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§0 Introduction

The derived Hall algebra introduced by Toén (2006) is a version of
Ringel-Hall algebra. Roughly it is a “Hall algebra for complexes”.

In the case of ordinary Ringel-Hall algebra, we know Lusztig's geometric
formulation using the theory of equivariant derived categories on schemes.

| will explain a geometric formulation of derived Hall algebras using the
theory of derived categories of constructible sheaves on derived stacks.

Geometric derived Hall algebra

Introduction



ingel-Hall algebra and derived Hall algebra
© Ringel-Hall algeb d derived Hall algeb
@ Ringel-Hall algebra
@ Derived Hall algebra

Geometric derived Hall algebra Ringel-Hall algebra and derived Hall algebra



§1.1 Ringel-Hall algebra

A: an F-linear abelian category of finite global dimension
Qc(A): the linear space of Q-valued func. on Iso(A) w/ finite supports
Liag: the characteristic function of [M] € Iso(A)

Fact (Ringel)
Hall(A) := (Qc(A), %, 1)) is a unital associative Q-algebra, where

Ipg *Ivy == Y gl
[R]€lIso(A)

gf;LN = aﬁa&leﬁw, an = |Aut(M)]

eﬁ’N::|{0—>N—>R—>M—>O|exactinA}|
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Recall the following different definition of gﬁl’N:

ghn = |Sfnl, Sfiw={N'CRIN'=N, R/N=M}. |

Thus gl% \ counts the number of the inclusion pairs N C R.
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§1.2. Derived Hall algebra

Assume basic knowledge on the theory of model category J

C(F,): the model category of complexes of F,-modules
. a fibration is defined to be an epimorphism
a weak equivalence is defined to be a quasi-isomorphism
D: a dg-category over [,
M(D): the model dg-category of dg-modules over DP
: a dg-module means a C(IFy)-enriched functor D°* — C(F,).
: the model structure is induced by that of C(IF,)
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Assume basic knowledge on the simplicial homotopy theory J

Seta: the category of simplicial sets and simplicial maps
: having Kan model structure where a fibration is a Kan fibration and
a weak equivalence is a homotopy equivalence of geom. realizations
H: the homotopy category of the model category Seta

. called the homotopy category of spaces
The category M(D) is C(FF,)-enriched, so one can attach a simplicial set
Mapypy (X, Y) := N(Hompeqp) (X, Y)) € Seta

where N denotes the nerve construction.
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A dg-module X € M(D) is perfect if for any filtered system {Y;};cs in
M(D) the natural morphism

lim Mapyp) (X, Y;) — Mapyp) (X, lim Y;)
il il

is an isomorphism in H.

P(D): the sub-dg-cat. of M(D) of cofibrant and perfect objects
and of weak equivalences
G'(D) := Fun(A',M(D)) where T = A is the 1-simplex
: with the model structure induced levelwise by M(D)
G(D): the sub-dg-cat. of G'(D) of cofibrant and perfect objects
: considered as the category of cofibrations X — Y
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For an object u : X — Y in G(D),

G(D) —=—=P(D) (X =>Y)——Y
P(D) x P(D) (X,"Y/X")
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Define X (D), X (D) € H by
XO(D) := [Ngg(P(D))], XM(D) := [Ngg(G(D))],

where Nyg denotes the dg nerve construction and [-] : Seta — J.
Then we have the diagram of homotopy types

XW(D) —= X°(D)

sxti

X0 (D) x xO)(D)

If the dg-category D is locally finite, then c is proper and the homotopy
types X () (D) € H are locally finite.
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In the above Lemma we used

Definition

A dg-category D is called locally finite
if the chain complex Homp (z,y) is homologically bounded
with finite-dimensional homology groups for any z,y € D.

Definition

A homotopy type X € H is called locally finite
if for any « € X the group m;(X, z) is finite and there exists an n € N
such that 7;(X, ) is trivial for i > n.

H': the full subcategory of H spanned by locally finite objects
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For a morphism f: X — Y in 3, define f* : Q.(Y) — Q.(X) by
) (@) == a(f(z)) (@€ Q(Y), = €m(X)).
Also define a linear map fi : Q.(X) — Q.(Y) by

f@w:= Y a@- J[(ImE o) w0,

zemo(X), f(z)=y >0
Fact (Toén 2006)
Let D be a locally finite dg-category over F,. Then
Hall(D) = Q.(X (D))
has a structure of a unital associative Q-algebra with the multiplication
pi=cro(sxt)":Hall(D)®gq Hall(D) — Hall(D).

We call Hall(D) the derived Hall algebra of D.
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§2 Geometric derived Hall algebra

© Geometric derived Hall algebra
@ Outline of the construction
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§2.1. Outline of the construction

D: a locally finite dg-category over I,

Fact (Toén-Vaquié (2009))

We have the moduli stack P(D) of perfect dg-modules over D°P.
It is a derived stack, locally geometric and locally of finite type.

We can also construct the moduli stack of cofibrations X — Y of
perfect-modules over D°P, denoted by G(D).
There exist morphisms

s,¢,t: §(D) — P(D)
of derived stacks which send v : X = Y to
X
s(u) =X, clu)=Y, tu) = YHO.

where s,t are smooth and c is proper.
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Thus we have the diagram

(D) ———P(D)

!

P(D) x P(D)

of derived stacks with smooth p := s x t and proper c.

Next let A := Q, where £ and ¢ are assumed to be coprime.

We have the derived category D8(X, A) of constructible lisse-étale
A-sheaves over a locally geometric derived stack X.
We also have derived functors (§4).
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Applying the general theory to the present situation, we have

c

D¢(G(D), A) ——— D¢(¥P(D), A)

|

DY(P(D) x P(D), A)
Now we set

: DA(P(D) x P(D), A) — DL(P(D),A), M s cp*(M)[dimp]

4 Is associative.
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§3 Moduli stack of complexes

© Moduli stack of perfect complexes
@ Derived stacks
@ Geometric derived stacks
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§3.1. Derived stacks

Assume basic knowledge on the theory of co-categories and oo-topoi.
o A7 C A" denotes the j-th horn of the n-simplex A™ (0 < j <n).
@ An oo-category is a simplicial set K such that for any n € N and any

0 <i<mn,any map fo: A}’ = K of simplicial sets admits an
extension f: A" — K.

k: a fixed commutative ring
sCom: the category of simplicial commutative k-algebra

sComy,: the oco-category obtained by localizing sCom

by the set of weak equivalences in sCom C Seta

Definition

We call dAffo, := (sComq)°P the oo-category of affine derived schemes.
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A rough explanation of derived schemes

sComy, (X): the oo-category of sheaves on a topological space X
with coefficients in sCom,
dRgSp,,: the oo-category of derived ringed spaces
whose object is a pair (X, Ox) of a topological space X
and Ox € sComy(X)

dSch: the oo-category of derived schemes
. the full sub-co-category of dRgSp,, spanned by (X, Ox) s.t.

@ the truncation (X, mp(Ox)) is a scheme
o 7,(Ox) is a quasi-coherent sheaf of mo(Ox)-modules for any n € N.
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Turn to the definition of derived stacks.

A morphism A — B in sComq is called étale [smooth] if
@ the induced my(A) — mo(B) is an étale [smooth| map of com. k-alg.,
o the induced m;(A) ®xa) T0(B) — m;(B) is an isomorphism for any i.

Etale morphisms endow dAff,, with a Grothendieck topology et.

Definition

The oo-category of derived stacks is defined to be

dStay := Shog et (dAffo )" C PShog (dAffsg) := Funag ((dAffo )P, 8)

with 8 the co-category of spaces. Its object is called a derived stack.
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§3.2. Geometric derived stacks

For n € Z>_1, we define an n-geometric derived stack, inductively on n.
At the same time we also define an n-atlas, a n-representable morphism
and a n-smooth morphism of derived stacks.

o Letn=-1.

@ A (—1)-geometric derived stack is defined to be an affine derived
scheme.

@ A morphism f: X — Y of derived stacks is called (—1)-representable if
for any affine derived scheme U and any morphism U — Y of derived
stacks, the pullback X xy U is an affine derived scheme.

© A morphism f: X — Y of derived stacks is called (—1)-smooth if it is
(—1)-representable, and if for any affine scheme U and any morphism
U — Y of derived stacks, the induced morphism X xy U — U is a
smooth morphism of affine derived schemes.

@ A (—1)-atlas of a stack X is defined to be the one-member family {X}.
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o LetneN.
@ Let X be a derived stack. An n-atlas of X is a small family
{U; = X}ier of morphisms of derived stacks satisfying the following
three conditions.
o Each U; is an affine derived scheme.
e Each morphism U; — X is (n — 1)-smooth.
o The morphism J],.; U; — X is an epimorphism.
@ A derived stack X is called n-geometric if the following two conditions
are satisfied.
e The diagonal morphism X — X x X is (n — 1)-representable.
@ There exists an n-atlas of X.
© A morphism f: X — Y of derived stacks is called n-representable if for
any affine derived scheme U and for any morphism U — Y of derived
stacks, the derived stack X xy U is n-geometric.
© A morphism f: X — Y of derived stacks is called n-smooth if for any
derived affine scheme U and any morphism U — Y of stacks, there
exists an n-atlas {U;};cr of X xy U such that for each i € I the
composition U; — X xy U — U is a smooth morphism of affine
derived schemes.
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To an algebraic stack X in the ordinary sense, one can attach a derived
stack j(X) functorially.

Fact (Toén-Vezzossi (2008))

For an algebraic stack X, the derived stack j(X) is 1-geometric.
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§4 Constructible sheaves on derived stacks

@ Constructible sheaves on derived stacks
@ Lisse-étale co-site
@ Constructible lisse-étale sheaves
@ Derived categories and derived functors
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84.1. Lisse-étale oo-site

We will introduce the lisse-étale oco-site for a geometric derived stack,

which is an analogue of the lisse-étale site for a algebraic stack introduced
by Laumon and Moret-Bailly (2000).
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dAff/X: the full sub-co-category of the over-oo-category (dStw) /x

spanned by affine derived schemes

Let n € Z>_1 and X be an n-geometric derived stack.
The lisse-étale oco-site

Lis-Et} (X) = (Lisy (X) , lis-et)

on X is the oco-site given by the following description.
o Lis> (X) is the full sub-co-category of dAffo, /X spanned by (U, u)
where the morphism v : U — X is n-smooth.

@ The set Covjis.et (U, u) of covering sieves on (U, u) consists of
{(Ui,u;) = (U,u) bier in Lisl (X) s.t. {U; — U}ier is étale covering.
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§4.2. Constructible lisse-étale sheaves

Recall the notion of a constructible sheaf on an ordinary scheme:

A sheaf F on a scheme X is called constructible if for any affine Zariski
open U C X there is a finite decomposition U = U;U; into constructible
locally closed subschemes U; such that J|;; is a locally constant sheaf with

value in a finite set.

We will introduce a derived analogue of this notion.

Constructible sheaves on derived stacks
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Let X be a geometric derived stack.

Definition

An object of the co-category She jis-et (Lis, (X)) is called a lisse-étale sheaf.

For an affine derived scheme U, we denote by mo(U) the associated affine
scheme.

Definition

A lisse-étale sheaf F on X is called constructible if it is cartesian and for
any U € Lis-Et,(X) the restriction 7o(F)|, ) is a constructible sheaf on
mo(U).
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Let A be a commutative ring.

Definition
A lisse-étale sheaf of simplicial A-modules is an object of the co-category

Mod, (Xjis-ets A) := Shog jis-et (Liso (X) , A-sMod)
For x € {4+, —, b} we denote by
MOdzo(xlis—eta A) C MOdoo(xlis—eta A)

the full sub-oo-category spanned by sheaves with homologies left bounded
(resp. right bounded, resp. bounded).

A constructible lisse-étale sheaf of simplicial A-modules is similarly defined.
The oo-category of constructible lisse-étale sheaves of simplicial A-modules
is denoted by ModS_ (Xjis.et; A). We also define

ModS (Xiset, A) := ModS (Xjiseet, A) N Mod’ (Xjiset, A) -
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§4.3. Derived categories and derived functors

Proposition

The oo-category ModS (Xjiset, A) is stable in the sense of Lurie.

Thus the homotopy category hModS (Xjiset, A) has a structure of a
triangulated category.

For a commutative ring A, we set
DI(X,A) := hModS (Xjiset, A)  (x € {0,+,—,b})

and call it the (resp. left bounded, respright bounded, respBounded)
derived category of constructible sheaves of A-modules on X.
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Using this derived category one can construct an analogue of
Grothendieck's six derived functors. For a morphism f: X — Y of
geometric derived stacks (which are locally of finite type) we have

Rf.: DI (X) — DI (Y), Rfi:D-(X) — DZ(Y),
Lf*:Dc(Y) — De(X), RS : De(Y) — De(X).

Also we have RHom and ®%.

By construction these derived categories and functors are compatible with
those for algebraic stacks developed by Laszlo and Olsson (2008).
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Remark

On the construction of pullback Lf* for general f.
For f : X — Y, we have an adjunction

f1: Lis-Et (Y) = Lis-Et(X) : f.

where f. sends a sheaf M to the sheaf U — M (U xy X) and f~! sends a
sheaf N to the sheaf

Vi— limg N(U).
(V=U)e(dSt) /5

It turns out that f~! is not left exact, so that the pair (f~1, f.) is not a
geometric morphism of co-topoi in the sense of Lurie.

Quite the same phenomenon occurs in the non-derived case, which causes
a little bit complication in the construction of L f*.
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