数学演習 VII·VIII 7月25日分問題*1

担当: 柳田伸太郎 (理学部 A 館 441 号室) yanagida [at] math.nagoya-u.ac.jp

https://www.math.nagoya-u.ac.jp/~yanagida/2019S78.html

13 復習3

今回が最終回ですが、今までに扱ってきた内容の総合演習をします. 各問題の冒頭にある*の数は、その問題の難易度の目安を表しています.

13.1 群論

問題 13.1 (* 半直積). H と N を群とし, $\varphi: H \to \operatorname{Aut}(N)$ を群準同型とする. $h \in H$ に対し $\varphi_h := \varphi(h) \in \operatorname{Aut}(N)$ と書く. この時, 集合としての直積 $H \times N$ は,

$$(h_1, n_1) * (h_2, n_2) := (h_1 h_2, n_1 \varphi_{h_1}(n_2)) \quad (h_1, h_2 \in H, n_1, n_2 \in N)$$

で定まる写像 $*: (H \times N) \times (H \times N) \rightarrow H \times N$ によって群になることを示せ.

定義. 問題 13.1 で得られた群 $(H \times N,*)$ を H と N の (準同型 φ による) 半直積 (semi-direct product) と呼び, $H \ltimes_{\varphi} N$ あるいは単に $H \ltimes N$ と書く.

問題 13.2 (*). H,N を群とする. $\varphi:H\to {\rm Aut}(N)$ を自明な群準同型, 即ち任意の $h\in H$ に対し $\varphi(h)={\rm id}_N$ とする. この時, 半直積 $H\ltimes_{\varphi}N$ は直積群 $H\times N$ と同型であることを示せ.

問題 13.3 (*). H と N を群とし, $\varphi: H \to \mathrm{Aut}(N)$ を群準同型とする. 半直積 $G:=H\ltimes_{\varphi}N$ が以下の性質を満たすことを示せ.

- (1) $H' := \{(h, e_N) \mid h \in H\}$ は H と同型な G の部分群.
- (2) $N' := \{(e_H, n) \mid n \in N\}$ は N と同型な G の正規部分群.
- (3) $G = N'H' \text{ thing } N' \cap H' = \{e_G\}.$

注意・問題 13.3 が主張するように、半直積 $H \ltimes_{\varphi} N$ は H,N と同型な部分群を含む.上の問題では区別のため H',N' と記号を変えたが、通常は同じ記号 H,N を用いて、「 $H \subset H \ltimes_{\varphi} N$ は部分群、 $N \triangleleft H \ltimes_{\varphi} N$ 」などと書く.次の問題 13.4 ではこのように濫用した記号を用いる.

問題 13.4 (**). 以下の二つの性質をともに満たす群Gのうち、最小位数のものを求めよ.

- $G = H \ltimes_{\varphi} N$ と半直積で書けて、更に H, N は G の自明な部分群ではない.
- G は直積ではない.

^{*1 2019/07/25} 版, ver. 0.3.

13.2 Lebesgue 積分論

この副節では積分は Lebesgue 積分のことを意味する.

問題 13.5 (*). 次の極限を求めよ.

$$\lim_{t \to 0} \frac{1}{t} \int_0^\infty (e^x - 1)^{-1} \sin(tx) \, dx.$$

問題 13.6 (*). 次の積分を求めよ.

$$\int_0^1 \log x \, \log(1+x) \, dx.$$

問題 13.7 (**). 次の積分を求めよ.

$$\int_0^\infty \int_0^\infty y e^{-xy} \sin^3 x \, dx dy.$$

13.3 微分方程式

問題 13.8 (*). 常微分方程式の解の一意性から、三角関数の加法定理 $\sin(x+y) = \sin x \cos y + \cos x \sin y$, $\cos(x+y) = \cos x \cos y - \sin x \sin y$ を導け.

問題 13.9 (**). 次の未知関数 y(x) に関する微分方程式の一般解を求めよ. 但しc は実数定数.

$$(1 - x^2)y'' - xy' + c^2y = 0$$

問題 13.10 (*)。 微分方程式 y'''+a(x)y''+b(x)y'+c(x)y=0 の線形独立な解が e^x , $\cos 2x$, $\sin 2x$ であるとき, a(x), b(x), c(x) を決定せよ.

問題 13.11 (*)。 実数成分の反対称な正方行列関数 A(t), つまり ${}^T\!A(t) = -A(t)$ を満たす A(t) で定まる次の 連立微分方程式を考える.

$$\frac{dx}{dt} = A(t)x.$$

- (1) 解 x(t) は |x(t)| = |x(0)| を満たすことを示せ.
- (2) 基本解行列 $X(t) = (x_1(t), ..., x_n(t))$ は直交行列であることを示せ.

以上です.