数学演習 VII·VIII 4 月 25 日分解答*1

担当: 柳田伸太郎 (理学部 A 館 441 号室)

yanagida [at] math.nagoya-u.ac.jp

https://www.math.nagoya-u.ac.jp/~yanagida/2019S78.html

3 群論1(基本概念)

3.1 群の定義

問題 3.1. 群の3条件を確認する.

(結合律) $A=(a_{i,j}), B=(b_{i,j}), C=(c_{i,j})\in \mathrm{GL}_n(\mathbb{C})$ に対し (AB)C=A(BC) を示せばよい. AB の (i,j) 成分が $\sum_{k=1}^n a_{i,k}b_{k,j}$ となることから,(AB)C の (i,j) 成分は $\sum_{l=1}^n (\sum_{k=1}^n a_{i,k}b_{k,l})c_{l,j}$. 同様に A(BC) の (i,j) 成分は $\sum_{k=1}^n a_{i,k}(\sum_{l=1}^n b_{k,l}c_{l,j})$. \mathbb{C} が環であることから両者は一致する.

(単位元) 単位行列 $I_n\in \mathrm{GL}_n(\mathbb{C})$ は任意の $A\in \mathrm{GL}_n(\mathbb{C})$ に対し $AI_n=I_nA=A$ を満たすので、今考えている 積に関する単位元である.

(逆元の存在) $A\in \mathrm{GL}_n(\mathbb{C})$ の逆行列 $A^{-1}\in \mathrm{GL}_n(\mathbb{C})$ は $AA^{-1}=A^{-1}A=I_n$ を満たす.

問題 3.2. n=1 なら可換群であり, $n \ge 2$ なら可換群ではない.

3.2 元の位数, 有限群の位数, 巡回群

問題 **3.3.** (1) $G \neq \{e\}$ と仮定してよい. 任意の元 $g \in G \setminus \{e\}$ について $\{g^n \mid n \in \mathbb{Z}\}$ を考えると, これは G の部分集合. G は有限集合だから, ある $m, n \in \mathbb{Z}$ が存在して $m \neq n$ かつ $g^m = g^n$. これから $g^{|m-n|} = e$ となり, g の位数は |m-n| 以下である.

(2) $m,n\in\mathbb{Z}$ が互いに素なので、am+bn=1 となる $a,b\in\mathbb{Z}$ がある. すると $g=g^{am+bn}=(g^m)^a(g^n)^b=ee=e$.

問題 **3.4.** $|S_n| = n!$.

問題 **3.5.** $\zeta_n := \exp(2\pi\sqrt{-1}/n)$ とすれば, $\zeta_n \in G$ でかつ ζ_n の位数は n. また $G = \{\zeta_n^k \mid k = 0, 1, \dots, n-1\} = \langle \zeta_n \rangle$ となるので, G は位数 n の巡回群.

問題 3.6. 群であることの証明は略. $\mathbb{Z}/n\mathbb{Z}=\langle\overline{1}\rangle$, $\overline{1}$ の位数は n になるので, $\mathbb{Z}/n\mathbb{Z}$ は位数 n の巡回群である.

問題 3.7. (1) x 軸の正の部分の上にある頂点の番号 k $(1 \le k \le n)$ に注目して n 通り.

- (2) P_n の表が上のときと裏が上のときの各々に対して (1) を適用して、全部で 2n 通り、これらの置き方をそれぞれ (\mathbf{x},k) , (\mathbf{x},k) と書くことにする。
- (3) $a^n = 1$ と $b^2 = 1$ は明らか. $ba = a^{-1}b$ は、例えば (表,1) が両辺でどの置き方に変わるかを調べれば分かる. 実際、ba によって (表,1) \mapsto (表,2) \mapsto (裏,2) であり、 $a^{-1}b$ によって (表,1) \mapsto (裏,1) \mapsto (裏,2) である. または a と b を一次変換の行列で表示するか、複素数の掛け算と複素共役で表して証明できる.
- (4) $a^n = 1$ より $0 \le k \le n-1$ としてよい. このとき (3) の $ba = a^{-1}b$ を繰り返し用いて $ba^k = (ba)a^{k-1} = (a^1b)a^{k-1} = a^{-2}ba^{k-2} = \cdots = a^{-k}b$. また、このとき $(a^kb)^2 = a^k(ba^k)b = a^ka^{-k}bb = 1$.
- (5) $\{1, a, a^2, \dots, a^{n-1}, b, ab, a^2b, \dots, a^{n-1}b\} \subset D_n$ は明らかなので、任意の $g \in D_n$ が a^k または a^kb の形に書けることを示せばよい.ここで g によって置き方 $(\overline{\mathbf{x}}, 1)$ が移った置き方に注目する. $g: (\overline{\mathbf{x}}, 1) \mapsto (\overline{\mathbf{x}}, k)$ のとき $g = a^k$ であり、 $g: (\overline{\mathbf{x}}, 1) \mapsto (\overline{\mathbf{x}}, k)$ のとき $g = a^kb$ である.

 $^{^{*1}}$ 2019/04/25 版, ver. 0.2.

3.3 部分群. 正規部分群

問題 3.8. まず部分群であることを示す。単位行列は $\operatorname{SL}_n(\mathbb{C})$ の元である。 $A,B\in\operatorname{SL}_n(\mathbb{C})$ なら $\det(AB)=\det A\det B=1$ より $AB\in\operatorname{SL}_n(\mathbb{C})$. また $A\in\operatorname{SL}_n(\mathbb{C})$ なら $\det(A^{-1})=(\det A)^{-1}=1$ より $A^{-1}\in\operatorname{SL}_n(\mathbb{C})$. よって $\operatorname{SL}_n(\mathbb{C})$ は $\operatorname{GL}_n(\mathbb{C})$ の部分群.次に任意の $A\in\operatorname{SL}_n(\mathbb{C})$ と $B\in\operatorname{GL}_n(\mathbb{C})$ を取ると, $\det(B^{-1}AB)=(\det B)^{-1}\det A\det B=1$ なので $B^{-1}AB\in\operatorname{SL}_n(\mathbb{C})$. よって $\operatorname{SL}_n(\mathbb{C})$ く $\operatorname{GL}_n(\mathbb{C})$.

問題 **3.9.** (1) 問題文中の s_1s_2 の計算を使うと, $s_1s_2s_1$ は

$$s_1 s_2 s_1 = (s_1 s_2) s_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}.$$

となる. 同様に $s_2s_1s_2$ が次のように計算できて, $s_1s_2s_1=s_2s_1s_2$ が分かる.

$$s_2 s_1 s_2 = s_2(s_1 s_2) = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}.$$

(2) $s_1^2=s_2^2=\mathrm{id}$ と (1) の $s_1s_2s_1=s_2s_1s_2$ から以下のようになるので, s_1s_2 の位数は 3.

$$(s_1s_2)^2 = (s_1s_2s_1)s_2 = (s_2s_1s_2)s_2 = s_2s_1 \neq id, \quad (s_1s_2)^3 = (s_1s_2)(s_2s_1) = id$$

(3) 部分群は以下の6個. このうち可換群なのは S_3 以外の5つ. 実際, その5つは全て巡回群である.

 $\{id\}$, $\{id, s_1\}$, $\{id, s_2\}$, $\{id, s_1s_2s_1\}$, $\{id, s_1s_2, s_2s_1\}$, $S_3 = \{id, s_1, s_2, s_1s_2s_1, s_1s_2, s_2s_1\}$. (これで部分群が尽くされることを示すには、次のように議論すれば良い:

 $s_3 := s_1 s_2 s_1 = s_2 s_1 s_2$, $c := s_1 s_2$ とおく. $s_2 s_1 = c^2$ より $S_3 = \{ \mathrm{id}, s_1, s_2, s_3, c, c^2 \}$ と書ける.

位数 2 の元は s_1, s_2, s_3 の 3 つ,位数 3 の元は c, c^2 の 2 つ.これらがそれぞれ生成する部分群は $\{id, s_1\}$, $\{id, s_2\}$, $\{id, s_3\}$, $\{id, c, c^2\}$ の 4 つ.

部分群 $H \subset S_3$ が位数 2 の異なる $2 \pi s, s'$ を含むと仮定する. 残りの位数 2 の元は s と s' のいくつかの積で書ける. また積 ss' は c または c^2 である. 従って必ず $H = S_3$ となる.

次に部分群 $H \subset S_3$ が位数 2 の元 s と位数 3 の元 t を含むとする. 積 st は位数 2 の元 $s' \neq s$ になるので、再び s,s' について前の議論を適用して、 $H=S_3$ となることが分かる.)

3.4 直積群, 群の同型

問題 3.10. 略.

問題 3.11. 問題 3.5 の群 G の生成元 ζ_n を用いて、写像 $f:G\to \mathbb{Z}/n\mathbb{Z}$ を $f(\zeta_n^k):=k \bmod n$ で定めると、これは群の同型写像を与える.

問題 3.12. $G := (\mathbb{Z}/3\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$ が位数 6 の巡回群であることを示せばよい. $\mathbb{Z}/3\mathbb{Z} = \langle a \rangle$, $\mathbb{Z}/2\mathbb{Z} = \langle b \rangle$ と書く. ただし $a^3 = 1$, $b^2 = 1$. このとき $G = \langle a \rangle \times \langle b \rangle$ の積は $(a^i, b^j) \cdot (a^k, b^l) = (a^{i+k}, b^{j+l})$ と書ける. ここで $\alpha := (a,b) \in \langle a \rangle \times \langle b \rangle$ とおけば $\langle \alpha \rangle = \{1,\alpha,\ldots,\alpha^5\} = G$ が成り立つ. よって G は $\mathbb{Z}/6\mathbb{Z}$ と同型である.

問題 3.13. $\mathbb{Z}/8\mathbb{Z}$ と $(\mathbb{Z}/4\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$ は可換群である. 一方で, D_4 は可換群ではない. 実際, 問題 3.7 の記号で $ab=ba^{-1}=ba^3\neq ba$. よって, 最初の 2 つの群と D_4 は同型とはならない.

次に、 $\mathbb{Z}/8\mathbb{Z}$ と $(\mathbb{Z}/4\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$ が同型でないこと示す.そのためには $(\mathbb{Z}/4\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$ が巡回群でないことを示せばよい.問題 3.12 の解答と同様に $(\mathbb{Z}/4\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z}) = \langle a \rangle \times \langle b \rangle$ と書く.ただし $a^4 = b^2 = 1$ である.このとき,任意の元 $\alpha = (a^i,b^j) \in \langle a \rangle \times \langle b \rangle$ に対して $\alpha^4 = (a^{4i},b^{4j}) = (1,1)$ が成り立つので,8 乗して初めて単位元になるような元は存在しない.よって $(\mathbb{Z}/4\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$ は巡回群ではない.