(2)
$$A = kep_{FF} \Theta_{i} z_{i} d_{i} d_{i} d_{i}$$
 (recall \$1)
 $\chi(--) = O(S21)$
 $H_{\alpha}(n)$
 $DT(D) g_{0} : [\frac{1}{2}n] \chi \in \mathbb{R}^{n} : Z_{\nu}^{g_{1}} : Z_{\nu}^{g_{2}} : Z_{\nu}^{g_{$

4 Derived Hall algebra

Toën introduced a version of Ringel-Hall algebra of complexes using the model category of DG modules over a DG category. Replace A = Rep Q in Ringel-Hall algebra by the DG module category M(D).

4.1 DG category

A DG category over a commutative ring k is a category D whose morphism set is equipped with the structure of differential graded k-module and whose composition of morphisms is a homomorphism of differential graded k-modules.

 $\operatorname{Hom}_{\mathsf{D}}(M,N) = \bigoplus_{n \in \mathbb{Z}} \operatorname{Hom}_{\mathsf{D}}^{n}(M,N), \quad d \colon \operatorname{Hom}_{\mathsf{D}}^{n}(\cdot,\cdot) \longrightarrow \operatorname{Hom}_{\mathsf{D}}^{n+1}(\cdot,\cdot), \ d^{2} = 0.$

Example: The DG category $C_{dg}(A)$ of complexes over an additive category A.

- Recall that in the Ringel-Hall algebra $\mathbf{R}(A)$ for an abelian category A, the structure constant $g_{L,M}^N$ counts pairs $M \subset N$ of an object and its subobject.
- For a DG category D, we can do an analogous counting, using the model structure of the category M(D) of DG modules over D.
- Rough idea: instead of counting subobjects, count cofibrations up to homotopy.

Model structure

- A model structure on a category C consists of 3 classes of morphisms: fibrations, cofibrations, and weak equivalences, which are subject to certain axioms.
- It is designed to provide a natural setting of homotopy theory.
- Localization of C by weak equivalences gives the homotopy category Ho(C).

Examples:

- 1. C(k): the category of complexes of modules over a commutative ring k. It has a projective model structure with
 - A fibration is defined to be an epimorphism of complexes.
 - A weak equivalence is defined to be a quasi-isomorphism.
- 2. For a DG category D over k, a DG D-module is a DG functor $D^{op} \rightarrow C_{dg}(k)$. M(D): the category of DG D^{op}-modules.

It has a model structure induced by the projective model structure of C(k).

4.2 The diagram of correspondence

Let D be a DG category over $k = \mathbb{F}_q$.

- $P(D) \subset M(D)$: the full subcategory of perfect objects.
- M(D)^I ≔ Fun(I, M(D)) with I = Δ¹ the 1-simplex. It has the model structure induced levelwise by that of M(D).

We have a diagram (of left Quillen functors)

$$\begin{array}{ccc} \mathsf{M}(\mathsf{D})^{I} & \stackrel{c}{\longrightarrow} & \mathsf{M}(\mathsf{D}) & & (x \to y) \longmapsto & y \\ & & & \downarrow & & \\ \mathsf{M}(\mathsf{D}) \times \mathsf{M}(\mathsf{D}) & & & (y \coprod_{x} 0, x) \end{array}$$

Restricting to the subcategories of cofibrant and perfect objects and of weak equivalences,

Simplicial sets and the homotopy category of spaces

- Given a category C, the nerve construction yields a simplicial set $N(C) \in sSet$.
- sSet := Fun(Δ^{op}, Set): the category of simplicial sets and simplicial maps. It has the Kan model structure where a fibration is a Kan fibration and a weak equivalence is a homotopy equivalence of geom. realizations.
- $\mathcal{H} \coloneqq \operatorname{Ho}(\mathsf{sSet})$: the homotopy category of spaces. $[\cdot] : \mathsf{sSet} \to \mathcal{H}$. An object $X \in \operatorname{Ob}(\mathcal{H})$ is called a homotopy type.

CG: the category of compactly generated Hausdorff spaces.

The standard Quillen adjunction $| | : sSet \rightleftharpoons CG : Sing yields Ho(sSet) \simeq Ho(CG).$

Define $X^{(0)}(\mathsf{D}), X^{(1)}(\mathsf{D}) \in \mathcal{H}$ by

$$X^{(0)}(\mathsf{D}) \coloneqq \big[\mathsf{N}(w\mathsf{P}(\mathsf{D})^{\mathsf{cof}})\big], \quad X^{(1)}(\mathsf{D}) \coloneqq \big[\mathsf{N}\big(w(\mathsf{P}(\mathsf{D})^{I})^{\mathsf{cof}}\big)\big].$$

Then we have the diagram of homotopy types

$$\begin{array}{c} X^{(1)}(\mathsf{D}) & \stackrel{c}{\longrightarrow} X^{0}(\mathsf{D}) \\ & p \\ & \\ X^{(0)}(\mathsf{D}) \times X^{(0)}(\mathsf{D}) \end{array}$$

Lemma. If the DG category D is locally finite, then

1. $p: X \to Y$ is proper (: \iff for each $y \in \pi_0(Y)$, $|\{x \in \pi_0(X) \mid f(x) = y\}| < \infty$).

2. The homotopy types $X^{(i)}(\mathsf{D}) \in \mathcal{H}$ are locally finite.

Here we used:

Definition. A DG category D is called locally finite if the complex $Hom_D(M, N)$ is cohomologically bounded with finite-dimensional cohomology groups for any $M, N \in D$.

Definition. A homotopy type $X \in Ob(\mathcal{H})$ is called locally finite if for any $x \in X$ the group $\pi_i(X, x)$ is finite and there exists an $n \in \mathbb{N}$ such that $\pi_i(X, x)$ is trivial for i > n. \mathcal{H}^{lf} : the full subcategory of \mathcal{H} spanned by locally finite objects

4.3 The definition of derived Hall algebra

For $X \in \mathcal{H}^{\mathsf{lf}}$, we denote $F(X) \coloneqq \{\alpha \colon \pi_0(X) \to \mathbb{C} \mid \mathsf{having finite support}\}$. For a proper morphism $f : X \to Y$ in $\mathcal{H}^{\mathsf{lf}}$, define $f^* : F(Y) \to F(X)$ by

$$f^*(\alpha)(x) \coloneqq \alpha(f(x)) \quad (\alpha \in F(Y), \ x \in \pi_0(X)).$$

Also, for a morphism $f: X \to Y$ in $\mathcal{H}^{\mathsf{lf}}$, define $f_!: \mathcal{F}(X) \to \mathcal{F}(Y)$ by

$$f_!(\alpha)(y) \coloneqq \sum_{x \in \pi_0(X), f(x) = y} \alpha(x) \cdot \prod_{i > 0} \left(|\pi_i(X, x)|^{(-1)^i} |\pi_i(Y, y)|^{(-1)^{i+1}} \right).$$

Theorem (Toën 2006). Let D be a locally finite DG category over \mathbb{F}_q . Then

$$\mathbf{DH}(\mathsf{D}) = \mathrm{F}(X^{(0)}(\mathsf{D}))$$

has a structure of a unital associative algebra with the multiplication

 $\mu := c_! \circ p^* : \mathbf{DH}(\mathsf{D}) \otimes \mathbf{DH}(\mathsf{D}) \longrightarrow \mathbf{DH}(\mathsf{D}).$

We call $\mathbf{DH}(\mathsf{D})$ the derived Hall algebra of D.