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Lecture 4: Koornwinder polynomials *1
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4 Koornwinder polynomials

4.1 Macdonald polynomials for R = BCn

This subsection follows [K92, §5].
Recall that for an admissible pair (R,S) of root systems one can construct the Macdonald polynomials

Pλ for λ ∈ P = the weight lattice of R. Let us study the Macdonald polynomial in the case R being

irreducible but not reduced. By the classification of admissible pairs in §3.2, we have R = BCn.

Let us use the description of BCn given in §3.1.

V :=Rn = ⊕n
i=1Rεi, L := ⊕n

i=1Zεi,
R := {v ∈ V | (v, v) = 1, 2 or 4} ∩ L = R(Bn) ∪R(Cn)

= {±εi | 1 ≤ i ≤ n} ∪ {±εi ± εj | 1 ≤ i < j ≤ n} ∪ {±2εi | 1 ≤ i ≤ n},
W ≃Sn ⋉ ({±1})n, acting on V by permuting εi’s and εi 7→ −εi.

The weight lattice P and the root lattice Q of R are given by

P = Q =
∑n

i=1Zεi,

and we have
A := C[P ] = C-span of {eλ | λ ∈ P}.

As for the set of positive roots, we put

R+ := {εi} ∪ {εi ± εj | i < j} ∪ {2εi}.

Then we have

P+ = {m1ε1 + · · ·+mnεn | mi ∈ N, m1 ≥ m2 ≥ · · · ≥ mn},
Q+ = {m1(ε1 − ε2) + · · ·+mn−1(εn−1 − εn) +mnεn | mi ∈ N}.

Recall that the dominance order on P is given by λ ≥ µ ⇐⇒ λ− µ ∈ Q+.

To define the weight function for BCn we set

R+
1 := {2εi | 1 ≤ i ≤ n}, R+

2 := {εi ± εj | 1 ≤ i < j ≤ n}.

Definition. Fix q ∈ (0, 1) and a, b, c, d, t ∈ C. The weight function ∆(x) on V is defined to be

∆(x) := ∆+(x)∆+(x), ∆+ :=
∏

α∈R+
1

(eα; q)∞
(aeα/2, beα/2, ceα/2, deα/2; q)∞

∏
α∈R+

2

(eα; q)∞
(teα; q)∞

.

*1 2018/09/26, ver. 0.2.
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The pairing ⟨·, ·⟩ on AW to be

⟨f, g⟩ :=

∫
T

f(ẋ)g(ẋ)∆(ẋ) dẋ,

where T = V/2πQ∨ =
∏n

i=1(Rεi/2πZεi), and dẋ is the normalized Haar measure on T .

Recall that for λ ∈ P we defined
mλ =

∑
µ∈W.λ

eµ ∈ AW .

Theorem 4.1 ([K92, §5]). Assume a, b, c, d satisfy the following three conditions.

• a, b, c, d ∈ R, or a, b, c, d ∈ C appearing in complex conjugate pairs,

• |a|, |b|, |c|, |d| ≤ 1,

• none of pairwise products of a, b, c, d is ≥ 1.

Then for each λ ∈ P+ there exists a unique Pλ ∈ AW satisfying the following two conditions.

(i) Pλ = mλ +
∑

µ<λ cλ,µmµ with some cλ,µ ∈ C.
(ii) ⟨Pλ,mµ⟩ = 0 for µ ∈ P+ with µ < λ.

This Pλ is called the Koornwinder polynomial.

Theorem 4.2 ([K92, §5]). The Koornwinder polynomials {Pλ | λ ∈ P+} form an orthogonal system

with respect to the pairing ⟨·, ·, ⟩.
⟨Pλ, Pµ⟩ = 0 λ ̸= µ.

Remark. For the more detailed discussion, see [M03, Chap.5].

4.2 BC1 case = Askey-Wilson polynomial

Let us apply the argument of the previous §4.1 to the case BC1. We have

R = {±ε1,±2ε1} ⊂ V = Rε1 ↶ W = {±1}, ε1 7→ ±ε1,

P = Zε1 ⊃ P+ = Nε1, A = C[e±ε1 ].

The monomial function mλ for λ = lε1 is given by

mlε1(x) :=

{
eilx + e−ilx (l = 1, 2, . . .)

1 (l = 0)

with x ∈ R = V . The weight function ∆+(x) is given by

∆+(x) =
(e2ix; q)∞

(aeix, beix, ceix, deix; q)∞
.

An explicit expression of the Koornwinder polynomial Plε1(x) is known. To explain it, we prepare

Definition. The basic hypergeometric series*2 is defined to be

rϕs

[a1, a2, . . . , ar
b1, . . . , bs

; q, z
]
:=

∞∑
n=0

(a1, . . . , ar; q)n
(b1, . . . , bs; q)n

(
(−1)nq(

n
2)
)1+s−r zn

(q; q)n
. (4.1)

*2 hypergeometric series は超幾何級数. basicの訳語は特に無く, かわりに q 超幾何級数と言ったりする.
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We always assume that no zeros appear in the denominator*3 of (4.1).

Exercise 4.1 (∗∗). Show the following convergence condition of the basic hypergeometric series: If

r ≥ s, the series (4.1) converges for any z if |q| < 1. If r = s− 1, then it converges for |z| < 1.

Definition ([AW85, (1.15)]). For l ∈ N, the Askey-Wilson polynomial is defined to be

Pl(y; a, b, c, d | q) := a−l (ab, ac, ad; q)l
(abcd; q)l

· 4ϕ3

[
q−l, ql−1abcd, az, az−1

ab, ac, ad
; q, q

]
,

where we set y = (z + z−1)/2.

Remark. We slightly changed normalization from [AW85] so that the condition (i) of Theorem 4.1 is

satisfied.

Exercise 4.2 (∗). Check that Pl(y; a, b, c, d | q) is a polynomial of degree l in terms of y.

Theorem. The Koornwinder polynomial of BC1 is equal to the Askey-Wilson polynomial. Precisely

speaking, setting y = (eix + e−ix)/2, we have

Plε1(x) = Pl(y; a, b, c, d | q).

The orthogonality of the Koornwinder polynomial (Theorem 4.2) implies

Proposition 4.3 ([AW85, Theorem 2.2]). Assume the same conditions on a, b, c, d as in Theorem 4.1.

Then we have ∫ 1

−1

Pm(y; a, b, c, d | q)Pn(y; a, b, c, d | q)
w(y)

2π
√

1− y2
dy = 0, m ̸= n,

where

w(y) :=

∏∞
k=0(1− (2y2 − 1)qk + q2k)

h(y, a)h(y, b)h(y, c)h(y, d)
, h(y, a) :=

∞∏
k=0

(1− 2ayqk + a2q2k).

Remark. For the more detailed discussion, see [M03, §§6.4–6.5].

4.3 Wilson and Jacobi polynomials

Finally we treat the “Schur limit” of the Askey-Wilson polynomial. It gives rise to the classical

orthogonal polynomial called Jacobi polynomial.

Definition. The (generalized) hypergeometric series is defined to be

rFs

[α1, α2, . . . , αr

β1, . . . , βs
;x

]
:=

∞∑
n=0

(α1)n · · · (αr)n
(β1)n · · · (βs)n

xn

n!
,

where we used
(α)0 := 1, (α)n := α(α+ 1) · · · (α+ n− 1).

The case (r, s) = (2, 1) is the Gauss hypergeometric function*4(Gauss HGF in short).

*3 分母
*4 Gaussの超幾何関数
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Exercise 4.3 (∗). Assume α, β, γ ∈ C with γ /∈ {−1,−2,−3, . . .}. Show that the series

2F1(a, b; c;x) =
∑
n≥0

(a)n(b)n
(1)n(c)n

xn = 1 +
ab

c
x+

a(a+ 1)b(b+ 1)

2c(c+ 1)
x2 + · · ·

converges for |x| < 1, and that it is a solution of the Gauss hypergeometric differential equation

*5:

x(1− x)
d2y

dx2
+ (c− (a+ b+ 1)x)

dy

dx
− aby = 0.

The following exercise shows that the basic hypergeometric series is a q-analogue*6of the hypergeo-

metric series.

Exercise 4.4 (∗). Assume |x| < 1. Show that the limit of 2ϕ1 under q → 1 is the Gauss HGF:

lim
q→1

2ϕ1

[
qα, qβ

qγ
; q, x

]
= 2F1(α, β; γ;x).

Remark. 2ϕ1 is called Heine’s q-hypergeometric series after the work of E. Heine in 1840s. For

more details about basic hypergeometric series, see [GR04].

Let us calculate the q → 1 limit of the Askey-Wilson polynomial Pn(y; a, b, c, d | q).

Proposition. Set a = qα, b = qβ , c = qγ , d = qδ and y = z + z−1 = qix + q−ix. Then we have

lim
q→1

Pn(y; a, b, c, d | q) = (α+ β)n(α+ γ)n(α+ δ)n · 4F3

[−n, α+ β + γ + δ + n− 1, α+ ix, α− ix
α+ β, α+ γ, α+ δ

; 1
]
.

The right hand side*7is called the Wilson polynomial.

Here we treat a degenerate version of Wilson polynomial.

Definition. The Jacobi polynomial P
(α,β)
n (z) is defined as a specialization of Gauss HGF.

P (α,β)
n (z) :=

(α+ 1)n
(1)n

2F1

(
−n, α+ β + n+ 1;α+ 1;

1

2
(1− z)

)
.

Remark. The Jacobi polynomial P
(α,β)
n (z) can be obtained from the Wilson polynomial pn(x;α, β, γ, δ)

by setting γ = δ := b + iN , x := iNz, then taking the limit N → ∞, and replacing parameters

(α+ β, b) 7→ (α, β).

Since (−n)k = 0 for k > n, P
(α,β)
n (z) is a terminate series, in other words a polynomial, of degree n.

P (α,β)
n (z) =

(α+ 1)n
(1)n

n∑
k=0

(−n)k(α+ β + n+ 1)k
(1)k(α+ 1)k

(1− z

2

)k

=
(α+ 1)n
(1)n

n∑
k=0

(
n

k

)
(α+ β + n+ 1)k

(α+ 1)k

(z − 1

2

)k

.

(4.2)

*5 超幾何微分方程式
*6 q 類似
*7 右辺
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Exercise 4.5 (∗). Check the following Rodrigues formula.

P (α,β)
n (z) =

(−1)n

2n(1)n
(1− z)−α(1 + z)−β dn

dzn

(
(1− z)α(1 + z)β(1− z2)n

)
. (4.3)

Remark. Setting α = β = 0 in the Rodrigues formula (4.3), we see that the Jacobi polynomial reduces

to the Legendre polynomial.

P (0,0)
n (z) =

1

2nn!

dn

dzn

(
(1− z2)n

)
.

The orthogonality of the Askey-Wilson polynomials (Proposition 4.3) implies

Proposition 4.4. The Jacobi polynomials enjoy the following orthogonality condition.∫ 1

−1

(1− x)α(1 + x)βP (α,β)
m (x)P (α,β)

n (x) dx = δm,nIn, (4.4)

where

In :=
2α+β+1

α+ β + 2n+ 1

Γ(α+ n+ 1)Γ(β + n+ 1)

Γ(n+ 1)Γ(α+ β + n+ 1)
.

Exercise 4.6 (∗∗). Show Proposition 4.4 directly by taking the following steps.

(1) Using the Rodrigues formula (4.3) and integration by parts, show that for any polynomial Q(x)

of degree m ≤ n, we have∫ 1

−1

(1− x)α(1 + x)βP (α,β)
n (x)Q(x) dx =

1

2nn!

∫ 1

−1

Q(n)(x) (1− x)α+n(1 + x)β+n dx.

(2) Set Im,n := (LHS*8of (4.4)). Shows that Im,n = 0 for m ̸= n.

(3) In the case m = n, the calculation in (1) will give∫ 1

−1

(1− x)α(1 + x)β
(
P (α,β)
n (x)

)2
dx =

1

2nn!

∫ 1

−1

(1− x)α+n(1 + x)β+n dn

dxn

(
P (α,β)
n (x)

)
dx.

Since P
(α,β)
n (x) is a polynomial of degree n, it is enough to calculate its top term knx

n. Using the

expression (4.2), check that

kn =
1

2n
Γ(α+ β + 2n+ 1)

Γ(n+ 1)Γ(α+ β + n+ 1)
.

(4) Using the beta integral

B(a, b) :=

∫ 1

0

xa−1(1− x)b−1 dx =
Γ(a)Γ(b)

Γ(a+ b)
,

show that In,n = In.

4.4 Askey scheme

We close Part I lectures by mentioning the Askey scheme of hypergeometric orthogonal polynomials.

In the last subsection we treated two orthogonal polynomials: Wilson and Jacobi polynomials. They

are placed in the following degenerate diagram of orthogonal polynomials which can be expressed as

hypergeometric series. There also exists a q-version of the Askey scheme. See [K94] for the detail.

*8 left hand side = 左辺.
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Figure 1 Askey scheme
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