Geometric derived Hall algebra

Shintarou Yanagida (Nagoya Univ.)

2019/05/24 @ ALTReT

The derived Hall algebra introduced by Toën (2006) is a version of Ringel-Hall algebra. Roughly it is a "Hall algebra for complexes".

In the case of ordinary Ringel-Hall algebra, we know Lusztig's geometric formulation using the theory of equivariant derived categories on schemes.

I will explain a geometric formulation of derived Hall algebras using the theory of derived categories of constructible sheaves on derived stacks.

Introduction

- Ringel-Hall algebra and derived Hall algebra
 Ringel-Hall algebra
 - Derived Hall algebra
- 2 Geometric derived Hall algebra
- 3 Moduli stack of perfect complexes
- 4 Constructible sheaves on derived stacks

A: an \mathbb{F}_q -linear abelian category of finite global dimension $\mathbb{Q}_c(A)$: the linear space of \mathbb{Q} -valued func. on $\mathrm{Iso}(A)$ w/ finite supports $1_{[M]}$: the characteristic function of $[M] \in \mathrm{Iso}(A)$

Fact (Ringel)

 ${\rm Hall}(\mathsf{A}):=\left(\mathbb{Q}_c(\mathsf{A}),*,1_{[0]}\right)$ is a unital associative $\mathbb{Q}\text{-algebra},$ where

$$\begin{split} \mathbf{1}_{[M]} * \mathbf{1}_{[N]} &:= \sum_{[R] \in \mathrm{Iso}(\mathsf{A})} g_{M,N}^R \mathbf{1}_{[R]}, \\ g_{M,N}^R &:= a_M^{-1} a_N^{-1} e_{M,N}^R, \quad a_M := |\mathrm{Aut}(M)| \\ e_{M,N}^R &:= |\{0 \to N \to R \to M \to 0 \mid \mathsf{exact} \text{ in } \mathsf{A}\} \end{split}$$

Geometric derived Hall algebra

Recall the following different definition of $g_{M,N}^R$:

$$g_{M,N}^R = \left| \mathcal{G}_{M,N}^R \right|, \quad \mathcal{G}_{M,N}^R := \{ N' \subset R \mid N' \simeq N, \ R/N \simeq M \}.$$

Thus $g_{M,N}^R$ counts the number of the inclusion pairs $N \subset R$.

Assume basic knowledge on the theory of model category

 $C(\mathbb{F}_q)$: the model category of complexes of \mathbb{F}_q -modules

- : a fibration is defined to be an epimorphism
 - a weak equivalence is defined to be a quasi-isomorphism
- D: a dg-category over \mathbb{F}_q
- $\mathsf{M}(\mathsf{D})$: the model dg-category of dg-modules over D^{op}
 - : a dg-module means a $C(\mathbb{F}_q)$ -enriched functor $D^{op} \to C(\mathbb{F}_q)$.
 - : the model structure is induced by that of $C(\mathbb{F}_q)$

- Set_Δ : the category of simplicial sets and simplicial maps
 - : having Kan model structure where a fibration is a Kan fibration and a weak equivalence is a homotopy equivalence of geom. realizations
 - $\mathcal{H}:$ the homotopy category of the model category Set_Δ
 - : called the homotopy category of spaces

The category M(D) is $C(\mathbb{F}_q)$ -enriched, so one can attach a simplicial set

 $\operatorname{Map}_{\mathsf{M}(\mathsf{D})}(X,Y) := \operatorname{N}(\operatorname{Hom}_{\mathsf{Mod}(\mathsf{D})}(X,Y)) \in \operatorname{Set}_{\Delta}$

where ${\rm N}$ denotes the nerve construction.

Definition

A dg-module $X \in M(D)$ is perfect if for any filtered system $\{Y_i\}_{i \in I}$ in M(D) the natural morphism

$$\varinjlim_{i \in I} \operatorname{Map}_{\mathsf{M}(\mathsf{D})}(X, Y_i) \longrightarrow \operatorname{Map}_{\mathsf{M}(\mathsf{D})}(X, \varinjlim_{i \in I} Y_i)$$

is an isomorphism in \mathcal{H} .

 $\mathsf{P}(\mathsf{D}){:}$ the sub-dg-cat. of $\mathsf{M}(\mathsf{D})$ of cofibrant and perfect objects and of weak equivalences

 $\mathsf{G}'(\mathsf{D}):=\mathsf{Fun}(\Delta^1,\mathsf{M}(\mathsf{D}))$ where $I=\Delta^1$ is the 1-simplex

: with the model structure induced levelwise by $\mathsf{M}(\mathsf{D})$

 $\mathsf{G}(\mathsf{D})\text{:}$ the sub-dg-cat. of $\mathsf{G}'(\mathsf{D})$ of cofibrant and perfect objects

: considered as the category of cofibrations $X \hookrightarrow Y$

Geometric derived Hall algebra

For an object $u: X \to Y$ in G(D),

$$s(u) := X, \quad c(u) := Y, \quad t(u) := Y \prod^{X} 0,$$

which yield the diagram of dg-categories:

$$\begin{array}{ccc} \mathsf{G}(\mathsf{D}) & \xrightarrow{c} \mathsf{P}(\mathsf{D}) & & (X \hookrightarrow Y) \longmapsto Y \\ s \times t & & & & & \\ \mathsf{P}(\mathsf{D}) \times \mathsf{P}(\mathsf{D}) & & & & (X, "Y/X") \end{array}$$

Define $X^{(0)}(\mathsf{D}), X^{(1)}(\mathsf{D}) \in \mathcal{H}$ by

$$X^{(0)}(\mathsf{D}) := [\mathrm{N}_{\mathsf{dg}}(\mathsf{P}(\mathsf{D}))], \quad X^{(1)}(\mathsf{D}) := [\mathrm{N}_{\mathsf{dg}}(\mathsf{G}(\mathsf{D}))],$$

where N_{dg} denotes the dg nerve construction and $[\cdot]:\text{Set}_{\Delta}\to \mathcal{H}.$ Then we have the diagram of homotopy types

$$\begin{array}{c} X^{(1)}(\mathsf{D}) & \xrightarrow{c} & X^{0}(\mathsf{D}) \\ s \times t & \downarrow \\ X^{(0)}(\mathsf{D}) \times X^{(0)}(\mathsf{D}) \end{array}$$

Lemma

If the dg-category D is locally finite, then c is proper and the homotopy types $X^{(i)}(\mathsf{D})\in\mathcal{H}$ are locally finite.

In the above Lemma we used

Definition

A dg-category D is called locally finite if the chain complex $Hom_D(x, y)$ is homologically bounded with finite-dimensional homology groups for any $x, y \in D$.

Definition

A homotopy type $X \in \mathcal{H}$ is called locally finite if for any $x \in X$ the group $\pi_i(X, x)$ is finite and there exists an $n \in \mathbb{N}$ such that $\pi_i(X, x)$ is trivial for i > n.

 $\mathcal{H}^{\text{lf}:}$ the full subcategory of $\mathcal H$ spanned by locally finite objects

For a morphism $f:X\to Y$ in ${\mathcal H}^{\rm lf},$ define $f^*:{\mathbb Q}_c(Y)\to {\mathbb Q}_c(X)$ by

$$f^*(\alpha)(x) := \alpha(f(x)) \quad (\alpha \in \mathbb{Q}_c(Y), \ x \in \pi_0(X)).$$

Also define a linear map $f_! : \mathbb{Q}_c(X) \to \mathbb{Q}_c(Y)$ by

$$f_!(\alpha)(y) := \sum_{x \in \pi_0(X), f(x) = y} \alpha(x) \cdot \prod_{i > 0} \left(|\pi_i(X, x)|^{(-1)^i} |\pi_i(Y, y)|^{(-1)^{i+1}} \right).$$

Fact (Toën 2006)

Let D be a locally finite dg-category over \mathbb{F}_q . Then

 $\operatorname{Hall}(\mathsf{D}) = \mathbb{Q}_c(X^{(0)}(\mathsf{D}))$

has a structure of a unital associative $\mathbb Q\text{-algebra}$ with the multiplication

 $\mu := c_! \circ (s \times t)^* : \operatorname{Hall}(\mathsf{D}) \otimes_{\mathbb{Q}} \operatorname{Hall}(\mathsf{D}) \longrightarrow \operatorname{Hall}(\mathsf{D}).$

We call Hall(D) the derived Hall algebra of D.

Geometric derived Hall algebra

Introduction

- 1 Ringel-Hall algebra and derived Hall algebra
- Geometric derived Hall algebra
 Outline of the construction
 - 3 Moduli stack of perfect complexes
- 4 Constructible sheaves on derived stacks

§2.1. Outline of the construction

D: a locally finite dg-category over \mathbb{F}_q

Fact (Toën-Vaquié (2009))

We have the moduli stack $\mathcal{P}(D)$ of perfect dg-modules over D^{op} . It is a derived stack, locally geometric and locally of finite type.

We can also construct the moduli stack of cofibrations $X \to Y$ of perfect-modules over D^{op}, denoted by $\mathcal{G}(D)$. There exist morphisms

$$s, c, t: \mathfrak{G}(\mathsf{D}) \longrightarrow \mathfrak{P}(\mathsf{D})$$

of derived stacks which send $u:X\to Y$ to

$$s(u) = X, \quad c(u) = Y, \quad t(u) = Y \coprod^X 0.$$

where s, t are smooth and c is proper.

Geometric derived Hall algebra

Thus we have the diagram

$$\begin{array}{c} \mathfrak{G}(\mathsf{D}) \xrightarrow{c} \mathfrak{P}(\mathsf{D}) \\ p \\ \downarrow \\ \mathsf{D}) \times \mathfrak{P}(\mathsf{D}) \end{array}$$

of derived stacks with smooth $p := s \times t$ and proper c.

P(

Next let $\Lambda := \overline{\mathbb{Q}}_{\ell}$ where ℓ and q are assumed to be coprime.

We have the derived category $D^b_c(\mathcal{X}, \Lambda)$ of constructible lisse-étale A-sheaves over a locally geometric derived stack \mathcal{X} . We also have derived functors (§4). Applying the general theory to the present situation, we have

$$\begin{array}{ccc} \mathsf{D}^{b}_{\mathsf{c}}(\mathcal{G}(\mathsf{D}),\Lambda) & & \xrightarrow{c_{!}} & \mathsf{D}^{b}_{\mathsf{c}}(\mathcal{P}(\mathsf{D}),\Lambda) \\ & & & p^{*} & \\ & & & \\ \mathsf{D}^{b}_{\mathsf{c}}(\mathcal{P}(\mathsf{D}) \times \mathcal{P}(\mathsf{D}),\Lambda) \end{array}$$

Now we set

$$\mu: \mathsf{D}^b_{\mathsf{c}}(\mathcal{P}(\mathsf{D}) \times \mathcal{P}(\mathsf{D}), \Lambda) \longrightarrow \mathsf{D}^b_{\mathsf{c}}(\mathcal{P}(\mathsf{D}), \Lambda), \quad M \longmapsto c_! p^*(M)[\dim p]$$

Theorem

 μ is associative.

Introduction

- Ringel-Hall algebra and derived Hall algebra
- 2 Geometric derived Hall algebra
- 3 Moduli stack of perfect complexes
 - Derived stacks
 - Geometric derived stacks

Constructible sheaves on derived stacks

§3.1. Derived stacks

Assume basic knowledge on the theory of $\infty\text{-categories}$ and $\infty\text{-topoi}.$

- $\Lambda_j^n \subset \Delta^n$ denotes the *j*-th horn of the *n*-simplex Δ^n $(0 \le j \le n)$.
- An ∞ -category is a simplicial set K such that for any $n \in \mathbb{N}$ and any 0 < i < n, any map $f_0 : \Lambda_i^n \to K$ of simplicial sets admits an extension $f : \Delta^n \to K$.

k: a fixed commutative ring sCom: the category of simplicial commutative k-algebra sCom $_{\infty}$: the ∞ -category obtained by localizing sCom by the set of weak equivalences in sCom \subset Set $_{\Delta}$

Definition

We call $dAff_{\infty} := (sCom_{\infty})^{op}$ the ∞ -category of affine derived schemes.

Geometric derived Hall algebra

A rough explanation of derived schemes

 $sCom_{\infty}(X)$: the ∞ -category of sheaves on a topological space Xwith coefficients in $sCom_{\infty}$ $dRgSp_{\infty}$: the ∞ -category of derived ringed spaces whose object is a pair (X, \mathcal{O}_X) of a topological space Xand $\mathcal{O}_X \in sCom_{\infty}(X)$

 $\mathsf{dSch}_\infty:$ the $\infty\text{-category}$ of derived schemes

- : the full sub- ∞ -category of dRgSp $_{\infty}$ spanned by (X, \mathcal{O}_X) s.t.
- the truncation $(X, \pi_0(\mathcal{O}_X))$ is a scheme
- $\pi_n(\mathcal{O}_X)$ is a quasi-coherent sheaf of $\pi_0(\mathcal{O}_X)$ -modules for any $n \in \mathbb{N}$.

Turn to the definition of derived stacks.

A morphism $A \to B$ in sCom_{∞} is called étale [smooth] if

- the induced $\pi_0(A) \to \pi_0(B)$ is an étale [smooth] map of com. k-alg.,
- the induced $\pi_i(A) \otimes_{\pi_0(A)} \pi_0(B) \to \pi_i(B)$ is an isomorphism for any *i*.

Étale morphisms endow $dAff_{\infty}$ with a Grothendieck topology et.

Definition

The ∞ -category of derived stacks is defined to be

$$\mathsf{dSt}_\infty := \mathsf{Sh}_{\infty,\mathsf{et}}(\mathsf{dAff}_\infty)^\wedge \subset \mathsf{PSh}_\infty(\mathsf{dAff}_\infty) := \mathsf{Fun}_\infty((\mathsf{dAff}_\infty)^{\mathsf{op}}, \mathbb{S})$$

with S the ∞ -category of spaces. Its object is called a derived stack.

For $n \in \mathbb{Z}_{\geq -1}$, we define an *n*-geometric derived stack, inductively on *n*. At the same time we also define an *n*-atlas, a *n*-representable morphism and a *n*-smooth morphism of derived stacks.

- Let n = -1.
 - A (-1)-geometric derived stack is defined to be an affine derived scheme.
 - ② A morphism $f : X \to Y$ of derived stacks is called (-1)-representable if for any affine derived scheme U and any morphism $U \to Y$ of derived stacks, the pullback $X \times_Y U$ is an affine derived scheme.
 - O A morphism f : X → Y of derived stacks is called (-1)-smooth if it is (-1)-representable, and if for any affine scheme U and any morphism U → Y of derived stacks, the induced morphism X × y U → U is a smooth morphism of affine derived schemes.
 - **4** (-1)-atlas of a stack \mathcal{X} is defined to be the one-member family $\{\mathcal{X}\}$.

- Let $n \in \mathbb{N}$.
 - Let \mathfrak{X} be a derived stack. An *n*-atlas of \mathfrak{X} is a small family $\{U_i \to \mathfrak{X}\}_{i \in I}$ of morphisms of derived stacks satisfying the following three conditions.
 - Each U_i is an affine derived scheme.
 - Each morphism $U_i \to \mathfrak{X}$ is (n-1)-smooth.
 - The morphism $\coprod_{i \in I} U_i \to \mathfrak{X}$ is an epimorphism.
 - **2** A derived stack \mathcal{X} is called *n*-geometric if the following two conditions are satisfied.
 - The diagonal morphism $\mathfrak{X} \to \mathfrak{X} \times \mathfrak{X}$ is (n-1)-representable.
 - There exists an *n*-atlas of \mathfrak{X} .
 - O A morphism f : X → Y of derived stacks is called n-representable if for any affine derived scheme U and for any morphism U → Y of derived stacks, the derived stack X × y U is n-geometric.
 - A morphism f : X → Y of derived stacks is called *n*-smooth if for any derived affine scheme U and any morphism U → Y of stacks, there exists an *n*-atlas {U_i}_{i∈I} of X ×_Y U such that for each i ∈ I the composition U_i → X ×_Y U → U is a smooth morphism of affine derived schemes.

To an algebraic stack ${\mathcal X}$ in the ordinary sense, one can attach a derived stack $j({\mathcal X})$ functorially.

Fact (Toën-Vezzossi (2008))

For an algebraic stack ${\mathfrak X},$ the derived stack $j({\mathfrak X})$ is 1-geometric.

Introduction

- Ringel-Hall algebra and derived Hall algebra
- 2 Geometric derived Hall algebra
- 3 Moduli stack of perfect complexes
- Constructible sheaves on derived stacks
 - Lisse-étale ∞ -site
 - Constructible lisse-étale sheaves
 - Derived categories and derived functors

We will introduce the lisse-étale ∞ -site for a geometric derived stack, which is an analogue of the lisse-étale site for a algebraic stack introduced by Laumon and Moret-Bailly (2000).

 $dAff_\infty/\mathfrak{X}:$ the full sub- $\infty\text{-category}$ of the over- $\infty\text{-category}~(dSt_\infty)_{/\mathfrak{X}}$ spanned by affine derived schemes

Definition

Let $n \in \mathbb{Z}_{\geq -1}$ and \mathcal{X} be an *n*-geometric derived stack. The lisse-étale ∞ -site

$$\mathsf{Lis-Et}^n_\infty(\mathfrak{X}) = (\mathsf{Lis}^n_\infty(\mathfrak{X}), \mathsf{lis-et})$$

on ${\mathfrak X}$ is the $\infty\text{-site}$ given by the following description.

- $\operatorname{Lis}_{\infty}^{n}(\mathfrak{X})$ is the full sub- ∞ -category of $\operatorname{dAff}_{\infty}/\mathfrak{X}$ spanned by (U, u) where the morphism $u: U \to \mathfrak{X}$ is *n*-smooth.
- The set $\operatorname{Cov}_{\mathsf{lis-et}}(U, u)$ of covering sieves on (U, u) consists of $\{(U_i, u_i) \to (U, u)\}_{i \in I}$ in $\operatorname{Lis}^n_{\infty}(\mathcal{X})$ s.t. $\{U_i \to U\}_{i \in I}$ is étale covering.

Recall the notion of a constructible sheaf on an ordinary scheme:

A sheaf \mathcal{F} on a scheme X is called constructible if for any affine Zariski open $U \subset X$ there is a finite decomposition $U = \bigcup_i U_i$ into constructible locally closed subschemes U_i such that $\mathcal{F}|_{U_i}$ is a locally constant sheaf with value in a finite set.

We will introduce a derived analogue of this notion.

Let \mathcal{X} be a geometric derived stack.

Definition

An object of the ∞ -category $Sh_{\infty,lis-et}(Lis_{\infty}(\mathfrak{X}))$ is called a lisse-étale sheaf.

For an affine derived scheme U, we denote by $\pi_0(U)$ the associated affine scheme.

Definition

A lisse-étale sheaf \mathcal{F} on \mathfrak{X} is called constructible if it is cartesian and for any $U \in \text{Lis-Et}_{\infty}(\mathfrak{X})$ the restriction $\pi_0(\mathcal{F})|_{\pi_0(U)}$ is a constructible sheaf on $\pi_0(U)$.

Definition

A lisse-étale sheaf of simplicial $\Lambda\text{-modules}$ is an object of the $\infty\text{-category}$

$$\mathsf{Mod}_\infty(\mathfrak{X}_{\mathsf{lis-et}},\Lambda):=\mathsf{Sh}_{\infty,\mathsf{lis-et}}(\mathsf{Lis}_\infty(\mathfrak{X})\,,\Lambda\text{-sMod}_\infty)$$

For $* \in \{+,-,b\}$ we denote by

$$\mathsf{Mod}^*_\infty(\mathfrak{X}_{\mathsf{lis-et}},\Lambda) \subset \mathsf{Mod}_\infty(\mathfrak{X}_{\mathsf{lis-et}},\Lambda)$$

the full sub- ∞ -category spanned by sheaves with homologies left bounded (resp. right bounded, resp. bounded).

A constructible lisse-étale sheaf of simplicial Λ -modules is similarly defined. The ∞ -category of constructible lisse-étale sheaves of simplicial Λ -modules is denoted by $\mathsf{Mod}^{\mathsf{c}}_{\infty}(\mathfrak{X}_{\mathsf{lis-et}},\Lambda)$. We also define

$$\mathsf{Mod}^{\mathsf{c},*}_\infty(\mathfrak{X}_{\mathsf{lis-et}},\Lambda):=\mathsf{Mod}^{\mathsf{c}}_\infty(\mathfrak{X}_{\mathsf{lis-et}},\Lambda)\cap\mathsf{Mod}^*_\infty(\mathfrak{X}_{\mathsf{lis-et}},\Lambda)\,.$$

Geometric derived Hall algebra

Proposition

The ∞ -category $\mathsf{Mod}^{\mathsf{c},*}_\infty(\mathfrak{X}_{\mathsf{lis-et}},\Lambda)$ is stable in the sense of Lurie.

Thus the homotopy category $h\mathsf{Mod}_\infty^{\mathsf{c},*}(\mathfrak{X}_{\mathsf{lis-et}},\Lambda)$ has a structure of a triangulated category.

Definition

For a commutative ring Λ , we set

$$\mathsf{D}^*_\mathsf{c}(\mathfrak{X},\Lambda):=\mathrm{h}\mathsf{Mod}^{\mathsf{c},*}_\infty(\mathfrak{X}_{\mathsf{lis-et}},\Lambda) \quad (*\in \{\emptyset,+,-,b\})$$

and call it the (resp. left bounded, respright bounded, respbounded) derived category of constructible sheaves of Λ -modules on \mathcal{X} .

Using this derived category one can construct an analogue of Grothendieck's six derived functors. For a morphism $f: \mathcal{X} \to \mathcal{Y}$ of geometric derived stacks (which are locally of finite type) we have

$$Rf_*: \mathsf{D}^+_{\mathsf{c}}(\mathfrak{X}) \longrightarrow \mathsf{D}^+_{\mathsf{c}}(\mathfrak{Y}), \quad Rf_!: \mathsf{D}^-_{\mathsf{c}}(\mathfrak{X}) \longrightarrow \mathsf{D}^-_{\mathsf{c}}(\mathfrak{Y}),$$
$$Lf^*: \mathsf{D}_{\mathsf{c}}(\mathfrak{Y}) \longrightarrow \mathsf{D}_{\mathsf{c}}(\mathfrak{X}), \quad Rf^!: \mathsf{D}_{\mathsf{c}}(\mathfrak{Y}) \longrightarrow \mathsf{D}_{\mathsf{c}}(\mathfrak{X}).$$

Also we have RHom and \otimes^{L} .

By construction these derived categories and functors are compatible with those for algebraic stacks developed by Laszlo and Olsson (2008).

Remark

On the construction of pullback Lf^* for general f. For $f : \mathcal{X} \to \mathcal{Y}$, we have an adjunction

$$f^{-1}: \mathsf{Lis-Et}_{\infty}(\mathfrak{Y}) \rightleftarrows \mathsf{Lis-Et}_{\infty}(\mathfrak{X}): f_*$$

where f_* sends a sheaf M to the sheaf $U\mapsto M(U\times_{\mathcal{Y}}\mathfrak{X})$ and f^{-1} sends a sheaf N to the sheaf

$$V\longmapsto \varinjlim_{(V\to U) \in (\mathsf{dSt}_\infty)_{/f}} N(U).$$

It turns out that f^{-1} is not left exact, so that the pair (f^{-1}, f_*) is not a geometric morphism of ∞ -topoi in the sense of Lurie. Quite the same phenomenon occurs in the non-derived case, which causes a little bit complication in the construction of Lf^* .