Summary and Problems of Lecture $4^{* 1}$

Shintaro YANAGIDA (office: A441)
yanagida [at] math.nagoya-u.ac.jp
https://www.math.nagoya-u.ac.jp/~yanagida
The assignmentsare Exercises 4.1-4.6. The deadline of the report is October 29th (Monday).

Correction of §2.2 Definition and Exercise 2.4.

The power of t in $A_{I}(x ; t)$ was wrong.

$$
D_{x}^{(r)}=\sum_{I \subset\{1, \ldots, n\},|I|=r} A_{I}(x ; t) T_{q, x}^{I}, \quad A_{I}(x ; t):=\underset{\sim}{\binom{r}{2}} \prod_{i \in I, j \notin I} \frac{t x_{i}-x_{j}}{x_{i}-x_{j}} .
$$

4 Koornwinder polynomials

4.1 Macdonald polynomials for $R=\mathrm{BC}_{n}$

We consider the Macdonald polynomial of the admissible pair $(R, S)=\left(\mathrm{BC}_{n}, \mathrm{~B}_{n}\right)$. Let us use the description of BC_{n} given in $\S 3.1$.

$$
\begin{aligned}
V & :=\mathbb{R}^{n}=\oplus_{i=1}^{n} \mathbb{R} \varepsilon_{i}, \quad L:=\oplus_{i=1}^{n} \mathbb{Z} \varepsilon_{i}, \\
R & :=\{v \in V \mid(v, v)=1,2 \text { or } 4\} \cap L=R\left(\mathrm{~B}_{n}\right) \cup R\left(\mathrm{C}_{n}\right) \\
& =\left\{ \pm \varepsilon_{i} \mid 1 \leq i \leq n\right\} \cup\left\{ \pm \varepsilon_{i} \pm \varepsilon_{j} \mid 1 \leq i<j \leq n\right\} \cup\left\{ \pm 2 \varepsilon_{i} \mid 1 \leq i \leq n\right\}, \\
W & \simeq S_{n} \ltimes(\{ \pm 1\})^{n}, \quad \text { acting on } V \text { by permuting } \varepsilon_{i} \text { 's and } \varepsilon_{i} \mapsto-\varepsilon_{i} .
\end{aligned}
$$

The weight lattice P, the root lattice Q, and etc. of R are given by

$$
\begin{aligned}
& P=Q=\sum_{i=1}^{n} \mathbb{Z} \varepsilon_{i} . \\
& A:=\mathbb{C}[P]=\mathbb{C} \text {-span of }\left\{e^{\lambda} \mid \lambda \in P\right\} . \\
& R^{+}:=\left\{\varepsilon_{i}\right\} \cup\left\{\varepsilon_{i} \pm \varepsilon_{j} \mid i<j\right\} \cup\left\{2 \varepsilon_{i}\right\} . \\
& P^{+}=\left\{m_{1} \varepsilon_{1}+\cdots+m_{n} \varepsilon_{n} \mid m_{i} \in \mathbb{N}, m_{1} \geq m_{2} \geq \cdots \geq m_{n}\right\} . \\
& Q^{+}=\left\{m_{1}\left(\varepsilon_{1}-\varepsilon_{2}\right)+\cdots+m_{n-1}\left(\varepsilon_{n-1}-\varepsilon_{n}\right)+m_{n} \varepsilon_{n} \mid m_{i} \in \mathbb{N}\right\} .
\end{aligned}
$$

Recall that the dominance order on P is given by $\lambda \geq \mu \Longleftrightarrow \lambda-\mu \in Q^{+}$.
To define the weight function for BC_{n} we set

$$
R_{1}^{+}:=\left\{2 \varepsilon_{i} \mid 1 \leq i \leq n\right\}, \quad R_{2}^{+}:=\left\{\varepsilon_{i} \pm \varepsilon_{j} \mid 1 \leq i<j \leq n\right\} .
$$

Definition. Fix $q \in(0,1)$ and $a, b, c, d, t \in \mathbb{C}$. The weight function $\Delta(x)$ on V is defined to be

$$
\Delta(x):=\Delta^{+}(x) \overline{\Delta^{+}(x)}, \quad \Delta^{+}:=\prod_{\alpha \in R_{1}^{+}} \frac{\left(e^{\alpha} ; q\right)_{\infty}}{\left(a e^{\alpha / 2}, b e^{\alpha / 2}, c e^{\alpha / 2}, d e^{\alpha / 2} ; q\right)_{\infty}} \prod_{\alpha \in R_{2}^{+}} \frac{\left(e^{\alpha} ; q\right)_{\infty}}{\left(t e^{\alpha} ; q\right)_{\infty}} .
$$

[^0]The pairing $\langle\cdot, \cdot\rangle$ on A^{W} to be

$$
\langle f, g\rangle:=\int_{T} f(\dot{x}) g(\dot{x}) \Delta(\dot{x}) d \dot{x}
$$

where $T=V / 2 \pi Q^{\vee}=\prod_{i=1}^{n}\left(\mathbb{R} \varepsilon_{i} / 2 \pi \mathbb{Z} \varepsilon_{i}\right)$, and $d \dot{x}$ is the normalized Haar measure on T.
Recall that for $\lambda \in P$ we defined

$$
m_{\lambda}=\sum_{\mu \in W \cdot \lambda} e^{\mu} \in A^{W}
$$

Theorem 4.1. Assume a, b, c, d satisfy the following three conditions.

- $a, b, c, d \in \mathbb{R}$, or $a, b, c, d \in \mathbb{C}$ appearing in complex conjugate pairs,
- $|a|,|b|,|c|,|d| \leq 1$,
- none of pairwise products of a, b, c, d is ≥ 1.

Then for each $\lambda \in P^{+}$there exists a unique $P_{\lambda} \in A^{W}$ satisfying the following two conditions.
(i) $P_{\lambda}=m_{\lambda}+\sum_{\mu<\lambda} c_{\lambda, \mu} m_{\mu}$ with some $c_{\lambda, \mu} \in \mathbb{C}$.
(ii) $\left\langle P_{\lambda}, m_{\mu}\right\rangle=0$ for $\mu \in P^{+}$with $\mu<\lambda$.

This P_{λ} is called the Koornwinder polynomial.

4.2 $\quad \mathrm{BC}_{1}$ case $=$ Askey-Wilson polynomial

Let us apply the argument of the previous $\S 4.1$ to the case BC_{1}. We have

$$
\begin{aligned}
& R=\left\{ \pm \varepsilon_{1}, \pm 2 \varepsilon_{1}\right\} \subset V=\mathbb{R} \varepsilon_{1} \curvearrowleft W=\{ \pm 1\}, \quad \varepsilon_{1} \mapsto \pm \varepsilon_{1} \\
& P=\mathbb{Z} \varepsilon_{1} \supset P^{+}=\mathbb{N} \varepsilon_{1}, \quad A=\mathbb{C}\left[e^{ \pm \varepsilon_{1}}\right]
\end{aligned}
$$

The monomial function m_{λ} for $\lambda=l \varepsilon_{1}$ is given by

$$
m_{l \varepsilon 1}(x):= \begin{cases}e^{i l x}+e^{-i l x} & (l=1,2, \ldots) \\ 1 & (l=0)\end{cases}
$$

with $x \in \mathbb{R}=V$. The weight function $\Delta^{+}(x)$ is given by

$$
\Delta^{+}(x)=\frac{\left(e^{2 i x} ; q\right)_{\infty}}{\left(a e^{i x}, b e^{i x}, c e^{i x}, d e^{i x} ; q\right)_{\infty}}
$$

Definition. The basic hypergeometric series is defined to be

$$
{ }_{r} \phi_{s}\left[\begin{array}{c}
a_{1}, a_{2}, \ldots, a_{r} \tag{4.1}\\
b_{1}, \ldots, b_{s}
\end{array} ; q, z\right]:=\sum_{n=0}^{\infty} \frac{\left(a_{1}, \ldots, a_{r} ; q\right)_{n}}{\left(b_{1}, \ldots, b_{s} ; q\right)_{n}}\left((-1)^{n} q^{\binom{n}{2}}\right)^{1+s-r} \frac{z^{n}}{(q ; q)_{n}} .
$$

We always assume that no zeros appear in the denominatorof (4.1).
Exercise 4.1 (**). Show the following convergence condition of the basic hypergeometric series: If $r \geq s$, the series (4.1) converges for any z if $|q|<1$. If $r=s-1$, then it converges for $|z|<1$.

Definition. For $l \in \mathbb{N}$, the Askey-Wilson polynomial is defined to be

$$
P_{l}(y ; a, b, c, d \mid q):=a^{-l} \frac{(a b, a c, a d ; q)_{l}}{(a b c d ; q)_{l}} \cdot{ }_{4} \phi_{3}\left[\begin{array}{c}
q^{-l}, q^{l-1} a b c d, a z, a z^{-1} \\
a b, a c, a d
\end{array} ; q, q\right]
$$

where we set $y=\left(z+z^{-1}\right) / 2$.

Exercise 4.2 (*). Check that $P_{l}(y ; a, b, c, d \mid q)$ is a polynomial of degree l in terms of y.
Theorem. The Koornwinder polynomial of BC_{1} is equal to the Askey-Wilson polynomial. Precisely speaking, setting $y=\left(e^{i x}+e^{-i x}\right) / 2$, we have

$$
P_{l \varepsilon_{1}}(x)=P_{l}(y ; a, b, c, d \mid q)
$$

4.3 Wilson and Jacobi polynomials

Definition. The (generalized) hypergeometric series is defined to be

$$
{ }_{r} F_{s}\left[\begin{array}{c}
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r} \\
\beta_{1}, \ldots, \beta_{s}
\end{array} ; x\right]:=\sum_{n=0}^{\infty} \frac{\left(\alpha_{1}\right)_{n} \cdots\left(\alpha_{r}\right)_{n}}{\left(\beta_{1}\right)_{n} \cdots\left(\beta_{s}\right)_{n}} \frac{x^{n}}{n!}
$$

where we used

$$
(\alpha)_{0}:=1, \quad(\alpha)_{n}:=\alpha(\alpha+1) \cdots(\alpha+n-1)
$$

The case $(r, s)=(2,1)$ is the Gauss hypergeometric function(Gauss HGF in short).
Exercise $4.3(*)$. Assume $\alpha, \beta, \gamma \in \mathbb{C}$ with $\gamma \notin\{-1,-2,-3, \ldots\}$. Show that the series

$$
{ }_{2} F_{1}(a, b ; c ; x)=\sum_{n \geq 0} \frac{(a)_{n}(b)_{n}}{(1)_{n}(c)_{n}} x^{n}=1+\frac{a b}{c} x+\frac{a(a+1) b(b+1)}{2 c(c+1)} x^{2}+\cdots
$$

converges for $|x|<1$, and that it is a solution of the Gauss hypergeometric differential equation:

$$
x(1-x) \frac{d^{2} y}{d x^{2}}+(c-(a+b+1) x) \frac{d y}{d x}-a b y=0
$$

Exercise $4.4(*)$. Assume $|x|<1$. Show that the limit of ${ }_{2} \phi_{1}$ under $q \rightarrow 1$ is the Gauss HGF:

$$
\lim _{q \rightarrow 1}{ }_{2} \phi_{1}\left[\begin{array}{c}
q^{\alpha}, q^{\beta} \\
q^{\gamma}
\end{array} ; q, x\right]={ }_{2} F_{1}(\alpha, \beta ; \gamma ; x)
$$

Remark. ${ }_{2} \phi_{1}$ is called Heine's q-hypergeometric series after the work of E. Heine in 1840s.
Proposition. Set $a=q^{\alpha}, b=q^{\beta}, c=q^{\gamma}, d=q^{\delta}$ and $y=z+z^{-1}=q^{i x}+q^{-i x}$. Then we have

$$
\lim _{q \rightarrow 1} P_{n}(y ; a, b, c, d \mid q)=(\alpha+\beta)_{n}(\alpha+\gamma)_{n}(\alpha+\delta)_{n} \cdot{ }_{4} F_{3}\left[\begin{array}{c}
-n, \alpha+\beta+\gamma+\delta+n-1, \alpha+i x, \alpha-i x \\
\alpha+\beta, \alpha+\gamma, \alpha+\delta
\end{array}\right]
$$

The right hand side is called the Wilson polynomial.
Definition. The Jacobi polynomial $P_{n}^{(\alpha, \beta)}(z)$ is defined as a specialization of Gauss HGF.

$$
P_{n}^{(\alpha, \beta)}(z):=\frac{(\alpha+1)_{n}}{(1)_{n}}{ }_{2} F_{1}\left(-n, \alpha+\beta+n+1 ; \alpha+1 ; \frac{1}{2}(1-z)\right)
$$

Remark. The Jacobi polynomial $P_{n}^{(\alpha, \beta)}(z)$ can be obtained from the Wilson polynomial $p_{n}(x ; \alpha, \beta, \gamma, \delta)$ by setting $\gamma=\bar{\delta}:=b+i N, x:=i N z$, then taking the limit $N \rightarrow \infty$, and replacing parameters $(\alpha+\beta, b) \mapsto(\alpha, \beta)$.

Since $(-n)_{k}=0$ for $k>n, P_{n}^{(\alpha, \beta)}(z)$ is a terminate series, in other words a polynomial, of degree n.

$$
\begin{align*}
P_{n}^{(\alpha, \beta)}(z) & =\frac{(\alpha+1)_{n}}{(1)_{n}} \sum_{k=0}^{n} \frac{(-n)_{k}(\alpha+\beta+n+1)_{k}}{(1)_{k}(\alpha+1)_{k}}\left(\frac{1-z}{2}\right)^{k} \tag{4.2}\\
& =\frac{(\alpha+1)_{n}}{(1)_{n}} \sum_{k=0}^{n}\binom{n}{k} \frac{(\alpha+\beta+n+1)_{k}}{(\alpha+1)_{k}}\left(\frac{z-1}{2}\right)^{k} .
\end{align*}
$$

Exercise 4.5 (*). Check the following Rodrigues formula.

$$
\begin{equation*}
P_{n}^{(\alpha, \beta)}(z)=\frac{(-1)^{n}}{2^{n}(1)_{n}}(1-z)^{-\alpha}(1+z)^{-\beta} \frac{d^{n}}{d z^{n}}\left((1-z)^{\alpha}(1+z)^{\beta}\left(1-z^{2}\right)^{n}\right) \tag{4.3}
\end{equation*}
$$

Remark. Setting $\alpha=\beta=0$ in the Rodrigues formula (4.3), we see that the Jacobi polynomial reduces to the Legendre polynomial.

$$
P_{n}^{(0,0)}(z)=\frac{1}{2^{n} n!} \frac{d^{n}}{d z^{n}}\left(\left(1-z^{2}\right)^{n}\right)
$$

Proposition 4.2. The Jacobi polynomials enjoy the following orthogonality condition.

$$
\begin{equation*}
\int_{-1}^{1}(1-x)^{\alpha}(1+x)^{\beta} P_{m}^{(\alpha, \beta)}(x) P_{n}^{(\alpha, \beta)}(x) d x=\delta_{m, n} I_{n} \tag{4.4}
\end{equation*}
$$

where

$$
I_{n}:=\frac{2^{\alpha+\beta+1}}{\alpha+\beta+2 n+1} \frac{\Gamma(\alpha+n+1) \Gamma(\beta+n+1)}{\Gamma(n+1) \Gamma(\alpha+\beta+n+1)}
$$

Exercise $4.6(* *)$. Show Proposition 4.2 directly by taking the following steps.
(1) Using the Rodrigues formula (4.3) and integration by parts, show that for any polynomial $Q(x)$ of degree $m \leq n$, we have

$$
\int_{-1}^{1}(1-x)^{\alpha}(1+x)^{\beta} P_{n}^{(\alpha, \beta)}(x) Q(x) d x=\frac{1}{2^{n} n!} \int_{-1}^{1} Q^{(n)}(x)(1-x)^{\alpha+n}(1+x)^{\beta+n} d x
$$

(2) Set $I_{m, n}:=\left(\right.$ LHS of (4.4)). Shows that $I_{m, n}=0$ for $m \neq n$.
(3) In the case $m=n$, the calculation in (1) will give

$$
\int_{-1}^{1}(1-x)^{\alpha}(1+x)^{\beta}\left(P_{n}^{(\alpha, \beta)}(x)\right)^{2} d x=\frac{1}{2^{n} n!} \int_{-1}^{1}(1-x)^{\alpha+n}(1+x)^{\beta+n} \frac{d^{n}}{d x^{n}}\left(P_{n}^{(\alpha, \beta)}(x)\right) d x .
$$

Since $P_{n}^{(\alpha, \beta)}(x)$ is a polynomial of degree n, it is enough to calculate its top term $k_{n} x^{n}$. Using the expression (4.2), check that

$$
k_{n}=\frac{1}{2^{n}} \frac{\Gamma(\alpha+\beta+2 n+1)}{\Gamma(n+1) \Gamma(\alpha+\beta+n+1)}
$$

(4) Using the beta integral

$$
B(a, b):=\int_{0}^{1} x^{a-1}(1-x)^{b-1} d x=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)},
$$

show that $I_{n, n}=I_{n}$.

[^0]: ${ }^{* 1}$ 2018/10/16, ver. 0.2 .

