(X) s.t. {Ui → U}i∈I is an étale covering.

Recall: A morphism A → B in sCom∞ is called étale [smooth] if

• the induced π0(A) → π0(B) is an étale [smooth] map of commutative k-algebras,

• the induced πi(A)⊗π0(A) π0(B) → πi(B) is an isomorphism for any i.



5.2 Constructible lisse-étale sheaves
Recall the notion of a constructible sheaf on an ordinary scheme:

A sheaf F on a scheme X is called constructible if for any affine Zariski open U ⊂ X there is a finite

decomposition U = ∪iUi into constructible locally closed subschemes Ui such that F|Ui
is a locally

constant sheaf with value in a finite set.

We introduce an analogue of this notion for derived stacks.

Definition. Let X be a geometric derived stack. An object of the ∞-category

Sh∞,lis-et(Lis∞(X)) is called a lisse-étale sheaf.

For an affine derived scheme U , we denote by π0(U) the associated affine scheme.

Definition. A lisse-étale sheaf F on X is called constructible if

(i) it is cartesian, i.e., for any morphism f : T → T ′ in Xlis-et, the natural morphism

f−1FT → FT ′ is an equivalence, and

(ii) for any U ∈ Lis∞(X) the restriction π0(F)|π0(U) is a constructible sheaf on π0(U).



Definition. Λ: a commutative ring.

A lisse-étale sheaf of Λ-modules is an object of the ∞-category

Sh∞,lis-et(Lis∞(X) ,N(Mod(Λ))).

We then have the dg-category of complexes consisting of lisse-étale sheaves of

Λ-modules. By the dg nerve construction, we obtain an ∞-category.

Definition. We denote the obtained ∞-category of complexes of lisse-étale sheaves by

Mod∞(Xlis-et,Λ) .

For ∗ ∈ {+,−, b} we denote by

Mod∗∞(Xlis-et,Λ) ⊂ Mod∞(Xlis-et,Λ)

the full sub-∞-category spanned by complexes whose homologies are bounded below

(resp. bounded above, resp. bounded).

The full sub-∞-categories with constructible homologies are denoted by

Modc∞(Xlis-et,Λ) , Modc,∗∞ (Xlis-et,Λ) := Modc∞(Xlis-et,Λ) ∩Mod∗∞(Xlis-et,Λ) .



6 Derived category and derived functors

6.1 Derived ∞-category of constructible lisse-étale sheaves

Proposition. X: a locally geometric derived stack. Λ: a commutative ring.

The ∞-category of complexes of constructible lisse-étale Λ-sheaves

Modc,∗∞ (Xlis-et,Λ)

is stable in the sense of [Lurie, Higher Algebra].

In particular, the homotopy category HoModc,∗∞ (Xlis-et,Λ) has a structure of a

triangulated category (explained below).

Definition. The (left bounded, resp. right bounded, resp. bounded) derived category

of constructible sheaves of Λ-modules on X is defined to be

D∗
c (X,Λ) := HoModc,∗∞ (Xlis-et,Λ) (∗ ∈ {∅,+,−, b}).

Below we give a brief recollection on stable ∞-categories.



Definition (Lurie, HA, §1.1.1). An ∞-category is stable if

(i) it has a zero object 0 ∈ C,

(ii) any morphism has a fiber and cofiber, and

(iii) a triangle in C is a pullback square iff it is a pushout square.

A triangle in C is a square of the following form:

X //

��
Y

��
0 / / Z

For a stable ∞-category C, we can define a suspension functor Σ : C→ C and a loop

functor Ω : C→ C [Lurie, HA, §1.1.2].

Fact (Lurie, HA, §1.1.2). For a stable ∞-category C, the homotopy category HoC

has a structure of a triangulated category with [1] = Σ : HoC→ HoC and the

distinguished triangles in the next page.



A distinguished triangle in HoC is a diagram of the form

X
f // Y

g // Z
h // X[1]

such that there is a diagram in C of the form

X
f̃

//

��

Y //

g̃��

0

��
0′ // Z

h̃ // W

satisfying the following 4 conditions.

(i) 0, 0′ ∈ C are zero objects.

(ii) The two squares are pushout square in C.

(iii) Morphisms f̃ , g̃ in C represent f, g in HoC respectively.

(iv) h is equal to the composition of the homotopy class of h̃ and the equivalence

W ' X[1] given by the outer rectangle.

Using this fact, we can lift notions on triangulated categories to those on stable

∞-categories. For example:



Definition. A t-structure of a stable ∞-category C is a t-structure on the homotopy

category HoC.

Below we explain derived ∞-categories [Lurie, HA, §1.3.2].
• A: an abelian category with enough injectives.

• C(A): the dg-category of complexes in A (with injective model structure).

• C+(Ainj) ⊂ C(A): the full subcat. of complexes bounded below of injectives.

The dg nerve construction gives an ∞-category

D+
∞(A) := Ndg(C

+(Ainj)),

which is known to be stable. It is called the derived ∞-category of A.

D+
∞(A) has a t-structure determined by (D+

∞(A)≤0,D
+
∞(A)≥0) with

D+
∞(A)≥0: the full sub-∞-cat. of Hn(M) := π0(M [n]) ' 0 in N(A) for n < 0,

D+
∞(A)≤0: similarly defined.

This t-structure enjoys the following properties.

1. The core D+
∞(A)♡ := D+

∞(A)≤0 ∩ D+
∞(A)≥0 is equivalent to N(A).

2. HoD+
∞(A) ' D+(A) as triangulated categories, and the t-structure on HoD+

∞(A) is equivalent to

the standard t-structure on D+(A).



6.2 Derived functors — finite coefficient case

On the derived category of constructible lisse-étale sheaves

D∗
c (X,Λ) := HoModc,∗∞ (Xlis-et,Λ) (∗ ∈ {∅,+,−, b}),

we can construct analogue of Grothendieck’s six derived functors in the case Λ is a

Gorenstein local ring of dimension 0 whose residual characteristic ` is invertible in the

base ring k.

Precisely speaking, for

• X,Y: locally geometric derived stacks locally of finite presentation,

• f : X→ Y: a morphism locally of finite presentation,

we can define triangulated functors

Rf∗ : D+
c (X,Λ) −→ D+

c (Y,Λ), Rf! : D
−
c (X,Λ) −→ D−

c (Y,Λ),

Lf∗ : Dc(Y,Λ) −→ Dc(X,Λ), Rf ! : Dc(Y,Λ) −→ Dc(X,Λ)

and RHom, ⊗L. These functors are compatible with those for algebraic stacks

developed by Laszlo and Olsson (2008).

Today I only explain the functors Rf! and Lf∗ appearing in the construction of

derived Hall algebras.



6.2.1 Rf∗ and Rf!

For f : X→ Y, we define the direct image functor f∗ of ∞-category to be

f∗ : Mod∞(Xlis-et,Λ) −→ Mod∞(Ylis-et,Λ) , (f∗F)(U) := F(U ×Y X).

It induces a triangulated functor Rf∗ : D(X,Λ) := HoMod∞(Xlis-et,Λ)→ D(Y,Λ).

If f is moreover locally of finite presentation, then we have

Rf∗ : D+
c (X,Λ) −→ D+

c (Y,Λ).

For f locally of finite presentation, we define the shrink direct image functor f! to be

f! := DY ◦ f∗ ◦DX : Modc∞(Xlis-et,Λ) −→ Modc∞(Ylis-et,Λ) .

where DX, DY are the dualizing functors (introduced in the next page).

It induces a triangulated functor

Rf! : D
−
c (X,Λ) −→ D−

c (Y,Λ).



The dualizing functor DX is given by the dualizing object ΩX ∈ Modc∞(Xlis-et,Λ) as

DX := Hom( ,ΩX) : Modc∞(Xlis-et,Λ) −→ Modc∞(Xlis-et,Λ)
op
.

For the existence of ΩX, we need X to be locally of finite presentation and Λ to

satisfy the assumption.

The dualizing functor satisfies the following property [Y, §5.5]:

1. The natural morphism id→ DX ◦DX is an equivalence.

2. For M,N ∈ Modc∞(Xlis-et,Λ), we have Hom(M,N) ' Hom(DX(N), DX(M)).



6.2.2 Lf∗

We need a special care on the construction of the inverse image Lf∗ as in the case of

algebraic stacks:

• In [Laumon, Moret-Bailly, ”Champs algébriques”, 2000], there is an error on the definition

of the functor Lf∗.

• A correct definition of Lf∗ is given in [Olsson, ”Sheaves on Artin stacks”, 2007].

• The work [Laszlo, Olsson, 2008] is based on the corrected definition.

Our definition of Lf∗ is a simple analogue of Olsson’s definition for algebraic stacks.

X: geometric derived stack.

Take an (n-)atlas {Ui}i∈I , and set X0 :=
⨿

i∈I Ui, Xk := X0 ×X · · · ×X X0 (k-times fiber prod.).

We have smooth epimorphisms Xk → X, and denote them as eX : X• → X, X• := {Xk}k∈N
(coskeleton of X).

For a morphism f : X → Y of geometric derived stacks, the coskeletons eX : X• → X and

eY : Y• → Y gives a family of morphisms f• : X• → Y• with a commutative diagram

X•
f•

//

eX

��

Y•

eY

��
X

f // Y



Recall the étale topology et defined by étale morphisms in the ∞-category sCom∞ of simplicial

commutative rings. We have ∞-topoi X•,et and Y•,et.

[As an ∞-category, an object of X•,et is a data F• = (Fn, F (δ)) consisting of sheaves Fn on

Xn,et for each n and morphisms F (δ) : δ−1Fn → Fm for each δ : [n] → [m], satisfying a

compatibility with composition, where we denoted by δ : Xm → Xn the map coming from the

simplicial structure.]

Then f• induces a morphism of ∞-topoi

f•,et : X•,et −→ Y•,et.

Denote by Mod∞(X•,et,Λ) the ∞-category of sheaves of Λ-modules on X•,et. Then the standard

adjunction (f−1, f∗) on étale sheaves yields a functor

f∗
• : Modcart∞ (Y•,et,Λ) −→ Modcart∞ (X•,et,Λ),

where cart denotes the cartesian sheaves.

On the other hand, the descent argument gives

rX : Modcart∞ (Xlis-et,Λ)
∼−−→ Modcart∞ (X•,et,Λ) , rY : Modcart∞ (Ylis-et,Λ)

∼−−→ Modcart∞ (Y•,et,Λ) .

Using these stuffs, we define

f∗ := r−1
X

◦ f∗
• ◦ rY : Modcart∞ (Ylis-et,Λ) −→ Modcart∞ (Xlis-et,Λ) .

If f is locally of finite presentation, then we have a functor for constructible sheaves

f∗ : Modc∞(Ylis-et,Λ) −→ Modc∞(Xlis-et,Λ) ,

which induces a triangulated functor

Lf∗ : D+
c (Y,Λ) −→ D+

c (X,Λ).



6.3 Base-change theorem

The constructed derived functors satisfy the standard properties. Today I only explain

the base-change theorem, which will be used to show the associativity of Hall algebra.

Assume that we have the following cartesian diagram in the ∞-category of locally

geometric derived stacks, and that f is locally of finite presentation.

X′
π

//

φ ��

X

f��
Y′ p // Y

We have a morphism p∗f! → ϕ!π
∗ in Fun∞(Modc,−∞ (Xlis-et,Λ) ,Modc,−∞ (Y′

lis-et,Λ)),

and p!f∗ → φ∗π
! in Fun∞(Modc,+∞ (Xlis-et,Λ) ,Modc,+∞ (Y′

lis-et,Λ)).

Proposition (Y., §6.6). If p is smooth, then

(p∗f! → ϕ!π
∗) ' (p!f∗ → φ∗π

!) in Fun∞(Modc,b∞ (Xlis-et,Λ) ,Modc,b∞ (Y′
lis-et,Λ)).

As a consequence, we have

(Lp∗Rf! → Rϕ!Lπ
∗) ' (Lp!Rf∗ → Rφ∗Lπ

!) in Fun(Db
c(X,Λ),D

b
c(Y

′,Λ)).



6.4 The case of ℓ-adic coefficients

• So far I explained the case when Λ satisfies a certain condition.

But for the construction of derived Hall algebras we need the case Λ = Qℓ,

which does not satisfy the condition.

• For a complete DVR Λ of char. ` > 0, regarding Λ = lim←−n
(Λ/mn), we can

construct derived categories and functors as limits on n [Y., §7].
This construction is a simple analogue of that for algebraic stacks developed by

[Laszlo-Olsson, 2008].



7 Geometric construction of derived Hall algebras

D: a dg-category of finite type (in the sense of Toën-Vaquié) over k = Fq.

(E.g. the dg-category Moddg(kQ) of reps. of a quiver Q without loops.)

P(D): the moduli space of perfect Dop-dg-modules.

: a locally geometric derived stack locally of finite presentation.

Decomposition of P(D):

P(D) =
⋃

a≤b P(D)
[a,b], P(D)[a,b] =

⊔
α∈K0(HoP(D)) P(D)

[a,b],α.

The component P(D)[a,b],α parametrizes dg-modules M whose cohomologies

concentrate in [a, b] and M = α.

Decomposition of the moduli space G(D) of cofibrations:

G(D) =
⋃

a≤b G(D)
[a,b], G(D)[a,b] =

⊔
α,β∈K0(HoP(D)) G(D)

[a,b],α,β

G(D)[a,b],α,β parametrizes cofibrations X ↪→ Y such that cohomologies of Y

concentrate in [a, b] and α = X, β = Y
∐X

0.



Diagram of correspondence:

G(D)[a,b],α,β
c //

p

��

P(D)[a,b],α+β (X ↪→ Y ) � //
_

��

Y

P(D)[a,b],α × P(D)[a,b],β (X,Y
∐X

0)

The multiplication µ of derived Hall algebra:

µα,β : Db
c(P(D)

α,Qℓ)× Db
c(P(D)

β ,Qℓ) −→ Db
c(P(D)

α+β ,Qℓ)

M 7−→ Rc! Lp
∗(M)[dim p].

(` is invertible in Fq.)

Associativity:

µα,β+γ ◦ (id×µβ,γ) ' µα+β,γ ◦ (µα,β × id).



Outline of the proof of associativity.

The LHS µα,β+γ ◦ (id×µβ,γ) corresponds to the rigid arrows in

Gα,(β,γ) p′′
2 //

p′′
1

��

Gα,β+γ p′
2 //

p′
1

��

Pα+β+γ

Pα×Gβ,γ
p2

//

p1

��

Pα×Pβ+γ

Pα×Pβ ×Pγ

The dotted arrows are determined by

Gα,(β,γ) := (Pα×Gβ,γ)×Pα ×Pβ+γ Gα,β+γ ,

which parametrizes (N ↪→M,M ↪→ L) such that N = γ, M = β+ γ, L = α+β+ γ.

By the smoothness of p′′1 , the base-change theorem implies

µα,β+γ ◦ (id×µβ,γ) ' R(p′2p
′′
2)! L(p1p

′′
1)

∗[dim(p1p
′′
1)].



The RHS µα+β,γ ◦ (µα,β × id) corresponds to

G(α,β),γ q′′2 //

q′′1
��

Gα+β,γ q′2 //

q′1
��

Pα+β+γ

Gα,β ×Pγ
q2

//

q1
��

Pα+β ×Pγ

Pα×Pβ ×Pγ

The dotted arrows are determined by

G(α,β),γ := (Gα,β ×Pγ)×Pα+β ×Pγ Gα+β,γ

which parametrizes (R→ L
∐M

0,M → L) such that M = γ, R = β, L = α+β+γ.

By the smoothness of q′′1 , the base-change theorem implies

µα+β,γ ◦ (µα,β × id) ' R(q′2q
′′
2 )! L(q1q

′′
1 )

∗[dim(q1q
′′
1 )].



Thus LHS and RHS are given by

µα,β+γ ◦ (id×µβ,γ) ' Rp! L(p
′)∗[dim p′], µα+β,γ ◦ (µα,β × id) ' Rq! L(q

′)∗[dim q′]

with

Gα,(β,γ) p //

p′

��

Pα+β+γ G(α,β),γ q //

q′

��

Pα+β+γ

Pα×Pβ ×Pγ Pα×Pβ ×Pγ

Then the associativity follows from the isomorphism of the derived stacks

Gα,(β,γ) ' G(α,β),γ .

This isomorphism is shown by reduction to the values on the closed points.



8 Toward canonical bases for derived Hall algebras
Q: a quiver without loops with the vertex set I

Moddg(kQ): dg-category of reps. of Q, whose Grothendieck group is K0 = ZI

P(Q) := MModdg(kQ): the moduli stack of complexes of representations of Q

with the decomposition P(Q) =
∪

a≤b P(Q)[a,b], P(Q)[a,b] =
⊔

α,β∈ZI P(Q)[a,b],α,β

Let us consider

1n
α := Qℓ

∣∣
P(Q)[n,n],α [dimP(Q)[n,n],α] ∈ Modc,b∞

(
P(Q),Qℓ

)
(n ∈ Z, α ∈ NI).

These belong to the ∞-category of perverse sheaves, which gives a t-structure of the

stable ∞-category Modc,b∞
(
P(Q),Qℓ

)
in the sense of Lurie.

The multiplication ? := µ preserves the ∞-category of perverse sheaves, and the

product
Ln1,...,nl
α1,...,αl

:= 1n1
α1

? · · · ? 1nl
αl

can be regarded as an analogue of the Lusztig sheaf appearing in the construction of

the canonical basis for quantum groups.

We are now studying a derived analogue of Lusztig’s construction of canonical bases.

Thank you for the listening.


