Summary and Problems of Lecture $3^{* 1}$

Shintaro Yanagida (office: A441) yanagida [at] math.nagoya-u.ac.jp https://www.math.nagoya-u.ac.jp/~yanagida

The assignments are Exercises 3.1-3.6 below. The deadline of the report is October 29th (Monday).

3 Macdonald polynomials for general root systems

3.1 Root system

Theorem 3.2. Irreducible and reduced root systems are classified into the following types:

$$
A_{n}(n \geq 1), B_{n}(n \geq 2), C_{n}(n \geq 3), D_{n}(n \geq 4), E_{6}, E_{7}, E_{8}, F_{4}, G_{2}
$$

The root system of type A_{n} is described as
type $\mathrm{A}_{n}(n \geq 1): V:=\left\{\sum_{i=1}^{n+1} a_{i} \varepsilon_{i} \mid \sum_{i=1}^{n+1} a_{i}=0\right\} \subset \mathbb{R}^{n+1}=\oplus_{i=1}^{n+1} \mathbb{R} \varepsilon_{i}, \quad L:=\oplus_{i=1}^{n+1} \mathbb{Z} \varepsilon_{i}$, $R:=\{v \in V \mid(v, v)=2\} \cap L=\left\{\varepsilon_{i}-\varepsilon_{j} \mid 1 \leq i \neq j \leq n+1\right\},|R|=(n+1) n$.
Simple roots: $\left\{\alpha_{1}:=\varepsilon_{1}-\varepsilon_{2}, \alpha_{2}:=\varepsilon_{2}-\varepsilon_{3}, \ldots, \alpha_{n}:=\varepsilon_{n}-\varepsilon_{n+1}\right\}$.
$W \simeq S_{n+1}$, acting on V by permuting indices i of ε_{i} 's.
Dynkin diagram:

Theorem 3.3. For each $n \in \mathbb{Z}_{>1}$, there exists, up to isomorphism, a unique irreducible non-reduced root system of rank n. This root system is called of type BC_{n}.

3.2 Admissible pair

Definition. A pair (R, S) of root systems in a Euclidean space V is called admissible if it satisfies (AP1) R is irreducible (but not necessarily reduced). S is irreducible and reduced.
(AP2) The sets of lines $\{\mathbb{R} a \mid a \in R\}$ and $\{\mathbb{R} b \mid b \in S\}$ coincide.
(AP3) $W(R)=W(S)$.
Proposition 3.4. Every admissible pair (R, S) is either of the following three classes.

- $(R, S)=(S, S)$ with S listed in Theorem 3.2.
- $(R, S)=\left(S, S^{\vee}\right)$ with S listed in Theorem 3.2.
- $(R, S)=\left(\mathrm{BC}_{n}, \mathrm{~B}_{n}\right)$ or $\left(\mathrm{BC}_{n}, \mathrm{C}_{n}\right)$.

Proposition 3.5. There exists a decomposition $R=R^{+} \cup\left(-R^{+}\right)$for any admissible pair (R, S).
Proof. We only deal with the case where R is reduced. Choose the set $\left\{\alpha_{i} \mid i \in I\right\} \subset R$ of simple roots, Then every $\alpha \in R$ can be expanded as $\alpha=\sum_{i \in I} c_{i} \alpha_{i}$ with all the signs of c_{i} 's being equal. Thus we can set $R^{+}:=\left\{\alpha \in R \mid c_{i} \geq 0\right\}$.

[^0]Definition 3.6. Choose a decomposition $R=R^{+} \cup\left(-R^{+}\right)$.
(1) The root lattice $Q \subset R$ and the positive cone $Q^{+} \subset Q$ of positive roots in R are defined to be

$$
Q:=\mathbb{Z} R=\mathbb{Z} \text {-span of } R, \quad Q^{+}:=\mathbb{N} R^{+}
$$

(2) The weight lattice P and the cone P^{+}of dominant weights of R are defined to be

$$
P:=\left\{\lambda \in V \mid\left(\lambda, \alpha^{\vee}\right) \in \mathbb{Z} \quad \forall \alpha \in R\right\}, \quad P^{+}:=\left\{\lambda \in V \mid\left(\lambda, \alpha^{\vee}\right) \in \mathbb{N} \forall \alpha \in R^{+}\right\} .
$$

(3) The dominance order is a partial order on P defined by

$$
\lambda \geq \mu \Longleftrightarrow \lambda-\mu \in Q^{+}
$$

Exercise $3.1(*)$. Consider the root system R of type A_{n} described in Theorem 3.2. Let $R=R^{+} \cup\left(-R^{+}\right)$ be the decomposition of R given in Proof of Proposition 3.5. Check that P^{+}is then given by

$$
P^{+}=\sum_{i=1}^{n} \mathbb{N} \omega_{i}=\left\{\lambda=\lambda^{1} \omega_{1}+\cdots+\lambda^{n} \omega_{n} \mid \lambda^{i} \in \mathbb{N}\right\}
$$

where ω_{i} is the fundamental weight given by

$$
\omega_{i}=\frac{n+1-i}{n+1}\left(\varepsilon_{1}+\cdots+\varepsilon_{i}\right)-\frac{i}{n+1}\left(\varepsilon_{i+1}+\cdots+\varepsilon_{n+1}\right)
$$

3.3 Macdonald polynomials for general root systems

Fix an admissible pair (R, S) of root systems in a Euclidean space V. $W:=W(R)=W(S)$. Fix a decomposition $R=R^{+} \cup\left(-R^{+}\right)$. We use the symbols Q, Q^{+}, P, P^{+}in Definition 3.6, and

$$
A:=\mathbb{C}[P]=\mathbb{C} \text {-span of }\left\{e^{\lambda} \mid \lambda \in P\right\}, \quad A^{W}:=\{f \in A \mid w f=f \forall w \in W\}
$$

Proposition 3.7. For each $\alpha \in R$, there exists a unique $u_{\alpha}>0$ such that $\alpha_{*}:=\alpha / u_{\alpha} \in S$.
Remark 3.8. In particular, in the case $R=\mathrm{A}_{n}, \mathrm{D}_{n}, \mathrm{E}_{n}$ the value t_{α} is independent of $\alpha \in R$. We denote it by $t:=t_{\alpha}$. Since $u_{\alpha}=1$ for any $\alpha \in R$ by Proposition 3.7, we denote $k:=k_{\alpha}$.

Recall the q-shifted factorial:

$$
(a ; q)_{\infty}:=\prod_{j=0}^{\infty}\left(1-a q^{j}\right), \quad\left(a_{1}, \ldots, a_{r} ; q\right)_{\infty}:=\prod_{i=1}^{r}\left(a_{i} ; q\right)_{\infty}
$$

Definition. Assume R is reduced.
(1) The weight function $\Delta(v)$ on $v \in V$ is defined to be

$$
\Delta(v):=\prod_{\alpha \in R} \frac{\left(t_{2 \alpha}^{1 / 2} e^{\alpha}(v) ; q_{\alpha}\right)_{\infty}}{\left(t_{\alpha} t_{2 \alpha}^{1 / 2} e^{\alpha}(v) ; q_{\alpha}\right)_{\infty}}
$$

Here we set $t_{a}:=1$ for $a \in V \backslash R$.
(2) A pairing $\langle\cdot, \cdot\rangle$ on A^{W} is defined to be

$$
\begin{equation*}
\langle f, g\rangle:=|W|^{-1} \int_{T} f(\dot{v}) \overline{g(\dot{v})} \Delta(\dot{v}) d \dot{v}, \quad f, g \in A^{W} \tag{3.1}
\end{equation*}
$$

where $d \dot{v}$ denotes the Haar measure on T with the normalization $\int_{T} d \dot{v}=1$.

Exercise $3.2(*)$. (1) Check that $\langle\cdot, \cdot\rangle$ is a Hermitian pairing, i.e., $\overline{\langle f, g\rangle}=\langle g, f\rangle$.
(2) Assume $R=S=\mathrm{A}_{n}$ as in Exercise 3.1, and put $x_{i}:=e^{\varepsilon_{i}}$. Recalling Remark 3.8, show that the weight function Δ is given by

$$
\Delta=\prod_{1 \leq i \neq j \leq n+1} \frac{\left(x_{i} / x_{j} ; q\right)_{\infty}}{\left(t x_{i} / x_{j} ; q\right)_{\infty}}
$$

Theorem 3.9. Assume R is reduced. There exists a unique family $\left\{P_{\lambda} \mid \lambda \in P^{+}\right\} \subset A^{W}$ such that
(i) $P_{\lambda}=m_{\lambda}+\sum_{\mu<\lambda} c_{\lambda, \mu} m_{\mu}$ with some $c_{\lambda, \mu} \in \mathbb{C}$.
(ii) $\left\langle P_{\lambda}, m_{\mu}\right\rangle=0$ if $\mu<\lambda$, where $<$ denotes the dominance order in Definition 3.6 (3).

Each $P_{\lambda} \in A^{W}$ is called the Macdonald polynomial of the admissible pair (R, S).
Theorem 3.10. Assume R is reduced. The family $\left\{P_{\lambda} \mid \lambda \in P^{+}\right\}$satisfies

$$
\left\langle P_{\lambda}, P_{\mu}\right\rangle=0 \quad \lambda \neq \mu
$$

Theorem 3.11. Assume R is reduced. We have

$$
\left\langle P_{\lambda}, P_{\lambda}\right\rangle=\prod_{\alpha \in R^{+}} \frac{\left(q^{1+\left(\lambda+\rho_{k}, \alpha^{\vee}\right)} ; q\right)_{\infty}}{\left(t q^{1+\left(\lambda+\rho_{k}, \alpha^{\vee}\right)} ; q\right)_{\infty}} \frac{\left(q^{\left(\lambda+\rho_{k}, \alpha^{\vee}\right)} ; q\right)_{\infty}}{\left(t q^{\left(\lambda+\rho_{k}, \alpha^{\vee}\right)} ; q\right)_{\infty}}
$$

where ρ_{k} is defined to be

$$
\begin{equation*}
\rho_{k}:=\frac{1}{2} \sum_{\alpha \in R^{+}} k_{\alpha} \alpha \tag{3.2}
\end{equation*}
$$

3.4 Macdonald difference operators for general root systems

We continue to use the same symbols as in the previous subsections. Define the q-shift operator $T_{q, v}=T_{v}$ on the functions $f: V \rightarrow \mathbb{C}$ to be

$$
\left(T_{v} f\right)(x):=f(x-i \log q \cdot v) \quad(x, v \in V)
$$

We have $T_{v}: A \rightarrow A$. Recall that by Proposition 3.7 we have $\alpha_{*}=\alpha / u_{\alpha} \in S$ for any $\alpha \in R$.
Proposition 3.12. For an admissible pair (R, S) with S not being of type $\mathrm{E}_{8}, \mathrm{~F}_{4}$ nor G_{2}, there is a $\sigma \in V$ such that $\left\{\left(\sigma, \alpha_{*}\right) \mid \alpha \in R^{+}\right\} \subset\{0,1\}$.

Exercise $3.3(*)$. Assume $R=S=\mathrm{A}_{n}$ as in Exercise 3.2 (2). As for σ in Proposition 3.12, show that we can put $\sigma=\omega_{r}$ for each $r=1, \ldots, n$.

Definition. We set

$$
\Delta^{+}:=\prod_{\alpha \in R^{+}} \frac{\left(t_{2 \alpha}^{1 / 2} e^{\alpha} ; q_{\alpha}\right)_{\infty}}{\left(t_{\alpha} t_{2 \alpha}^{1 / 2} e^{\alpha} ; q_{\alpha}\right)_{\infty}}
$$

Definition 3.13. Using σ in the previous Proposition 3.12, we set

$$
\Phi_{\sigma}:=\frac{T_{\sigma} \Delta^{+}}{\Delta^{+}}, \quad D_{\sigma} f:=\left|W_{\sigma}\right|^{-1} \sum_{w \in W} w\left(\Phi_{\sigma}\left(T_{\sigma} f-f\right)\right)
$$

The operator $D_{\sigma}: A^{W} \rightarrow A^{W}$ is called the Macdonald difference operator.

Exercise $3.4(*)$. Assume $R=S=\mathrm{A}_{n}$ as in Exercise 3.3, and take $\sigma=\omega_{r}$. Using the notation $x_{i}=e^{\varepsilon_{i}}$, check the following formula.

$$
\frac{T_{\omega_{r}} \Delta^{+}}{\Delta^{+}}=\prod_{j=r+1}^{n+1} \frac{1-t x_{r} / x_{j}}{1-x_{r} / x_{j}}
$$

Theorem 3.14. Assume R is reduced. The operator D_{σ} preserves A^{W}, and the Macdonald polynomial P_{λ} is an eigenfunction of D_{σ} with eigenvalue

$$
q^{\left(\sigma, \rho_{k}\right)}\left(\widetilde{m}_{\sigma}\left(\lambda+\rho_{k}\right)-\widetilde{m}_{\sigma}\left(\rho_{k}\right)\right) .
$$

where ρ_{k} is given in (3.2) and $\widetilde{m}_{\sigma}(\lambda):=\left|W_{\sigma}\right|^{-1} \sum_{w \in W} q^{(w \sigma, \lambda)}$.

3.5 GL_{n} case

Recall the setting for $R=S=\mathrm{A}_{n-1}$:
$\mathbb{R}^{n}=\sum_{i=1}^{n} \mathbb{R} \varepsilon_{i} \supset V=\left\{\sum_{i=1}^{n} c_{i} \varepsilon_{i} \mid \sum_{i=1}^{n} c_{i}=0\right\}$,
$R=\left\{\varepsilon_{i}-\varepsilon_{j} \mid 1 \leq i \neq j \leq n\right\} \supset R^{+}=\left\{\varepsilon_{i}-\varepsilon_{j} \mid 1 \leq i<j \leq n\right\}, \quad \alpha_{i}=\varepsilon_{i}-\varepsilon_{i+1} \quad(1 \leq i \leq n-1)$,
$Q=\mathbb{Z}[R]=\sum_{i=1}^{n-1} \mathbb{Z} \alpha_{i} \supset Q^{+}=\mathbb{N}\left[R^{+}\right]=\sum_{i=1}^{n-1} \mathbb{N} \alpha_{i}, \quad W=S_{n}$.
Definition. We set

$$
\widetilde{P}:=\sum_{i=1}^{n} \mathbb{Z} \varepsilon_{i}, \quad \widetilde{\omega}_{i}:=\varepsilon_{1}+\cdots+\varepsilon_{i}(1 \leq i \leq n), \quad \widetilde{A}:=\mathbb{C}[\widetilde{P}]=\mathbb{C}\left[e^{ \pm \varepsilon_{1}}, \ldots, e^{ \pm \varepsilon_{n}}\right]
$$

Proposition 3.15. For $v \in V$, consider the operator

$$
E_{v} f:=\left|W_{v}\right|^{-1} \sum_{w \in W} w\left(\Phi_{v} T_{v} f\right)
$$

Then for $r=1, \ldots, n$, we have

$$
E_{\widetilde{\omega}_{r}}=\sum_{I \subset\{1, \ldots, n\},|I|=r} \widetilde{A}_{I}(x ; t) T_{q, x}^{I}, \quad \widetilde{A}_{I}:=\prod_{i \in I, j \notin I} \frac{t x_{i}-x_{j}}{x_{i}-x_{j}} .
$$

Here we used the notation $x_{i}=e^{\varepsilon_{i}}$. Thus we have $t^{\binom{n}{r}} E_{\widetilde{\omega}_{r}}=D^{(r)}$.
Exercise 3.5 (*). Show Proposition 3.15.
Since $E_{\widetilde{\omega}_{r}}$ is essentially the same as the Macdonald difference operators in $\S 2.2$, the Macdonald symmetric function

$$
P_{\lambda}(x ; q, t) \in \mathbb{C}[x]^{W} \subset \mathbb{C}\left[x^{ \pm 1}\right]^{W}=\widetilde{A}^{S_{n}}
$$

is the simultaneous eigenfunction of $E_{\widetilde{\omega}_{r}}$'s. As for the eigenvalue, we have
Proposition 3.16. Under the notation in Theorem 3.14, the eigenvalue of $P_{\lambda}(x ; q, t)$ with respect to $E_{\widetilde{\omega}_{r}}$ is given by

$$
q^{\left(\widetilde{\omega}_{r}, \rho_{k}\right)} \widetilde{m}_{\widetilde{\omega}_{r}}\left(\lambda+\rho_{k}\right) .
$$

Exercise 3.6 (*). Check that Proposition 3.16 is consistent with Theorem 2.6, which says that the eigenvalue of $P_{\lambda}(x ; q, t)$ with respect to $D^{(r)}$ is $e_{r}\left(q^{\lambda} t^{\delta}\right)$.

[^0]: *1 2018/10/14, ver. 0.3.

