数学演習 VII·VIII 6月6日分小テスト解答*1

担当: 柳田伸太郎 (理学部 A 館 441 号室) yanagida [at] math.nagoya-u.ac.jp

https://www.math.nagoya-u.ac.jp/~yanagida/2019S78.html

問題.Gを群,NとMをGの正規部分群とし, $N \subset M$ であると仮定する.このとき次を示せ.

- (1) 写像 $\varphi: G/N \to G/M$, $xN \mapsto xM$ は全射準同型.
- (2) M/N は G/N の正規部分群であって, $G/M \simeq (G/N)/(M/N)$.
- 解答. (1) $N \subset M$ より φ は well-defined. 準同型であることは, $N \triangleleft G$ より $(x_1N)(x_2N) = x_1x_2NN = x_1x_2N$ となることから従う. 全射性は G/M の任意の元が xM, $x \in G$ と書けることから従う.
 - (2) 準同型 φ の核を考えると

$$\operatorname{Ker} \varphi = \{ xN \in G/N \mid xM = 0 \in G/M \} = \{ xN \in G/N \mid x \in M \} = M/N.$$

準同型の核は正規部分群であることから $M/N \triangleleft G/N$. また準同型定理から

$$G/M \simeq (G/N)/\operatorname{Ker} \varphi = (G/N)/(M/N).$$

コメント. 2+3 点で採点しました. 平均点は 3.4 点でした. この問題は完答できるようにして下さい. (2) の同型は第三同型定理と呼ばれることがあります.

 $M/N \triangleleft G/N$. は以下のように直接示すこともできます.

 $M/N \subset G/N$ は自然に部分群になるので、正規部分群であることのみ示す。 任意の $mN \in M/N$ 及び $gN \in G/N$ について、

$$(gN)^{-1}(mN)(gN) \ = \ N^{-1}g^{-1}mNgN \ \stackrel{*1}{=} \ g^{-1}N^{-1}mgNN \ \stackrel{*3}{=} \ g^{-1}NmgN \\ \stackrel{*2}{=} \ g^{-1}mNgN \ \stackrel{*1}{=} \ g^{-1}mgNN \ \stackrel{*3}{=} \ g^{-1}mgN.$$

但し *1 では $N \triangleleft G$ を、*2 では $N \triangleleft M$ を、*3 では $N \subset G$ が部分群であることを用いた.一方で $M \triangleleft G$ より $g^{-1}mg \in M$ なので、 $(gN)^{-1}(mN)(gN) = g^{-1}mgN \in M/N$.これで示せた.

以上です.

^{*1 2019/06/06} 版, ver. 0.1.