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4 Koornwinder polynomials
4.1 Macdonald polynomials for R = BC,,

This subsection follows [K92, §5].

Recall that for an admissible pair (R, .S) of root systems one can construct the Macdonald polynomials
P, for A € P = the weight lattice of R. Let us study the Macdonald polynomial in the case R being
irreducible but not reduced. By the classification of admissible pairs in §3.2, we have R = BC,,.

Let us use the description of BC,, given in §3.1.

V :=R" = @' Re;, L := §]_Ze;,
R:={veV]|(wv)=12o0r4}NL = R(B,)URC,)

={xe;|1<i<n}U{fe;+¢;|1<i<j<n}U{*2,;|1<i<n},
W ~S, x ({£1})", acting on V by permuting ¢;’s and ; — —¢;.

The weight lattice P and the root lattice @) of R are given by
P = Q = Z?ZIZE%

and we have
A := C[P] = C-span of {¢* | A\ € P}.

As for the set of positive roots, we put
RT = {61} U {62' + €j | 1< j} U {251}
Then we have

Pt = {mie1+ 4+ mpen |m; EN, my >mag > -+ >my,},

QT = {mi(e1 —e2) + -+ mp_1(en_1 — n) + Mmpe, | m; € N}

Recall that the dominance order on P is given by A >y <= A —puec Q™.
To define the weight function for BC,, we set

R ={2;|1<i<n}, Ry :={ei+e|1<i<j<n}

Definition. Fix ¢ € (0,1) and a,b,¢,d,t € C. The weight function A(z) on V is defined to be

A+ + (e(X;(Doo (ea§Q)oo
A(QE) = A (!E)A+ (il?), AT = H (aea/2 be/2 ce/2 de/2- q)oo H (tea. q)oo .
a€RY ’ ’ ’ ’ a€RY ’

*12018/09/26, ver. 0.2.
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The pairing (-,-) on AW to be

(1) = [ F@)9(@)A@) b
T
where T' = V/27Q" =[]\, (Re;/2nZe;), and di is the normalized Haar measure on T'.

Recall that for A € P we defined
my = Z et e AV,

peEW.A

Theorem 4.1 ([K92, §5]). Assume a, b, ¢, d satisfy the following three conditions.
e a.b,c,d e R, ora,b,c,d € C appearing in complex conjugate pairs,
o lal, bl el |d] < 1,
e none of pairwise products of a,b,c,d is > 1.
Then for each A € PT there exists a unique Py € AW satisfying the following two conditions.
(i) P =my + ZN<A exumy, with some ¢y, € C.
(ii) (Px,my) =0 for p € PT with g < A.

This P, is called the Koornwinder polynomial.

Theorem 4.2 ([K92, §5]). The Koornwinder polynomials {Py | A € P*} form an orthogonal system

with respect to the pairing (-, -, ).
(P P) =0 A#p.

Remark. For the more detailed discussion, see [M03, Chap.5].

4.2 BC; case = Askey-Wilson polynomial

Let us apply the argument of the previous §4.1 to the case BC;. We have
R = {#e1,+2e1} CV = Rey ~ W = {£1}, &1 — +ey,
P = Ze D pt = Ne;, A= (C[eisl].

The monomial function my for A = le; is given by
el pemilr (1=1,2,..))
mye, (z) =
ter (@) {1 (1=0)
with 2 € R = V. The weight function A™(z) is given by

(€*7:q) oo

AT = _ : : . )
(z) (ae® bet® cet® de'™; q) oo

An explicit expression of the Koornwinder polynomial Py, () is known. To explain it, we prepare

Definition. The basic hypergeometric series*? is defined to be

ay, az a > (al aq) (n) 14+s—r z
r s ’ ge ey 'r‘; ) — %1y -5 Gy Yn _1 n n )
¢[ bl,...,bs qz} Z(blv-“vbs;Q)n(( )q :

n=0

*2 hypergeometric series |3 MMHEL. basic DFRFEIFRFHTEL, b D IT ¢ BRI E E 5720 T 5.
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We always assume that no zeros appear in the denominator*3 of (4.1).

Exercise 4.1 (xx). Show the following convergence condition of the basic hypergeometric series: If

r > s, the series (4.1) converges for any z if |¢| < 1. If r = s — 1, then it converges for |z| < 1.

Definition ([AWS5, (1.15)]). For [ € N, the Askey-Wilson polynomial is defined to be

l 1

¢ Yabed, az, az™
14,41,

. _ g-labacadiq) "
Pl(yvavb>c7d|q) =a 473 ab,ac,ad

(abed; ),
where we set y = (2 + 271)/2.

Remark. We slightly changed normalization from [AW85] so that the condition (i) of Theorem 4.1 is
satisfied.

Exercise 4.2 (x). Check that P,(y;a,b,c,d|q) is a polynomial of degree I in terms of y.
Theorem. The Koornwinder polynomial of BC; is equal to the Askey-Wilson polynomial. Precisely
speaking, setting y = (' + e~%*)/2, we have
Pie,(x) = Pi(y;a,b,¢,d|q).
The orthogonality of the Koornwinder polynomial (Theorem 4.2) implies

Proposition 4.3 ([AWS85, Theorem 2.2]). Assume the same conditions on a,b, ¢,d as in Theorem 4.1.

Then we have

1
/ Pn,(y;CL,b,C,dlq)Pn(y;CL,ZLC,d‘q)%dy:0, m?énv

-1 2m/1 — y?

where

wly) = [Tso(1 — (25" — 1)¢" +¢**)
" h(y,a)h(y,b)h(y,c)h(y, d)

. h(ya) =[] - 2ayd" + a*¢*).
k=0

Remark. For the more detailed discussion, see [M03, §§6.4-6.5].

4.3  Wilson and Jacobi polynomials

Finally we treat the “Schur limit” of the Askey-Wilson polynomial. It gives rise to the classical

orthogonal polynomial called Jacobi polynomial.

Definition. The (generalized) hypergeometric series is defined to be

Qp, Q. Oy — = (al)ﬂ"'(ar)nﬁ
”FS[ Bi,...,Bs ’x} T HZ:O (B)n - (Bs)n n!”

where we used
() =1, (a)p :=ala+1l) - (a+n-1).

The case (r,s) = (2,1) is the Gauss hypergeometric function**(Gauss HGF in short).

*3 oy
*4 Gauss O8RS
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Exercise 4.3 (). Assume «, 3,y € C with v ¢ {—1,—2,-3,...}. Show that the series

oy = S a0 b ala e D)
2F1(a7b’c’x)_7§)(l)n(c)nx ¢’ 2elc+1)

converges for |z| < 1, and that it is a solution of the Gauss hypergeometric differential equation
*5.

d? d
z(1 —x)%g—i—(c— (a—i—b—i—l)x)% —aby = 0.

The following exercise shows that the basic hypergeometric series is a g-analogue*Sof the hypergeo-

metric series.

Exercise 4.4 (x). Assume |z| < 1. Show that the limit of 2¢; under ¢ — 1 is the Gauss HGF:
: ¢, q°
lim 2(251{ - ;q,:v} = o F1 (e, B;7; ).
q—1 q

Remark. 2¢; is called Heine’s ¢g-hypergeometric series after the work of E. Heine in 1840s. For

more details about basic hypergeometric series, see [GR04].
Let us calculate the ¢ — 1 limit of the Askey-Wilson polynomial P, (y;a,b,c,d|q).
Proposition. Set a =¢*, b=¢, c=q",d=¢° and y = 2z + 27! = ¢’ + ¢~**. Then we have

_n,a+6+7+5+n—1,a+ix,a—z’x.1]

The right hand side*”is called the Wilson polynomial.
Here we treat a degenerate version of Wilson polynomial.

Definition. The Jacobi polynomial P7(la»/3) (z) is defined as a specialization of Gauss HGF.

1), 1

Remark. The Jacobi polynomial PT(LQ”B)(Z) can be obtained from the Wilson polynomial p, (z; a, 8,7, 0)

by setting v = 6 := b+ ¢N, =z := iNz, then taking the limit N — oo, and replacing parameters
(a+ 8,b) — (a, B).

Since (—n); =0 for k > n, PT(LQ’B)(Z) is a terminate series, in other words a polynomial, of degree n.

o, (@t D)y K (n)pla+ BHnt+ 1) 1 —z\F
P@B)(z) = o ];) (o + Dn ( 5 )

— MXH: (n) (044—(51-11):— D (z;1>k

(4.2)

5 AT SR
*6 g JE{LL
T 45U
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Exercise 4.5 (x). Check the following Rodrigues formula.

ped i) = S0 eyt T (et apa - 2. (4.3)
27(1), dz

Remark. Setting a = 8 = 0 in the Rodrigues formula (4.3), we see that the Jacobi polynomial reduces

to the Legendre polynomial.

POOG) = o (122,

T onplden

The orthogonality of the Askey-Wilson polynomials (Proposition 4.3) implies

Proposition 4.4. The Jacobi polynomials enjoy the following orthogonality condition.

1
/ (1= 2)*(1 + 2)° PO (@) PO (@) dz = Syl (4.4)
—1

where
2048+ D(a+n+ )I(B+n+1)

a+B8+2n+1Tn+ 1) a+B+n+1)
Exercise 4.6 (xx). Show Proposition 4.4 directly by taking the following steps.

n

(1) Using the Rodrigues formula (4.3) and integration by parts, show that for any polynomial Q(x)

of degree m < n, we have

/1 (1—2)*(1 +2)? PP (2)Q(z) dz = ! /1 QM (x) (1 — )t (1 + 2)P*" da.

—1 27n)
(2) Set I, := (LHS*8of (4.4)). Shows that I,, ,, = 0 for m # n.

(3) In the case m = n, the calculation in (1) will give

1 1 m
[1(1 C (14 )P (PP () de = Zjn! [1(1 fx)a+n(1+x)ﬁ+nc%n(ggaﬁ>(x))dx.

Since P,(La’ﬁ)(:n) is a polynomial of degree n, it is enough to calculate its top term k,z™. Using the

expression (4.2), check that

& 1 Tla+tpB+2n+1)
" T(n+ D (a+B+n+1)

(4) Using the beta integral

show that I,, , = I,,.

4.4 Askey scheme

We close Part I lectures by mentioning the Askey scheme of hypergeometric orthogonal polynomials.
In the last subsection we treated two orthogonal polynomials: Wilson and Jacobi polynomials. They
are placed in the following degenerate diagram of orthogonal polynomials which can be expressed as

hypergeometric series. There also exists a g-version of the Askey scheme. See [K94] for the detail.

*8 Jeft hand side = Z£34.
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Figure 1 Askey scheme
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