
2021/01/04

Osaka AG Seminar

Geometric derived Hall algebra I

Shintarou Yanagida (Nagoya Univ.)



0 Introduction
The derived Hall algebra introduced by Toën (2006) is a version of Ringel-Hall

algebra. Roughly it is a “Hall algebra for complexes”.

In the case of ordinary Ringel-Hall algebra, we know Lusztig’s geometric formulation

using the theory of derived categories of constructible sheaves on moduli spaces of

Quiver representations, which are realized as Artin stacks.

I will explain a geometric formulation of derived Hall algebras using the theory of

derived categories of constructible sheaves on moduli spaces of complexes of Quiver

representations, which are realized as geometric derived stacks.

Based on my preprint

S. Yanagida, “Geometric derived Hall algebra”, arXiv:1912.05442.

See also

柳田伸太郎, 「幾何学的導来Hall代数」代数学シンポジウム講演集 (2020).



Today I will explain

• Ringel-Hall algebras and Toën’s derived Hall algebras (§1).
• Outline of geometric construction of derived Hall algebras (§2).
• Derived stacks and geometric derived stacks [Toën-Vezzossi, 2008] (§3).
• Moduli spaces of complexes via geometric derived stacks [Toën-Vaquié, 2009] (§4).

In the second talk I will explain

• Moduli spaces of complexes via geometric derived stacks (§4).
• Lisse-étale constructible `-adic sheaves over derived stacks (§5).
• Derived category and derived functors (§6).
• Geometric construction of derived Hall algebras (§7).



1 Ringel-Hall algebra and derived Hall algebra

1.1 Ringel-Hall algebra

A: an Fq-linear abelian category of finite global dimension,

Iso(A): the set of isomorphism classes of objects in A,

Qc(A): the linear space of Q-valued functions on Iso(A) with finite supports,

1[M ]: the characteristic function of [M ] ∈ Iso(A), forming a basis of Qc(A).

Theorem (Ringel, 1990). H(A) :=
(
Qc(A), ∗, 1[0]

)
is a unital associative Q-algebra,

where

1[M ] ∗ 1[N ] :=
∑

[L]∈Iso(A)

gLM,N1[L],

gLM,N := a−1
M a−1

N eLM,N , aM := |Aut(M)| ,
eLM,N := |{0→ N → L→M → 0 | exact in A}| .

Another definition of gLM,N :

gLM,N =
∣∣GL

M,N

∣∣ , GL
M,N := {N ′ ⊂ L | N ′ ' N, L/N 'M}.

gLM,N counts the number of pairs N ⊂ L.



The extended Hall algebra H̃(A) := CK0(A)⊗C H(A)

• Fix ν = q1/2 ∈ C. Denote kα ∈ CK0(A) for α ∈ K0(A).

• kα ∗ [M ] = νχS(α,M)[M ] ∗ kα,
χ(·, ·) :=

∑
i≥0(−1)i dimFq ExtiA(·, ·): Euler form, χS(M,N) := χ(M,N) + χ(N,M).

Ringel’s realization of quantum groups via Hall algebras

• Q: a quiver without loop.

RepnilpFq
Q = mod-FqQ：the category of representations of Q.

⇝ the extended Hall algebra H̃(RepnilpFq
Q).

• Uν(gQ)：the quantum group associated to the Kac-Moody Lie algebra gQ.

Uν(bQ) ⊂ Uν(gQ)：Borel subalgebra.

Theorem (Ringel, 1990). There is an algebra embedding

Uν(bQ) ↪−→ H̃(RepnilpFq
Q), Ei 7−→ [Si], Ki 7−→ kSi

.

If Q is of type ADE, then it is an isomorphism.



Theorem (Green, 1995; Xiao, 1997). If A is a hereditary finitary abelian category,

then H̃(A) has a structure of bialgebra.

If moreover the number of subobjects for any object is finite, then H̃(A) has a

structure of Hopf algebra.

Green’s coproduct and Hopf inner product:

∆([L]) :=
∑

[M ],[N ]

νχ(M,N) |ExtA(M,N)L|
|AutA(L)|

[M ]⊗ [N ],

([M ] ∗ kα, [N ] ∗ kβ) =
δM,N χS(α, β)

|AutA(M)|
.

Theorem (Green, 1995; Xiao, 1997). Ringel’s algebra embedding

Uν(bQ) ↪→ H̃(RepnilpFq
Q) is an embedding of Hopf algebras.



Hall algebras for smooth projective curves

• C: a smooth projective curve over Fq.

The abelian category Coh(C) is finitary and hereditary.

⇝ A topological bialgebra H̃(Coh(C)).

• [Kapranov,1997]: The case C = P1.

a central extension H̃ ′(P1) of H̃(Coh(P1)) has a sub-bialgebra isomorphic to the

Borel subalgebra Uν(Lb+) of the quantum loop algebra Uν(Lsl2):

Uν(Lb+) ↪−→ H̃ ′(P1).

• [Burban-Schiffmann, 2006 (2012)]: The case C is an elliptic curve E.

a central extension H̃ ′(E) of H̃(Coh(E)) has a sub-bialgebra isomorphic to the

“Borel subalgebra” of the gl1-quantum toroidal algebra (Ding-Iohara-Miki algebra).



1.2 Derived Hall algebra

Toën introduced an analogue of Ringel-Hall algebra for a dg-category.

Rough idea: instead of counting subobjects, count cofibrations up to homotopy.

Notations on dg-categories and of model categories

C(Fq): the model dg-category of complexes of Fq-modules.

: A fibration is defined to be an epimorphism.

A weak equivalence is defined to be a quasi-isomorphism.

D: a dg-category over Fq.

M(D): the model dg-category of dg-modules over Dop.

: A dg-module means a C(Fq)-enriched functor Dop → C(Fq).

: The model structure is induced by that of C(Fq).



Notations on the simplicial homotopy theory

sSet := Fun(∆op, Set): the category of simplicial sets and simplicial maps

: having Kan model structure where a fibration is a Kan fibration and

a weak equivalence is a homotopy equivalence of geom. realizations.

H := Ho sSet: the homotopy category of the model category sSet,

called the homotopy category of spaces.

We have the standard Quillen adjunction

| | : sSet −−→←−− CG : Sing

between sSet and the category CG of compactly generated Hausdorff spaces.

Thus H = Ho sSet ' HoCG.



Preliminaries for counting cofibrations

For a dg-category D, the category M(D) is C(Fq)-enriched, so one can attach a

simplicial set
MapM(D)(X,Y ) := N(HomM(D)(X,Y )) ∈ sSet

where N( ) : C(Fq)→ sSet denotes the nerve construction.

Definition. A dg-module X ∈ M(D) is perfect if for any filtered system {Yi}i∈I in

M(D) the natural morphism

lim−→
i∈I

MapM(D)(X,Yi) −→ MapM(D)(X, lim−→
i∈I

Yi)

is an isomorphism in H.



The diagram of correspondence

D: dg-category

P(D): the sub-dg-category of M(D) of cofibrant and perfect objects

and of weak equivalences

G′(D) := Fun(∆1,M(D)), where I = ∆1 is the 1-simplex

: with the model structure induced levelwise by M(D)

G(D): the sub-dg-cat. of G′(D) of cofibrant and perfect objects

: considered as the category of cofibrations X ↪→ Y

For an object u : X → Y in G(D),

s(u) := X, c(u) := Y, t(u) := Y

X∐
0,

which yield a diagram of dg-categories:

G(D)
c //

s×t

��

P(D) (X ↪→ Y ) � //
_

��

Y

P(D)× P(D) (X, “Y/X”)



Define X(0)(D), X(1)(D) ∈ H by

X(0)(D) := [Ndg(P(D))], X(1)(D) := [Ndg(G(D))],

where Ndg denotes the dg nerve construction [Lurie, Higher Algebra] and

[·] : sSet→ H. Then we have the diagram of homotopy types

X(1)(D)
c //

s×t

��

X0(D)

X(0)(D)×X(0)(D)

Lemma. If the dg-category D is locally finite, then s× t is proper and the homotopy

types X(i)(D) ∈ H are locally finite.

Here we used:

Definition. A dg-category D is called locally finite if the complex HomD(x, y) is

homologically bounded with finite-dimensional homology groups for any x, y ∈ D.

Definition. A homotopy type X ∈ H is called locally finite if for any x ∈ X the group

πi(X,x) is finite and there exists an n ∈ N such that πi(X,x) is trivial for i > n.

Hlf: the full subcategory of H spanned by locally finite objects



The definition of derived Hall algebra

For X ∈ Hlf, we denote Qc(X) := {α : π0(X) → Q | having compact support}.
For a morphism f : X → Y in Hlf, define f∗ : Qc(Y ) → Qc(X) by

f∗(α)(x) := α(f(x)) (α ∈ Qc(Y ), x ∈ π0(X)).

Also define a linear map f! : Qc(X) → Qc(Y ) by

f!(α)(y) :=
∑

x∈π0(X), f(x)=y

α(x) ·
∏
i>0

(
|πi(X,x)|(−1)i |πi(Y, y)|(−1)i+1

)
.

Theorem (Toën 2006). Let D be a locally finite dg-category over Fq. Then

H(D) = Qc(X
(0)(D))

has a structure of a unital associative Q-algebra with the multiplication

µ := c! ◦ (s× t)∗ : H(D)⊗Q H(D) −→ H(D).

We call H(D) the derived Hall algebra of D.



1.3 An example of derived Hall algebra — Jordan quiver

[Shimoji-Y., ”A study of symmetric functions via derived Hall algebra”]

• Q = ({•}, {a}): the Jordan quiver

•a ::

• A = RepnilpFq
Q: the category of nilpotent representations of Q over k = Fq.

: a hereditary abelian category

⇝ the Ringel-Hall algebra Hcl := H(A) is a Hopf algebra,

called the classical Hall algebra.
• For a partition λ = (λ1, λ2, . . .), λi ∈ N, λ1 ≥ λ2 ≥ · · · , λn≫0 = 0,

we define Iλ ∈ A by

Iλ := (k|λ|, Jλ), Jλ := Jλ1
⊕ Jλ2

⊕ · · · .

Here we used |λ| :=
∑

i≥1 λi and

Jn :=


0 1

0 1

. . .
. . .

0 1
0

 .

We also consider ∅ = () as a partition, and set I∅ = (0, 0).



Lemma. Objects in A are described as follows.

(1) Iso(A) = {[Iλ] | λ : partitions}.
(2) Simple objects of A are isomorphic to I(1) = (k, 0).

(3) Indecomposable objects are isomorphic to I(n) with some n ∈ N.

Fact (Hall,Steiniz,Macdonald). The classical Hall algebra Hcl = H(A) is described as

Hcl =
(
Qc(A), ∗, [0],∆, ε, S

)
, Qc(A) = ⊕λ:partitionsQ[Iλ],

[Iµ] ∗ [Iν ] =
∑

λ:partitions

gλµ,ν [Iλ], gλµ,ν :=
∣∣Gλ

µ,ν

∣∣ ,
Gλ
µ,ν := GIλ

Iµ,Iν
= {N ⊂ Iλ | N ' Iν , Iλ/N ' Iµ},

∆([Iλ]) :=
∑
µ,ν

a−1
λ aµaνg

λ
µ,ν · [Iµ]⊗ [Iν ], aλ := aIλ = |AutA(Iλ)| .

Lemma. On the structure constant gνλ,µ =
∣∣∣Gν

λ,µ

∣∣∣ of H(A), we have

(1) G
(1n)
(1n−r),(1r) = Gr(n, r), and g

(1n)
(1n−r),(1r) =

[
n
r

]
q
.

(2) G
(n)
(n−r),(r) consists of one point, and g

(n)
(n−r),(r) = 1.



Theorem (Shimoji-Y.). The derived Hall algebra DHcl for the perfect complexes in

A = RepnilpFq
Q is a unital associative algebra with generators

{Z [n]
λ | n ∈ Z, λ 6= ∅ : partitions}

and Z
[n]
∅ = 1, and the relations

Z
[n]
λ ∗ Z

[n]
µ =

∑
ν:partitions

gνλ,µZ
[n]
ν , Z

[n]
λ ∗ Z

[m]
µ = Z [m]

µ ∗ Z [n]
λ , (|n−m| > 1),

Z
[n]
λ ∗ Z

[n+1]
µ =

∑
α,β:partitions

γα,β
λ,µZ

[n+1]
α ∗ Z [n]

β , (])

The relation (]) is equivalent to the following Heisenberg relation: For k ∈ Z>0 we

define b
[n]
±k ∈ DHcl by

b
[n]
k :=

∑
|λ|=k

(q; q)ℓ(λ)−1Z
[n]
λ , b

[n]
−k :=

∑
|λ|=k

(q; q)ℓ(λ)−1Z
[n+1]
λ .

We also set b0 := 1 ∈ DHcl. Then we have

b
[n]
k ∗ b

[n]
l − b

[n]
k ∗ b

[n]
l = δk+l,0

k

qk − 1
.



Hcl[2] Hcl[1] Hcl[0] Hcl[−1] Hcl[−2]

Heis[2] Heis[0] Heis[−2]

Heis[3] Heis[1] Heis[−1]

Figure 1 Infinite family of Heisenberg subalgebras in DHcl



2 Outline of our geometric construction

D: a locally finite dg-category over Fq

Theorem (Toën-Vaquié (2009)). We have the moduli stack P(D) of perfect

dg-modules over Dop.

It is a derived stack, locally geometric and locally of finite type.

We can also construct the moduli stack of cofibrations X → Y of perfect-modules

over Dop, denoted by G(D).

There exist morphisms
s, c, t : G(D) −→ P(D)

of derived stacks which send u : X → Y to

s(u) = X, c(u) = Y, t(u) = Y
X∐

0.

where s, t are smooth and c is proper.



The diagram of geometric correspondence

Thus we have the diagram

G(D)
c //

p

��

P(D)

P(D)× P(D)

of derived stacks with smooth p := s× t and proper c.

Next let Λ := Qℓ where ` and q are assumed to be coprime.

We have the derived category Db
c(X,Λ) of constructible lisse-étale Λ-sheaves over a

locally geometric derived stack X, and Grothedieck’s six operations.

Applying the general theory to the present situation, we have

Db
c(G(D),Λ)

c! // Db
c(P(D),Λ)

Db
c(P(D)× P(D),Λ)

p∗

OO



Main Theorem

Db
c(G(D),Λ)

c! // Db
c(P(D),Λ)

Db
c(P(D)× P(D),Λ)

p∗

OO

Now we set

µ : Db
c(P(D)× P(D),Λ) −→ Db

c(P(D),Λ), M 7−→ c!p
∗(M)[dim p]

Theorem 1. µ is associative.



3 Derived stacks
3.1 Derived schemes and derived stacks

Notations on ∞-categories:

• Λn
j ⊂ ∆n denotes the j-th horn of the n-simplex ∆n (0 ≤ j ≤ n).

• An ∞-category is a simplicial set K such that for any n ∈ N and any 0 < i < n,

any map f0 : Λn
i → K of simplicial sets admits an extension f : ∆n → K.

Notations on commutative simplicial algebras:

• k: a commutative ring.

• sCom: the category of commutative simplicial k-algebra.

• sCom∞: the ∞-category obtained by localizing sCom via the set of weak

equivalences in the Kan model category sCom ⊂ sSet.

Definition. We call dAff∞ := (sCom∞)op the ∞-category of affine derived schemes.



Turn to the definition of derived stacks.

Definition. A morphism A→ B in sCom∞ is called étale [smooth] if

• the induced π0(A)→ π0(B) is an étale [smooth] map of commutative k-algebras,

• the induced πi(A)⊗π0(A) π0(B)→ πi(B) is an isomorphism for any i.

Étale morphisms endow dAff∞ = (sCom∞)op with a Grothendieck topology et.

(I will explain Grothendieck topologies on ∞-categories in the next page.)

Definition. The ∞-category of derived stacks is defined to be

dSt∞ := Sh∞,et(dAff∞) ⊂ PSh∞(dAff∞) := Fun∞((dAff∞)op, S).

S: the ∞-category of spaces. (See [Lurie, HTT] for the detail.)

• Kan ⊂ sSet: the full subcategory of Kan complexes, which is a simplicial category.

• Nsp( ): simplicial nerve construction,

a functor mapping a simplicial category to a simplicial set.

• S := Nsp(Kan).

• The homotopy category of the ∞-category S is equivalent to

H := Ho sSet, the homotopy category of spaces (Quillen equivalence).



Grothendieck topology on an ∞-category [Lurie, HTT, §6.2.2], [Toën-Vezzosi 1].

Definition. 1. A sieve on an ∞-category C is a full sub-∞-category C(0) ⊂ C

s.t. X ∈ C(0) holds for any Y ∈ C(0) and any morphism f : X → Y in C.

2. A sieve on X ∈ C is a sieve on the over-∞-category C/X .

• For a functor F : C → D of ∞-categories and a sieve D(0) ⊂ D,

the homotopy fiber product gives a sieve F−1D(0) := D(0) ×D C ⊂ C on C.

• For a morphism f : X → Y in C and a sieve C
(0)

/Y on Y ,

we have a sieve f∗C
(0)

/Y := (f∗)
−1C

(0)

/Y on X.

(f∗ : C/X → C/Y : the natural functor of over-∞-categories.)

Definition. A Grothendieck topology τ on an ∞-category C is a choice of a collection

Cov(X) of sieves on each X ∈ C (covering sieves on X) s.t.

• For any X ∈ C, C/X ∈ Cov(X).

• For any f : X → Y in C and any C
(0)

/Y ∈ Cov(Y ), f∗C
(0)

/Y ∈ Cov(X).

• For Y ∈ C and C
(0)

/Y ∈ Cov(Y ), if C
(1)

/Y is a sieve on Y s.t. f∗C
(1)

/Y ∈ Cov(X) holds for any

(f : X → Y ) ∈ C
(0)

/Y , then C
(1)

/Y ∈ Cov(Y ).

If C is a nerve of a category C, then a Grothendieck topology on C is equiv. to that on C.



Back to the definition of derived stacks:

dSt∞ := Sh∞,et(dAff∞) ⊂ PSh∞(dAff∞) := Fun∞((dAff∞)op, S),

where Sh∞,et(dAff∞) denotes the ∞-category of sheaves with respect to the

Grothendieck topology et.

A derived stack corresponds to a stack in the ordinary algebraic geometry.

In the next subsection, I introduce geometric derived stacks in the sense of

Toën-Vezzosi, which corresponds to an algebraic/Artin stack.

Remark. I use the terminology “geometric derived stacks” following

[Toën-Vezzosi, Homotopical Algebraic Geometry II, Mem. AMS, 2008].

It is equivalent to “derived Artin stacks” in

[Toën, Derived algebraic geometry, EMS Surv. Math. Sci., 2014].



3.2 Geometric derived stacks

For n ∈ Z≥−1, one defines an n-geometric derived stack inductively on n.

At the same time one also defines an n-atlas, a n-representable morphism and a

n-smooth morphism of derived stacks.

• Let n = −1.
1. A (−1)-geometric derived stack is defined to be an affine derived scheme.

2. A morphism f : X→ Y of derived stacks is called (−1)-representable
if for any affine derived scheme U and any morphism U → Y of derived stacks,

the pullback X×Y U is an affine derived scheme.

3. A morphism f : X→ Y of derived stacks is called (−1)-smooth

if it is (−1)-representable, and if for any affine derived scheme U and any

morphism U → Y of derived stacks, the induced morphism X×Y U → U is a

smooth morphism of affine derived schemes.

4. A (−1)-atlas of a stack X is defined to be the one-member family {X}.

Recall: A morphism A → B in sCom∞ is called étale [smooth] if

• the induced π0(A) → π0(B) is an étale [smooth] map of commutative k-algebras,

• the induced πi(A)⊗π0(A) π0(B) → πi(B) is an isomorphism for any i.



• Let n ∈ N.
1. Let X be a derived stack. An n-atlas of X is a small family {Ui → X}i∈I of

morphisms of derived stacks satisfying the following three conditions.

– Each Ui is an affine derived scheme.

– Each morphism Ui → X is (n− 1)-smooth.

– The morphism
∐

i∈I Ui → X is an epimorphism.

2. A derived stack X is called n-geometric if the following two conditions are

satisfied.

– The diagonal morphism X→ X× X is (n− 1)-representable.

– There exists an n-atlas of X.

3. A morphism f : X→ Y of derived stacks is called n-representable if for any affine

derived scheme U and for any morphism U → Y of derived stacks, the derived

stack X×Y U is n-geometric.

4. A morphism f : X→ Y of derived stacks is called n-smooth if for any affine

derived scheme U and any morphism U → Y of derived stacks, there exists an

n-atlas {Ui}i∈I of X×Y U such that for each i ∈ I the composition

Ui → X×Y U → U is a smooth morphism of affine derived schemes.



To an algebraic stack X in the ordinary sense, one can attach a derived stack j(X)

functorially.

Fact (Toën-Vezzossi (2008)). For an algebraic stack X, the derived stack j(X) is

1-geometric.

Remark. To schemes and algebraic spaces X, we can also attach derived stacks j(X).

For affine schemes X, the derived stack j(X) is (−1)-geometric.

For schemes and algebraic spaces X, the derived stacks j(X) are 1-geometric.



4 Moduli spaces of complexes

In this section we review the theory of moduli stacks of modules over dg-categories via

derived stacks [Toen-Vaquié].

4.1 Moduli functor of perfect objects

• A ∈ sCom: a commutative simplicial k-algebra.

• N(A) the normalized chain complex with the structure of a comm. k-dg-algebra.

• Regarding N(A) as a dg-category, we have the dg-category of N(A)-dg-modules:

M(A) := M(N(A))

• The full sub-dg-category of cofibrant and perfect objects in M(A):

P(A) := P(N(A)) ⊂ M(A).

Definition. For a dg-category D over k and A ∈ sCom, we set

MD(A) := MapdgCat(D
op,P(A)),

where MapdgCat denotes the mapping space in the model category dgCat of

dg-categories, which is regarded as a simplicial set.



MD(A) := MapdgCat(D
op,P(A)),

Here the model structure is the one introduced by [Tabuada, 2005]:

A dg-functor f : D → D′ is

• a weak equivalence if f is a quasi-isomorphism, and

• a fibration if

(i) for any M,N ∈ D, the morphism fMN : HomD(M,N) → HomD′(f(M), f(N)) is an

epimorphism of k-dg-modules, and

(ii) for any M ∈ D and any isomorphism v : N → f(M) in H0(D′), there is an isomorphism

u : M → M ′ in H0(D) such that H0(fM,N )(u) = v.

For a morphism A→ B in sCom, we obtain a morphism MD(A)→MD(B) in sSet by

composition with N(B)⊗N(A) − : P(A)→ P(B). Thus we obtain a functor

MD : sCom −→ sSet, MD(A) := MapdgCat(D
op,P(A)).



This construction gives rise to a functor of ∞-categories

MD ∈ PSh∞(dAff∞) = Fun∞((dAff∞)op, S).

Fact ([Toën-Vaquié, Lemma 3.1]). The presheaf MD ∈ PSh∞(dAff∞) is a derived

stack over k. We call it the moduli stack of perfect Dop-dg-modules

Remark. • The 0-th homotopy π0(MD(k)) is bijective to the set of isomorphism classes of

perfect D-dg-modules in Ho(M(D)).

• For each x ∈ Ho(M(D)), we have

π1(MD, x) ≃ AutHo(M(D))(x, x), πi(MD, x) ≃ Ext−i
Ho(M(D))(x, x) (i ∈ Z≥2),

where Ho(M(D)) is regarded as a triangulated category.

To be continued.


