現代数学基礎 СⅢ 10月03日分演習問題*1

担当: 柳田伸太郎 (理学部 A 館 441 号室) yanagida [at] math.nagoya-u.ac.jp

https://www.math.nagoya-u.ac.jp/~yanagida/2019WC3.html

1 復習: 複素微分と初等関数

1.1 複素平面内の集合

問題 1.1. $\mathbb Q$ を有理数全体の集合とする. $\mathbb C$ の部分集合 $\mathbb C\setminus\mathbb Q$ は開集合か否か、および閉集合か否かを論じよ.

1.2 複素微分

問題 1.2. 次の関数 f(z) の z=0 における連続性を調べよ.

(1)
$$f(z) := \begin{cases} (z + \overline{z})/|z| & (z \neq 0) \\ 0 & (z = 0) \end{cases}$$
 (2) $f(z) := \begin{cases} (z + \overline{z})^2/|z| & (z \neq 0) \\ 0 & (z = 0) \end{cases}$

1.3 Cauchy-Riemann 方程式

問題 1.3. $z=x+iy=re^{i\theta},\,f(z)=u+iv=Re^{i\varphi}$ と表示すると、関数 f(z) に関する Cauchy-Riemann 方程式は以下のように書き換えられることを示せ.

$$(1) \ \frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \ \frac{\partial v}{\partial r} = \frac{-1}{r} \frac{\partial u}{\partial \theta}. \qquad (2) \ \frac{\partial R}{\partial x} = R \frac{\partial \varphi}{\partial y}, \ \frac{\partial R}{\partial y} = -R \frac{\partial \varphi}{\partial x}. \qquad (3) \ \frac{\partial R}{\partial r} = \frac{R}{r} \frac{\partial \varphi}{\partial \theta}, \ \frac{1}{r} \frac{\partial R}{\partial \theta} = -R \frac{\partial \varphi}{\partial r}.$$

1.4 冪級数と正則関数

問題 **1.4.** 講義ノートの例 1.4.7 で用いた次の等式を確認せよ.

- (1) $\overline{\lim}_{n\to\infty} (1/n!)^{1/n} = 0.$
- (2) $a_{2n} := 1/(2n)!$ および $a_{2n+1} := 0$ として $\overline{\lim}_{n \to \infty} a_n^{1/n} = 0$.

1.5 初等関数

問題 1.5. 講義ノートの命題 1.5.2 を示せ*2: 任意の $\alpha \in \mathbb{C}$ と $z \in D_0(1) = \{z \in \mathbb{C} \mid |z| < 1\}$ に対し

$$(1+z)^{\alpha} = \sum_{n=0}^{\infty} {\alpha \choose n} z^n, \quad {\alpha \choose n} := \begin{cases} \alpha(\alpha-1)\cdots(\alpha-n+1)/n! & (n\geq 1) \\ 1 & (n=0) \end{cases}.$$

^{*1 2019/10/03,} ver. 0.2.

 $^{^{*2}}$ ver. 0.2 で訂正しました

問題 1.6. 講義ノートの命題 1.5.3 を示せ: 冪級数

$$\operatorname{Arcsin} z \, := \, \sum_{n=0}^{\infty} \frac{(2n-1)!!}{(2n)!!} \, \frac{z^{2n+1}}{2n+1}$$

の収束半径は 1 であり、それが定める収束円板 $D_0(1)$ 上の正則関数 ${\rm Arcsin}\,z$ は正弦関数 ${\rm sin}\,z$ の逆関数である。また $D_0(1)$ 上の正則関数

$$\operatorname{Arccos} z := \frac{\pi}{2} - \operatorname{Arcsin} z$$

は余弦関数 $\cos z$ の逆関数である.

問題 1.7. 講義ノートの命題 1.5.4 を示せ: 冪級数

$$Arctan z := \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} z^{2n+1}$$

の収束半径は 1 であり、それが定める収束円板 $D_0(1)$ 上の正則関数 ${\rm Arctan}\,z$ は正接関数 ${\rm tan}\,z$ の逆関数である.

レポート問題

レポートの締め切りは (今学期末までという自明なものを除いて) 特に設けません.

レポート問題 1.1 のために, 順序 (関係) の定義を復習しておく.

定義. S を集合とする.

- (1) S 上の半順序 (partial order) \succ とは以下の三条件を満たす S 上の二項関係のことである
 - 任意の $x \in S$ に対して $x \succeq x$ が成立する.
 - 任意の $x, y, z \in S$ に対し, $x \succeq y$ かつ $y \succeq z$ ならば $x \succeq z$.
 - 任意の $x, y \in S$ に対し, $x \succeq y$ かつ $y \succeq x$ ならば x = y.
- (2) S 上の全順序 (total order) \succeq とは S 上の半順序であって更に以下の条件を満たすもののことである.
 - 任意の $x,y \in S$ に対し $x \succeq y$ または $y \succeq x$ が成立する*3

全順序のことを線形順序 (linear order) ともいう.

レポート問題 1.1. ℂ上の全順序 と であって次の二条件を満たすものは存在しないことを示せ.

- (i) 任意の $z_1, z_2, z_3 \in \mathbb{C}$ について, $z_1 \succeq z_2$ ならば $z_1 + z_3 \succeq z_2 + z_3$.
- (ii) 任意の $z_1, z_2, z_3 \in \mathbb{C}$ について, $z_1 \succeq z_2$ かつ $z_3 \succeq 0$ ならば $z_1 z_3 \succeq z_2 z_3$.

以上です.

^{*&}lt;sup>3</sup> ver. 0.2 で訂正しました