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Summary and Problems of Lecture 3 *1

Shintaro Yanagida (office: A441)

yanagida [at] math.nagoya-u.ac.jp

https://www.math.nagoya-u.ac.jp/~yanagida

The assignments are Exercises 3.1–3.6 below. The deadline of the report is October 29th (Monday).

3 Macdonald polynomials for general root systems

3.1 Root system

Theorem 3.2. Irreducible and reduced root systems are classified into the following types:

An (n ≥ 1), Bn (n ≥ 2), Cn (n ≥ 3), Dn (n ≥ 4), E6, E7, E8, F4, G2.

The root system of type An is described as

type An (n ≥ 1): V := {
∑n+1

i=1 aiεi |
∑n+1

i=1 ai = 0} ⊂ Rn+1 = ⊕n+1
i=1 Rεi, L := ⊕n+1

i=1 Zεi,
R := {v ∈ V | (v, v) = 2} ∩ L = {εi − εj | 1 ≤ i ̸= j ≤ n+ 1}, |R| = (n+ 1)n.

Simple roots: {α1 := ε1 − ε2, α2 := ε2 − ε3, . . . , αn := εn − εn+1}.
W ≃ Sn+1, acting on V by permuting indices i of εi’s.

Dynkin diagram: ◦
α1

◦
α2

· · · ◦
αn−1

◦
αn

Theorem 3.3. For each n ∈ Z≥1, there exists, up to isomorphism, a unique irreducible non-reduced

root system of rank n. This root system is called of type BCn.

3.2 Admissible pair

Definition. A pair (R,S) of root systems in a Euclidean space V is called admissible if it satisfies

(AP1) R is irreducible (but not necessarily reduced). S is irreducible and reduced.

(AP2) The sets of lines {Ra | a ∈ R} and {Rb | b ∈ S} coincide.

(AP3) W (R) = W (S).

Proposition 3.4. Every admissible pair (R,S) is either of the following three classes.

• (R,S) = (S, S) with S listed in Theorem 3.2.

• (R,S) = (S, S∨) with S listed in Theorem 3.2.

• (R,S) = (BCn,Bn) or (BCn,Cn).

Proposition 3.5. There exists a decomposition R = R+ ∪ (−R+) for any admissible pair (R,S).

Proof. We only deal with the case where R is reduced. Choose the set {αi | i ∈ I} ⊂ R of simple roots,

Then every α ∈ R can be expanded as α =
∑

i∈I ciαi with all the signs of ci’s being equal. Thus we can

set R+ := {α ∈ R | ci ≥ 0}.
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Definition 3.6. Choose a decomposition R = R+ ∪ (−R+).

(1) The root lattice Q ⊂ R and the positive cone Q+ ⊂ Q of positive roots in R are defined to be

Q := ZR = Z-span of R, Q+ := NR+.

(2) The weight lattice P and the cone P+ of dominant weights of R are defined to be

P := {λ ∈ V | (λ, α∨) ∈ Z ∀α ∈ R}, P+ := {λ ∈ V | (λ, α∨) ∈ N ∀α ∈ R+}.

(3) The dominance order is a partial order on P defined by

λ ≥ µ ⇐⇒ λ− µ ∈ Q+.

Exercise 3.1 (∗). Consider the root system R of type An described in Theorem 3.2. Let R = R+∪(−R+)

be the decomposition of R given in Proof of Proposition 3.5. Check that P+ is then given by

P+ =
∑n

i=1 Nωi = {λ = λ1ω1 + · · ·+ λnωn | λi ∈ N},

where ωi is the fundamental weight given by

ωi =
n+ 1− i

n+ 1
(ε1 + · · ·+ εi)−

i

n+ 1
(εi+1 + · · ·+ εn+1).

3.3 Macdonald polynomials for general root systems

Fix an admissible pair (R,S) of root systems in a Euclidean space V . W := W (R) = W (S). Fix a

decomposition R = R+ ∪ (−R+). We use the symbols Q,Q+, P, P+ in Definition 3.6, and

A := C[P ] = C-span of {eλ | λ ∈ P}, AW := {f ∈ A | wf = f ∀w ∈ W}.

Proposition 3.7. For each α ∈ R, there exists a unique uα > 0 such that α∗ := α/uα ∈ S.

Remark 3.8. In particular, in the case R = An,Dn,En the value tα is independent of α ∈ R. We

denote it by t := tα. Since uα = 1 for any α ∈ R by Proposition 3.7, we denote k := kα.

Recall the q-shifted factorial:

(a; q)∞ :=

∞∏
j=0

(1− aqj), (a1, . . . , ar; q)∞ :=

r∏
i=1

(ai; q)∞.

Definition. Assume R is reduced.

(1) The weight function ∆(v) on v ∈ V is defined to be

∆(v) :=
∏
α∈R

(t
1/2
2α eα(v); qα)∞

(tαt
1/2
2α eα(v); qα)∞

.

Here we set ta := 1 for a ∈ V \R.

(2) A pairing ⟨·, ·⟩ on AW is defined to be

⟨f, g⟩ := |W |−1

∫
T

f(v̇)g(v̇)∆(v̇) dv̇, f, g ∈ AW , (3.1)

where dv̇ denotes the Haar measure on T with the normalization
∫
T
dv̇ = 1.



2018/10/16 Perspectives in Mathematical Science IV (Yanagida), Lecture 3 3/4

Exercise 3.2 (∗). (1) Check that ⟨·, ·⟩ is a Hermitian pairing, i.e., ⟨f, g⟩ = ⟨g, f⟩.
(2) Assume R = S = An as in Exercise 3.1, and put xi := eεi . Recalling Remark 3.8, show that the

weight function ∆ is given by

∆ =
∏

1≤i̸=j≤n+1

(xi/xj ; q)∞
(txi/xj ; q)∞

.

Theorem 3.9. Assume R is reduced. There exists a unique family {Pλ | λ ∈ P+} ⊂ AW such that

(i) Pλ = mλ +
∑

µ<λ cλ,µmµ with some cλ,µ ∈ C.
(ii) ⟨Pλ,mµ⟩ = 0 if µ < λ, where < denotes the dominance order in Definition 3.6 (3).

Each Pλ ∈ AW is called the Macdonald polynomial of the admissible pair (R,S).

Theorem 3.10. Assume R is reduced. The family {Pλ | λ ∈ P+} satisfies

⟨Pλ, Pµ⟩ = 0 λ ̸= µ.

Theorem 3.11. Assume R is reduced. We have

⟨Pλ, Pλ⟩ =
∏

α∈R+

(q1+(λ+ρk,α
∨); q)∞

(tq1+(λ+ρk,α∨); q)∞

(q(λ+ρk,α
∨); q)∞

(tq(λ+ρk,α∨); q)∞
,

where ρk is defined to be

ρk :=
1

2

∑
α∈R+

kαα. (3.2)

3.4 Macdonald difference operators for general root systems

We continue to use the same symbols as in the previous subsections. Define the q-shift operator

Tq,v = Tv on the functions f : V → C to be

(Tvf)(x) := f(x− i log q · v) (x, v ∈ V ).

We have Tv : A → A. Recall that by Proposition 3.7 we have α∗ = α/uα ∈ S for any α ∈ R.

Proposition 3.12. For an admissible pair (R,S) with S not being of type E8, F4 nor G2, there is a

σ ∈ V such that {(σ, α∗) | α ∈ R+} ⊂ {0, 1}.

Exercise 3.3 (∗). Assume R = S = An as in Exercise 3.2 (2). As for σ in Proposition 3.12, show that

we can put σ = ωr for each r = 1, . . . , n.

Definition. We set

∆+ :=
∏

α∈R+

(t
1/2
2α eα; qα)∞

(tαt
1/2
2α eα; qα)∞

.

Definition 3.13. Using σ in the previous Proposition 3.12, we set

Φσ :=
Tσ∆

+

∆+
, Dσf := |Wσ|−1

∑
w∈W

w(Φσ(Tσf − f)).

The operator Dσ : AW → AW is called the Macdonald difference operator.
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Exercise 3.4 (∗). Assume R = S = An as in Exercise 3.3, and take σ = ωr. Using the notation xi = eεi ,

check the following formula.

Tωr
∆+

∆+
=

n+1∏
j=r+1

1− txr/xj

1− xr/xj
.

Theorem 3.14. Assume R is reduced. The operator Dσ preserves AW , and the Macdonald polynomial

Pλ is an eigenfunction of Dσ with eigenvalue

q(σ,ρk)(m̃σ(λ+ ρk)− m̃σ(ρk)).

where ρk is given in (3.2) and m̃σ(λ) := |Wσ|−1
∑

w∈W q(wσ,λ).

3.5 GLn case

Recall the setting for R = S = An−1:

Rn =
∑n

i=1Rεi ⊃ V = {
∑n

i=1ciεi |
∑n

i=1ci = 0},
R = {εi − εj | 1 ≤ i ̸= j ≤ n} ⊃ R+ = {εi − εj | 1 ≤ i < j ≤ n}, αi = εi − εi+1 (1 ≤ i ≤ n− 1),

Q = Z[R] =
∑n−1

i=1 Zαi ⊃ Q+ = N[R+] =
∑n−1

i=1 Nαi, W = Sn.

Definition. We set

P̃ :=
∑n

i=1Zεi, ω̃i := ε1 + · · ·+ εi (1 ≤ i ≤ n), Ã := C[P̃ ] = C[e±ε1 , . . . , e±εn ].

Proposition 3.15. For v ∈ V , consider the operator

Evf := |Wv|−1
∑
w∈W

w(ΦvTvf).

Then for r = 1, . . . , n, we have

Eω̃r
=

∑
I⊂{1,...,n}, |I|=r

ÃI(x; t)T
I
q,x, ÃI :=

∏
i∈I, j /∈I

txi − xj

xi − xj
.

Here we used the notation xi = eεi . Thus we have t(
n
r)Eω̃r

= D(r).

Exercise 3.5 (∗). Show Proposition 3.15.

Since Eω̃r
is essentially the same as the Macdonald difference operators in §2.2, the Macdonald sym-

metric function
Pλ(x; q, t) ∈ C[x]W ⊂ C[x±1]W = ÃSn

is the simultaneous eigenfunction of Eω̃r
’s. As for the eigenvalue, we have

Proposition 3.16. Under the notation in Theorem 3.14, the eigenvalue of Pλ(x; q, t) with respect to

Eω̃r
is given by

q(ω̃r,ρk)m̃ω̃r
(λ+ ρk).

Exercise 3.6 (∗). Check that Proposition 3.16 is consistent with Theorem 2.6, which says that the

eigenvalue of Pλ(x; q, t) with respect to D(r) is er(q
λtδ).


