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4 Derived Hall algebra

Toéen introduced a version of Ringel-Hall algebra of complexes
using the model category of DG modules over a DG category.
Replace A = Rep @ in Ringel-Hall algebra by the DG module category M(D).

4.1 DG category

A DG category over a commutative ring k is a category D whose morphism set is
equipped with the structure of differential graded k-module and whose composition of
morphisms is a homomorphism of differential graded k-modules.

Homp (M, N) = Hom?®(M, N), d: Hom?Z(-,-) — Hom”"(...), d*> = 0.
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Example: The DG category Cyg(A) of complexes over an additive category A.

e Recall that in the Ringel-Hall algebra R(A) for an abelian category A, the structure
constant g]LV,M counts pairs M C N of an object and its subobject.
e For a DG category D, we can do an analogous counting, using the model structure
of the category M(D) of DG modules over D.
e Rough idea: instead of counting subobjects, count cofibrations up to homotopy.
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Model structure

e A model structure on a category C consists of 3 classes of morphisms:

fibrations, cofibrations, and weak equivalences, which are subject to certain axioms.
e |t is designed to provide a natural setting of homotopy theory.
e Localization of C by weak equivalences gives the homotopy category Ho(C).

Examples:

1. C(k): the category of complexes of modules over a commutative ring k.
It has a projective model structure with
e A fibration is defined to be an epimorphism of complexes.
e A weak equivalence is defined to be a quasi-isomorphism.
2. For a DG category D over k, a DG D-module is a DG functor D°P — Cqyg (k).
M(D): the category of DG D°P-modules.
It has a model structure induced by the projective model structure of C(k).



4.2 The diagram of correspondence

Let D be a DG category over k = F,,.

e P(D) C M(D): the full subcategory of perfect objects.
e M(D)! := Fun(I,M(D)) with I = A! the 1-simplex. It has the model structure
induced levelwise by that of M(D).

We have a diagram (of left Quillen functors)

M(D)! ~—— M(D) (x > y) —— ¥y
M(D) x M(D) (W11, 0,)

Restricting to the subcategories of cofibrant and perfect objects and of weak
equivalences,

w(P(D)))* ———s wP (D)™ (z—y) —— y
wP(D)%°f x wP (D) (w11,0,v)



Simplicial sets and the homotopy category of spaces
e Given a category C, the nerve construction yields a simplicial set N(C) € sSet.
e sSet := Fun(A°P, Set): the category of simplicial sets and simplicial maps.
It has the Kan model structure where a fibration is a Kan fibration and a weak
equivalence is a homotopy equivalence of geom. realizations.
e J{ := Ho(sSet): the homotopy category of spaces. || : sSet — J.
An object X € Ob(H) is called a homotopy type.
CG: the category of compactly generated Hausdorff spaces.
The standard Quillen adjunction | | : sSet =z CG : Sing yields Ho(sSet) ~ Ho(CG).

Define X(O(D), X((D) € K by
XO(D) == [N(wP(D)*"], XW(D):= [N(w(P(D)")="].

Then we have the diagram of homotopy types

XW(D) —-= X°(D)

XO(D) x XO)(D)
4



Lemma. If the DG category D is locally finite, then
1. p: X — Y is proper (: < foreach y € my(Y), {z € mo(X) | f(z) = y}| < 00).
2. The homotopy types X () (D) € J are locally finite.

Here we used:

Definition. A DG category D is called locally finite if the complex Homp (M, N) is
cohomologically bounded with finite-dimensional cohomology groups for any M, N € D.

Definition. A homotopy type X € Ob(H) is called locally finite if for any x € X the group
i (X, x) is finite and there exists an n € N such that 7;( X, x) is trivial for i > n.
H': the full subcategory of H spanned by locally finite objects



4.3 The definition of derived Hall algebra

For X € H", we denote F(X) := {a: mo(X) — C | having finite support}.
For a proper morphism f: X — Y in 3", define f*: F(Y) — F(X) by

f(a)(z) = a(f(z)) (xeF(Y), € m(X)).

Also, for a morphism f: X — Y in 3", define fi : F(X) = F(Y) by

A= > a@-[J(ImX om0,

vEmo(X), f(z)=y >0

Theorem (Toén 2006). Let D be a locally finite DG category over F,. Then
DH(D) = F(X'”(D))
has a structure of a unital associative algebra with the multiplication
p:=cop*: DH(D) ® DH(D) — DH(D).

We call DH(D) the derived Hall algebra of D.



