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§0 Introduction

(1) (Derived) deformation theory
In classical algebraic geometry (:= scheme theory),
moduli problems of algebro-geometric objects are formulated
s.t. the tangent space of moduli space 𝑴 at an object 𝑬
describes 1st order deformations of 𝑬:

𝑻𝑬𝑴 ≃ {1st order deformations of 𝑬}.

The tangent space has a structure of Lie algebra, so we may
restate:

A Lie algebra controls 𝟏-st order deformation theory.

In derived algebraic geometry, a higher-order completion of the
statement above is known as the Deligne-Drinfeld-B.Feigin-...
principle:

A dg Lie algebra controls derived deformation theory.
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§0 Introduction

(2) Chiral algebras
The theory of vertex algebras give an algebraic formulation of
chiral two-dimensional conformal field theories.
Beilinson and Drinfeld introduced a geometric reformulation of
vertex algebras, which is called the theory of chiral algebras.
Chiral algebras are defined to be “Lie objects" in the category of
D-modules on Ran spaces.

(3) Question
Now let me consider the following question:

What do chiral algebras control?

or
Is there any good notion of chiral deformation theory
controlled by chiral algebras?
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§1.1 Classical deformation theory

In classical algebraic geometry, moduli problems are formulated as
functors of certain type which are represented by schemes or stacks.

Example (Moduli problem of line bundles and Picard variety)
𝑿: a scheme over a field 𝒌 [algebraic variety over ℂ].
𝗦𝗰𝗵: the category of schemes over 𝒌.
𝗦𝗲𝘁: the category of sets.
𝕻𝐢𝐜𝑿 ∶ (𝗦𝗰𝗵)op → 𝗦𝗲𝘁: the Picard functor

𝕻𝐢𝐜𝑿(𝑺) = { ∣ line bundle over 𝑿 × 𝑺, flat over 𝑺}.

It is represented by the Picard scheme 𝐏𝐢𝐜𝑿 of 𝑿:

𝕻𝐢𝐜𝑿(−) ≃ 𝐇𝐨𝐦𝗦𝗰𝗵(−,𝐏𝐢𝐜𝑿).

Thus 𝐏𝐢𝐜𝑿 is the moduli space of line bundles on 𝑿.
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I focus on infinitesimal study of moduli problem, i.e., deformation
theory.
Replace 𝗦𝗰𝗵 in 𝕱 ∶ (𝗦𝗰𝗵)op → 𝗦𝗲𝘁 by the category of “infinitesimally
small affine schemes", i.e., the (opposite) category of artinian rings.

𝗖𝗼𝗺: category of commutative rings
𝗖𝗼𝗺op is equiv. to cat. of affine schemes via 𝑹 ↔ 𝐒𝐩𝐞𝐜𝑹
𝗔𝗿𝘁 ⊂ 𝗖𝗼𝗺: full subcat. of local artinian 𝒌-alg. with res. field 𝒌
[e.g. 𝑰𝒏 ∶= ℂ[𝜺]∕(𝜺𝒏+𝟏) for 𝒌 = ℂ]

A prorepresentable functor is a functor 𝕱 ∶ 𝗔𝗿𝘁 → 𝗦𝗲𝘁 such that
(i) 𝕱(𝒌) is a one-point set.
(ii) ∃ complete local 𝒌-algebra 𝑹 s.t. 𝕱 ≃ 𝐇𝐨𝐦𝗖𝗼𝗺(𝑹,−).

The algebra 𝑹 can be regarded as a formal neighborhood of
the moduli space corresponding to 𝕱 at the point
corresponding to 𝕱(𝒌).
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Example (The case of Picard variety)
Fix a line bundle 𝟎 on 𝑿.
Consider the following “infinitesimal" Picard functor:

𝕻𝐢𝐜𝑿,𝟎
∶ 𝗔𝗿𝘁 ⟶ 𝗦𝗲𝘁,

𝑨 ⟼
{
 ||| line bundle on 𝑿 × 𝐒𝐩𝐞𝐜𝑨,

flat over 𝐒𝐩𝐞𝐜𝑨, |𝑿×{𝟎} ≃ 𝟎

}
.

Then 𝕻𝐢𝐜𝑿,𝟎
= {𝟎}, 𝕻𝐢𝐜𝑿,𝟎

is a prorepresentable functor, and

𝕻𝐢𝐜𝑿,𝟎
(𝑰𝟏) = 𝕻𝐢𝐜𝑿,𝟎

(𝒌[𝜺]∕(𝜺𝟐)) ≃ {1st order deformations of 𝟎}
≃ 𝐄𝐱𝐭𝟏𝑿

(𝟎,𝟎)
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A small extension is a surjection 𝒇 ∶ 𝑩 ↠ 𝑨 in 𝗔𝗿𝘁 such that
𝑱 ∶= 𝐊𝐞𝐫 𝒇 satisfies 𝑱 𝟐 = 𝟎 in 𝑩 and 𝑱 ≃ 𝒌.
[e.g. 𝑰𝟏 = ℂ[𝜺]∕(𝜺𝟐) ↠ 𝑰𝟎 = ℂ]
For a functor 𝕱 ∶ 𝗔𝗿𝘁 → 𝗦𝗲𝘁 and a cartesian diagram

𝑩 ×𝑨 𝑪 //

��

𝑪
��

𝑩 // 𝑨

in 𝗔𝗿𝘁, we have a map 𝜶 ∶ 𝕱(𝑩 ×𝑨 𝑪) ⟶ 𝕱(𝑩) ×𝕱(𝑨) 𝕱(𝑪).

Proposition/Definition (Schlessinger, 1968)
A prorepres. functor 𝕱 ∶ 𝗔𝗿𝘁 → 𝗦𝗲𝘁 is a formal moduli functor, i.e.
(1) 𝕱(𝒌) is a one-point set.
(2) 𝜶 is surjective if 𝑩 → 𝑨 is a small extension.
(3) 𝜶 is an isomorphism if 𝑨 = 𝒌.
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§1.2. Quick intro. to derived algebraic geometry

Let me explain why classical algebraic geometry is not satisfactory
and why I need to work in derived algebraic geometry.

Most of interesting moduli problems are NOT representable by
schemes. Some of them are repr. by stacks, but not all of them.
By the recent progress of derived algebraic geometry, we have
the notion of derived stacks, although there are several versions
([Toën-Vezzosi], [Lurie], ...).
Derived stacks represent many moduli problems which cannot
be treated in classical algebraic geometry.
The relation between deformation theory and dg Lie algebras
cannot be stated in the classical algebraic geometry.
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Derived algebraic geometry is built using the theory of ∞-categories.
Very roughly speaking, one replaces "sets" in the ordinary category
theory by "simplicial sets" or "topological spaces".

𝘀𝗦𝗲𝘁: cat. of simplicial sets and simpl. maps with Kan model str.
Each simplicial set 𝑲 has homotopy groups 𝝅𝒏𝑲.
Quillen adjunction between model categories|−| ∶ 𝘀𝗦𝗲𝘁 ⇆ (compactly generated Hausdorff spaces) ∶ 𝐒𝐢𝐧𝐠

Definition
An ∞-category is a simplicial set K s.t. ∀ 𝒏 ∈ ℕ, ∀ 𝟎 < 𝒊 < 𝒏, any
simplicial map 𝒇𝟎 ∶ 𝚲𝒏

𝒊 → 𝑲 admits an extension 𝒇 ∶ 𝚫𝒏 → 𝑲.
𝚲𝒏
𝒋 ⊂ 𝚫𝒏: the 𝒋-th horn of the 𝒏-simplex 𝚫𝒏 (𝟎 ≤ 𝒋 ≤ 𝒏).
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An ∞-category is defined to be a nice simplicial set.
Relation to the ordinary category theory:

A vertex of an ∞-category 𝑲 is called an object of 𝑲,
An edge of an ∞-category 𝑲 is called a morphism of 𝑲.
𝐍(𝗖): nerve of a category 𝗖, an ∞-category obtained canonically.

objects [morphisms] of 𝐍(𝗖) = objects [morphisms] of 𝗖
Difference from the ordinary category theory:

For objects 𝑽 ,𝑾 of an ∞-category 𝑲, ∃ the mapping space
𝐌𝐚𝐩𝑲 (𝑽 ,𝑾 ) s.t. 𝝅𝟎𝐌𝐚𝐩𝑲 (𝑽 ,𝑾 ) = {morphisms 𝑽 → 𝑾 }.

Functors between ∞-categories
A functor 𝑲 → 𝑳 of ∞-cat. is defined to be a simplicial map.
𝗙𝘂𝗻∞(𝑲,𝑳): the ∞-category of functors 𝑲 → 𝑳 of ∞-categories.
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Definition of affine derived scheme:
Recall that the category of affine schemes is equivalent to (𝗖𝗼𝗺)op.

𝘀𝗖𝗼𝗺: cat. of simplicial comm. alg. over the base field 𝒌.
𝗖𝗼𝗺∞: ∞-category obtained by localizing 𝘀𝗖𝗼𝗺 by the set of

weak equivalences in 𝘀𝗖𝗼𝗺 ⊂ 𝘀𝗦𝗲𝘁.
An object 𝑨 ∈ 𝗖𝗼𝗺∞ is a simplicial commutative algebra
depicted as 𝑨 = (⋯𝑨𝟐 ⇶ 𝑨𝟏 ⇉ 𝑨𝟎).
𝝅𝟎(𝑨) is a com. ring and 𝝅𝒏(𝑨) is a 𝝅𝟎(𝑨)-module.

Definition
𝗱𝗔𝗳𝗳∞ ∶= (𝗖𝗼𝗺∞)op: the ∞-category of affine derived schemes.
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A rough explanation of derived schemes:

𝗖𝗼𝗺∞(𝑿): ∞-category of sheaves on a topological space 𝑿
with coefficients in 𝗖𝗼𝗺∞.

𝗱𝗥𝗴𝗦𝗽∞: ∞-cat. of derived ringed spaces whose object is a pair
(𝑿,𝑿) of a topological space 𝑿 and 𝑿 ∈ 𝗖𝗼𝗺∞(𝑿).

𝗱𝗦𝗰𝗵∞ ⊂ 𝗱𝗥𝗴𝗦𝗽∞: ∞-subcat. of derived schemes (𝑿,𝑿) s.t.
the truncation (𝑿,𝝅𝟎(𝑿)) is a scheme,
𝝅𝒏(𝑿) is a quasi-coherent sheaf of 𝝅𝟎(𝑿)-modules ∀𝒏 ∈ ℕ.
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Turn to the definition of derived stacks.

Definition (Toën-Vezzosi)
𝝉: (good) Grothendieck topology on 𝗱𝗔𝗳𝗳∞
∞-category of derived stacks:

𝗱𝗦𝘁∞ ∶= 𝗦𝗵∞,𝝉 (𝗱𝗔𝗳𝗳∞)∧ ⊂ 𝗙𝘂𝗻∞((𝗱𝗔𝗳𝗳∞)op, 𝗦𝗽𝗮𝗰𝗲∞).

∙ 𝗦𝗽𝗮𝗰𝗲∞: ∞-category of spaces

Example of derived stacks (𝝉 ∶= étale topology):
Moduli space of complexes of sheaves on a fixed scheme 𝑿
Moduli space of local systems on a fixed scheme 𝑿
Moduli space of maps 𝑿 → 𝒀 between fixed schemes 𝑿, 𝒀
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§1.3. Derived deformation theory

Let me explain the deformation theory in derived algebraic
geometry following Lurie’s work [DGA-X].

It goes back to the deformation theory using dg-schemes due to
Drinfeld, Kapranov, Kontsevich and others.

Recall that classical deformation theory is formulated via Artin
rings and their small extensions.
Now introduce its derived analogue.
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Definition (Derived analogue of local Artin algebra)
𝒇 ∶ 𝑩 → 𝑨: a morphism in 𝗖𝗼𝗺∞

𝒇 is called elementary if ∃𝒏 ∈ ℤ>𝟎 and a pullback diagram

𝑩 𝒇 //

��

𝑨
��

𝒌 // 𝒌 ⊕ 𝒌[𝒏]

𝒇 is called small if it is a composition of elementary morphisms.
An object 𝑨 ∈ 𝗖𝗼𝗺∞ is called small if 𝑨 → 𝒌 is small.
𝗖𝗼𝗺sm

∞ ⊂ 𝗖𝗼𝗺∞: full subcategory spanned by small objects.

Example
The small extension 𝑰𝟏 = ℂ[𝒕]∕(𝒕𝟐) ↠ 𝑰𝟎 = ℂ in 𝗖𝗼𝗺
corresponds to ℂ → ℂ⊕ ℂ[𝟎] in 𝗖𝗼𝗺∞.
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Definition
A derived deformation functor is a functor
𝑫 ∶ 𝗖𝗼𝗺sm

∞ → 𝗦𝗽𝗮𝗰𝗲∞ of ∞-categories such that
(i) The space 𝑫(𝒌) is contractible.
(ii) If we have a pullback diagram in 𝗖𝗼𝗺∞ with 𝒇 small

𝑩′ //

��

𝑨′

��
𝑩

𝒇 // 𝑨

then its image under 𝑫 is a pullback diagram in 𝗦𝗽𝗮𝗰𝗲∞.

𝗗𝗲𝗳der
∞ : the ∞-category of derived deformation functors.

Proposition
A functor (𝗱𝗦𝘁∞)op → 𝗦𝗽𝗮𝗰𝗲∞ represented by a (geometric) derived
stack 𝑿 gives rise to a derived deformation functor.
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§1.4. Dg Lie algebras

Recall the notion of a dg Lie algebra.
It is a chain complex (𝖌∗, 𝒅) of linear spaces together with a
graded Lie bracket [ , ] such that 𝒅 is a derivation.

Recall the notion of Chevalley-Eilenberg complex.
𝑪∗(𝖌∗): homological Chevalley-Eilenberg complex of 𝖌∗.

It is a dg associative algebra.
As a graded vector space 𝑪𝒏(𝖌∗) ≃ 𝐒𝐲𝐦𝒏(𝖌∗[−𝟏]).

𝑪∗(𝖌∗) ∶= 𝐇𝐨𝐦𝒌(𝑪∗(𝖌∗), 𝒌): cohom. Chevalley-Eilenberg cpx.
It is a dg commutative algebra (with the cup product).
It is an augmented algebra, i.e., having a dg morphism
𝑪∗(𝖌∗) → 𝒌.
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The cohomological Chevalley-Eilenberg complex gives rise to a dg
functor

𝑪∗ ∶ 𝗟𝗶𝗲dg ⟶ (𝗖𝗼𝗺aug
dg

)op.

Enhanced to ∞-categories, we have an adjunction

𝑪∗ ∶ 𝗟𝗶𝗲∞ ⇆ (𝗖𝗼𝗺aug
∞ )op ∶ 𝑲.

Restricting to certain ∞-subcategories,
we have an equivalence called Koszul duality.
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§1.5. Deformation theory and dg Lie algebras

Theorem (Deligne-Drinfeld-Feigin-... principle [Lurie, 2011])
Assume 𝐜𝐡𝐚𝐫 𝒌 = 𝟎.
(1) For each 𝖌∗ ∈ 𝗟𝗶𝗲∞ the composition

𝗖𝗼𝗺∞
𝑲op

←←←←←←←←←←←←←←←←←←→ (𝗟𝗶𝗲∞)op 𝒋(𝖌∗)
←←←←←←←←←←←←←←←←←←←←←→ 𝗦𝗽𝗮𝗰𝗲∞

is a derived deformation functor.
𝑲op ∶ 𝗖𝗼𝗺aug

∞ ⇆ (𝗟𝗶𝗲∞)op ∶ (𝑪∗)op: opposite of Koszul duality.
𝒋 ∶ 𝗟𝗶𝗲∞ → 𝗙𝘂𝗻∞((𝗟𝗶𝗲∞)op, 𝗦𝗽𝗮𝗰𝗲∞): ∞-cat. Yoneda emb.

(2) Moreover, the resulting functor

𝚿 ∶ 𝗟𝗶𝗲∞ ⟶ 𝗗𝗲𝗳der
∞ , 𝖌∗ ⟼ 𝒋(𝖌∗)◦𝑲op

is an equivalence.
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Examples of 𝚿 ∶ 𝗟𝗶𝗲∞
∼
←←←←←←←←→ 𝗗𝗲𝗳der

∞

𝑿: scheme, 𝟎: line bundle on 𝑿,
𝖌𝟎

∶= ∧∗ 𝐄𝐱𝐭𝟏𝑿
(𝟎,𝟎) with trivial Lie bracket.

𝚿(𝖌𝟎
) = inifinitesimal Picard functor 𝕻𝐢𝐜𝑿,𝟎

.

𝑿: complex manifold,
𝖌𝑿 ∶= 𝑻𝑿[−𝟏]⊗𝑿

𝛀∗
𝑿 with some dg Lie algebra str.

𝚿(𝖌𝑿) = deformation functor of complex structures of 𝑿.
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§2. Chiral algebras

Introduction

1 Derived deformation theory and dg Lie algebras

2 Chiral algebras
The definition
Chiral Koszul duality

3 Chiral deformation theory
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§2.1. The definition of chiral algebras

𝑿: smooth scheme over 𝒌 [complex manifold].
𝗗∞(𝑿): stable ∞-category of 𝑫-modules over 𝑿.
(∞-cat. counterpart of derived category of 𝑫-modules)
𝒇 ! ∶ 𝗗∞(𝒀 ) → 𝗗∞(𝑿): pullback of 𝑫-modules for 𝒇 ∶ 𝑿 → 𝒀 .

𝗦𝗲𝘁fin: category of finite sets.
For 𝝅 ∶ 𝑰 ↠ 𝑱 in 𝗦𝗲𝘁fin we set

𝚫(𝝅) ∶ 𝑿𝑱 ⟶ 𝑿𝑰 , (𝒙𝒋) ⟼ (𝒚𝒊), 𝒚𝒊 ∶= 𝒙𝒋 for 𝝅(𝒊) = 𝒋.

𝚫(𝝅)! ∶ 𝗗∞(𝑿𝑰 ) → 𝗗∞(𝑿𝑱 ): corresponding pullback.
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𝗗∞(𝐑𝐚𝐧𝑿): ∞-cat. of 𝑫-modules on Ran space of 𝑿,
the colimit of 𝗗∞(𝑿𝑰 ) over morphisms in 𝗦𝗲𝘁fin.

Its object is a collection  = {𝑰 ∈ 𝗗∞(𝑿𝑰 )}𝑰∈𝗦𝗲𝘁fin together
with equivalences 𝚫(𝝅)!(𝑰 ) ≃ 𝑱 ∀𝝅 ∶ 𝑰 ↠ 𝑱 .

(𝚫main)∗ ∶ 𝗗∞(𝑿) → 𝗗∞(𝐑𝐚𝐧𝑿).

The chiral tensor product ⊗ch on 𝗗∞(𝐑𝐚𝐧𝑿):
for  = {𝑰}𝑰 and  = {𝑰}𝑰 ,

⊗ch  ∶= {(⊗ch  )𝑰}𝑰 , (⊗ch  )𝑰 ∶= ⊕𝑰=𝑱⊔𝑲𝑱 ⊗𝑲 .
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Definition
𝗟𝗶𝗲ch∞ (𝐑𝐚𝐧𝑿): ∞-cat. of simplicial Lie algebras in 𝗗∞(𝐑𝐚𝐧𝑿)
𝗟𝗶𝗲ch∞ (𝑿) ⊂ 𝗟𝗶𝗲ch∞ (𝐑𝐚𝐧𝑿): ∞-subcategory spanned by objects in
the image of (𝚫main)∗ ∶ 𝗗∞(𝑿) → 𝗗∞(𝐑𝐚𝐧𝑿).
Its object is called a chiral (Lie) algebra on 𝑿.

Theorem (Beilinson-Drinfeld (late 1990s))
𝑿 = 𝚺: smooth curve over ℂ [Riemann surface]
A VOA 𝑽 gives rise to a chiral algebra 𝑽 on 𝚺 .
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Construction of a chiral algebra from a VOA:
(𝑽 , 𝒀 ): VOA w. state-field corresp. 𝒀 (−, 𝒛) ∶ 𝑽 → 𝐄𝐧𝐝(𝑽 )[[𝒛±𝟏]]
Virasoro element in 𝑽 ⇝ action of 𝐀𝐮𝐭 ℂ[[𝒛]] on 𝑽 .
𝒖𝒕𝚺: the principal 𝐀𝐮𝐭 ℂ[[𝒛]]-bundle on 𝚺 with the stalk𝒖𝒕𝚺,𝒙 ≃ 𝐀𝐮𝐭𝚺,𝒙 ≃ 𝐀𝐮𝐭 ℂ[[𝒛]]
 ∶= 𝒖𝒕𝚺 ×𝐀𝐮𝐭 ℂ[[𝒛]] 𝑽 with the left 𝑫-module str.
corresponding to 𝛁 ∶  →  ⊗𝛀𝚺, 𝛁𝝏𝒛 ∶= 𝝏𝒛 +𝑳−𝟏

Define 𝝁 ∶  ⊗ch  →  by

𝝁(𝒇 (𝒛,𝒘)𝑨⊗𝑩) ∶= 𝒇 (𝒛,𝒘)𝒀 (𝑨, 𝒛−𝒘)𝑩 mod 𝑽 [[𝒛,𝒘]].

( , 𝝁) gives rise to a chiral algebra with chiral Lie bracket 𝝁.
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§2.2. Chiral Koszul duality

Theorem ([Francis-Gaitsgory, 2011])

The functor 𝑪ch of taking chiral Chevalley-Eilenberg cpx. gives

𝑪ch ∶ 𝗟𝗶𝗲ch∞ (𝐑𝐚𝐧𝑿)
∼
←←←←←←←←←←→

(
𝗖𝗼𝗺ch

∞ (𝐑𝐚𝐧𝑿)
)op.

Restricting to 𝗟𝗶𝗲ch∞ (𝑿) of chiral algebras, we have an equivalence

𝑪ch ∶ 𝗟𝗶𝗲ch∞ (𝑿)
∼
←←←←←←←←←←→

(
𝗙𝗮𝗰𝘁∞(𝑿)

)op.

𝗙𝗮𝗰𝘁∞(𝑿) ⊂ 𝗖𝗼𝗺ch
∞ (𝐑𝐚𝐧𝑿): ∞-subcat. of factorization algebras, i.e.,

those objects  s.t. for any decomposition 𝑰 = 𝑱 ⊔ 𝑲 in 𝗦𝗲𝘁fin

the algebra structure map 𝑱 ⊗ch 𝑲 → 𝑰 is an equivalence.
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§3. Chiral deformation theory

Introduction

1 Derived deformation theory and dg Lie algebras

2 Chiral algebras

3 Chiral deformation theory
The definition
Main theorem
Examples
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§3.1. The definition of chiral deformation theory

Summary of the key points so far.
Deligne-Drinfeld-Feigin-... principle:

𝚿 ∶ 𝗟𝗶𝗲∞
∼
←←←←←←←←←←→ 𝗗𝗲𝗳der

∞ , 𝖌∗ ⟼ 𝒋(𝖌∗)◦𝑲op

with 𝗗𝗲𝗳der
∞ ⊂ 𝗙𝘂𝗻∞(𝗖𝗼𝗺sm

∞ , 𝗦𝗲𝘁) derived deformation functors
and 𝑲 the Koszul duality in

𝑪∗ ∶ 𝗟𝗶𝗲∞ ⇆ (𝗖𝗼𝗺aug
∞ )op ∶ 𝑲

Chiral Koszul duality

𝑪ch ∶ 𝗟𝗶𝗲ch∞ (𝑿) ⇆ (𝗙𝗮𝗰𝘁∞(𝑿))op ∶ 𝑲ch

Now I want to make a chiral analogue of 𝗗𝗲𝗳der
∞ and 𝚿.
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First we need “chiral moduli theory".

Definition (slight generalization of [Kapranov-Vasserot, ’04])
𝑿: a scheme over 𝒌.
A factorization space 𝑭 = {𝑭𝑰}𝑰∈𝗦𝗲𝘁fin is a family of derived stacks
over 𝑿𝑰 together with isomorphisms

𝚫(𝝅)∗𝑭𝑰
∼
←←←←←←←→ 𝑭𝑱 , 𝒖(𝝅)∗

(∏
𝒋∈𝑱𝑭𝝅−𝟏(𝒋)

) ∼
←←←←←←←→ 𝒖(𝝅)∗𝑭𝑰

for 𝝅 ∶ 𝑰 ↠ 𝑱 .
𝚫(𝝅) ∶ 𝑿𝑱 ↪ 𝑿𝑰 , (𝒙𝒋) ↦ (𝒚𝒊), 𝒚𝒊 ∶= 𝒙𝒋 for 𝒊 ∈ 𝝅−𝟏(𝒋).
𝒖(𝝅) ∶ {(𝒙𝒊) ∈ 𝑿𝑰 ∣ 𝒙𝒊 ≠ 𝒙𝒊′ if 𝝅(𝒊) ≠ 𝝅(𝒊′)} ↪ 𝑿𝑰 .
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Proposition/Definition (Chiral analogue of Schlessinger)
Restriction of a factorization space 𝑭 to (𝗖𝗼𝗺sm

∞ )op ⊂ 𝗱𝗔𝗳𝗳∞ gives
rise to a chiral deformation functor, i.e., a functor

𝑫 ∶ 𝗙𝗮𝗰𝘁sm∞ (𝑿) ⟶ 𝗦𝗽𝗮𝗰𝗲∞

of ∞-categories such that
(i) The space 𝑫(𝒌) is contractible.
(ii) If we have a pullback diagram in 𝗙𝗮𝗰𝘁sm∞ (𝑿) with 𝒇 small

𝑩′ //

��

𝑩
𝒇��

𝑨′ // 𝑨

then its image under 𝑫 is a pullback diagram in 𝗦𝗽𝗮𝗰𝗲∞.
𝗗𝗲𝗳ch∞ (𝑿): the ∞-category of chiral deformation functors.
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Definition
𝑿: a smooth variety over 𝒌.
𝒇 ∶  → : a morphism in 𝗙𝗮𝗰𝘁∞(𝑿) ⊂ 𝗖𝗼𝗺ch

∞ (𝐑𝐚𝐧𝑿).
𝒇 is called elementary if ∃𝒏 ∈ ℤ>𝟎 and a pullback diagram

 𝒇 //

��


��

𝒌 // 𝒌 ⊕ 𝒌[𝒏]

𝒇 is called small if it is a composition of elementary morphisms.
An object  ∈ 𝗙𝗮𝗰𝘁∞(𝑿) is called small if  → 𝒌 is small.
𝗙𝗮𝗰𝘁sm∞ (𝑿) ⊂ 𝗙𝗮𝗰𝘁∞(𝑿): full subcat. spanned by small objects.
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§3.2. Main theorem

Theorem
(1) For each  ∈ 𝗟𝗶𝗲ch∞ (𝑿) the composition

𝕬 ∶ 𝗙𝗮𝗰𝘁∞(𝑿)
(𝑲ch)op

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ (𝗟𝗶𝗲ch∞ (𝑿))op 𝒋()
←←←←←←←←←←←←←←←←←←←←→ 𝗦𝗽𝗮𝗰𝗲∞

is a derived deformation functor.
𝑪ch ∶ 𝗟𝗶𝗲ch∞(𝑿) ⇆ (𝗙𝗮𝗰𝘁∞(𝑿))op ∶ 𝑲ch: chiral Koszul duality.
𝒋 ∶ 𝗟𝗶𝗲ch∞(𝑿) → 𝗙𝘂𝗻∞((𝗟𝗶𝗲ch∞(𝑿))op, 𝗦𝗽𝗮𝗰𝗲∞): Yoneda embedding.

(2) The resulting functor

𝚿ch ∶ 𝗟𝗶𝗲ch∞ (𝑿) ⟶ 𝗗𝗲𝗳ch∞ (𝑿),  ⟼ 𝕬

is an equivalence.
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§3.3. Examples of 𝚿ch ∶ 𝗟𝗶𝗲ch
∞(𝑿)

∼
←←←←←←←←←→ 𝗗𝗲𝗳ch∞(𝑿)

Example (Beilinson-Drinfeld Grassmannian and affine VOA)
𝚺: smooth curve, 𝑮: reductive algebraic group.
𝐆𝐫(𝚺, 𝑮) = {𝐆𝐫(𝚺, 𝑮)𝑰}𝑰∈𝗦𝗲𝘁fin: Beilinson-Drinfeld Grassmannian

𝐆𝐫(𝚺, 𝑮)𝑰 ∶=
⎧⎪⎨⎪⎩( , {𝒔𝒊}𝒊∈𝑰 , 𝝋)

|||||
 ∶ principal 𝑮-bundle on 𝚺,
𝒔𝒊 ∈ 𝚺,
𝝋 ∶ trivialization of  |𝚺⧵{𝒔𝒊}𝒊∈𝑰

⎫⎪⎬⎪⎭
𝐆𝐫(𝚺, 𝑮): factorization space ⇝ chiral deformation functor 𝕲𝐫(𝚺, 𝑮)

𝚿ch(𝕲𝐫(𝚺, 𝑮)) ≃ affine VOA 𝖌̂ with level 𝟎.

𝑮 = 𝐆𝐋(𝟏): 𝚿ch(𝕲𝐫(𝚺,𝐆𝐋(𝟏))) ≃ Heisenberg VOA.
∃ morphism 𝐆𝐫(𝚺,𝐆𝐋(𝟏))𝑰 → 𝐏𝐢𝐜(𝚺).
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Example (Moduli of stable curves and Virasoro VOA)
𝚺: smooth projective curve with genus ≥ 𝟐
𝑴(𝚺) = {𝑴(𝚺)𝑰}𝑰∈𝗦𝗲𝘁fin; factorization space of stable curves

𝑴(𝚺)𝑰 ∶=
⎧⎪⎨⎪⎩(𝚺

′, {𝒔′𝒊}𝒊∈𝑰 , {𝒔𝒊}𝒊∈𝑰 , 𝝋)
|||||
𝚺′ ∶ smooth projective curve,
𝒔′𝒊 ∈ 𝚺′, 𝒔𝒊 ∈ 𝚺,
𝝋 ∶ 𝚺 ⧵ {𝒔𝒊}

∼
←←←←←←←←←←→ 𝚺′ ⧵ {𝒔′𝒊}

⎫⎪⎬⎪⎭
𝑴(𝚺) ⇝ chiral deformation functor 𝕸(𝚺)

𝚿ch(𝕸(𝚺)) ≃ Virasoro VOA with 𝒄 = 𝟎, 𝒉 = 𝟎.
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Example (Moduli of maps from elliptic curves and CDO)
𝑬: elliptic curve, 𝑿: smooth variety.
𝑻 ∗𝐌𝐚𝐩(𝑬,𝑿) = {𝑴𝑰}𝑰 : cotangent factoriz. space of maps 𝑬 → 𝑿.

𝑴𝑰 ∶=
{

(𝒇, {𝒔𝒊}𝒊∈𝑰 , 𝝋)
||||| 𝒇 ∶ 𝑬 → 𝑿, 𝒔𝒊 ∈ 𝑬,
𝝋 ∶ trivialiation of 𝒇∗(𝑻 ∗𝑿)|𝑬⧵{𝒔𝒊}

}
𝑻 ∗𝐌𝐚𝐩(𝑬,𝑿) ⇝ chiral deformation functor 𝕿∗𝕸𝒂𝒑(𝑬,𝑿).

𝚿ch(𝕿∗𝕸𝒂𝒑(𝑬,𝑿)) ≃ sheaf of chiral differential operators on 𝑿.

Speculation
∃? Relation to elliptic genus of 𝑿...
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Summary

Introduced the notion of chiral deformation functor, typical
examples of which come from factorization spaces.
Established Deligne-Drinfeld-Feigin-...-type principle:

𝚿ch ∶ 𝗟𝗶𝗲ch∞ (𝑿)
∼
←←←←←←←←←←→ 𝗗𝗲𝗳ch∞ (𝑿).

Examples related to typical VOAs.
Beilinson-Drinfeld Grassmannian 𝐆𝐫(𝑿,𝑮) ⇝ affine VOA.
Moduli of stable curves 𝑴(𝚺) ⇝ Virasoro VOA.
Moduli of maps from elliptic curve 𝑻 ∗𝐌𝐚𝐩(𝑬,𝑿) ⇝ CDO of 𝑿.

Thank you
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