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Summary and Problems of Lecture 3 *!

Shintaro Yanagida (office: A441)
yanagida [at] math.nagoya-u.ac.jp

https://www.math.nagoya-u.ac.jp/~yanagida

The assignments are Exercises 3.1-3.6 below. The deadline of the report is October 29th (Monday).

3 Macdonald polynomials for general root systems
3.1 Root system

Theorem 3.2. Irreducible and reduced root systems are classified into the following types:
An (n > 1), Bn (n > 2), Cn (n > 3), Dn (TL > 4), E67 l‘:’77 Eg, F4, GQ.
The root system of type A,, is described as

type A, (n>1): Vo= {0 asei | 0 s = 0} c R = @ Rey, L= @l Ze,,
R={veV]wv)=2}NL={e—¢;|1<i#j<n+1}, |R =(n+1)n.
Simple roots: {a1 ;=1 — €2, ag :=€2 — €3, ..., Qp = Ep — Ent1}-

W ~ S,,41, acting on V by permuting indices i of ¢;’s.

Dynkin diagram: o o e o o
a1 (&) Qp—1 (&7}
Theorem 3.3. For each n € Zx1, there exists, up to isomorphism, a unique irreducible non-reduced

root system of rank n. This root system is called of type BC,,.

3.2 Admissible pair

Definition. A pair (R, S) of root systems in a Euclidean space V is called admissible if it satisfies
(AP1) R is irreducible (but not necessarily reduced). S is irreducible and reduced.

(AP2) The sets of lines {Ra | « € R} and {Rb | b € S} coincide.

(AP3) W(R) = W(S).

Proposition 3.4. Every admissible pair (R, S) is either of the following three classes.
e (R,S)=(S,S) with S listed in Theorem 3.2.
e (R,S)=(5,S5V) with S listed in Theorem 3.2.
e (R,S)=(BC,,B,) or (BC,,C,).

Proposition 3.5. There exists a decomposition R = RT U (—R™) for any admissible pair (R, S).

Proof. We only deal with the case where R is reduced. Choose the set {c; | i € I} C R of simple roots,

Then every o € R can be expanded as « = > . _; ¢;a; with all the signs of ¢;’s being equal. Thus we can

iel
set RT :={a € R|¢; >0}. O
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Definition 3.6. Choose a decomposition R = R U (—R™).
(1) The root lattice @ C R and the positive cone QT C @ of positive roots in R are defined to be

Q := ZR = Z-span of R, Q' := NR",
(2) The weight lattice P and the cone PT of dominant weights of R are defined to be
P:={\eV|(\aY)€EZ YaeR}, P":={ eV |(\aY)eN VaeR"}.
(3) The dominance order is a partial order on P defined by
A>p <= A—peQt.

Exercise 3.1 (x). Consider the root system R of type A,, described in Theorem 3.2. Let R = RTU(—R™)
be the decomposition of R given in Proof of Proposition 3.5. Check that PT is then given by

where w; is the fundamental weight given by

n+1—1
wis g G te) -

S E ).

3.3 Macdonald polynomials for general root systems

Fix an admissible pair (R, S) of root systems in a Euclidean space V. W := W(R) = W(S). Fix a
decomposition R = R* U (—RT). We use the symbols Q,Q", P, PT in Definition 3.6, and

A= C[P] = C-spanof {* | Ne P}, AV = {fcA|wf=f YwecW}.
Proposition 3.7. For each « € R, there exists a unique u, > 0 such that a, := a/u, € S.

Remark 3.8. In particular, in the case R = A,,D,,E, the value ¢, is independent of @« € R. We
denote it by t := t,. Since u, = 1 for any o € R by Proposition 3.7, we denote k := k.

Recall the ¢-shifted factorial:

(a;q)oo = H(]-*aqj)v (alwuaar;(Z)oo = H(aiQQ)oo
=0 i=1

Definition. Assume R is reduced.

(1) The weight function A(v) on v € V is defined to be

(15226 (0); da) oo

2
ach (tatyl2e2(0); ga)oo

A(v) =

Here we set t, :=1 for a € V\ R.
(2) A pairing (-,-) on AW is defined to be

(f.g) = W /T FOT@AG) b, f.g€ AV, (3.1)

where dv denotes the Haar measure on T' with the normalization fT dv =1.
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Exercise 3.2 (x). (1) Check that (-,-) is a Hermitian pairing, i.e., (f,g) = (g, f).
(2) Assume R =S = A, as in Exercise 3.1, and put z; := e°. Recalling Remark 3.8, show that the

weight function A is given by

A= ] (/3 q)oo

\<izieng BT/ T @)oo

Theorem 3.9. Assume R is reduced. There exists a unique family {Py | A € P*} € A" such that
(i) Py =my + ZM<A exumy, with some ¢y, € C.
(i) (Px,mu) =0if p < A, where < denotes the dominance order in Definition 3.6 (3).

Each Py € AW is called the Macdonald polynomial of the admissible pair (R, S).

Theorem 3.10. Assume R is reduced. The family {P\ | A € P™} satisfies
(Px,Py) =0 XN#p.

Theorem 3.11. Assume R is reduced. We have

(q1+(k+pk,av); @oo (q()\+Pk=(¥v); @)oo
(tq1+()\+pk}av); q)oo (tq(/\+pk,a\/); q)oov

(P, P\) =
acRT

where py, is defined to be
1
Pk = 5 Z kaa- (32)

a€RT

3.4 Macdonald difference operators for general root systems

We continue to use the same symbols as in the previous subsections. Define the g-shift operator

T4 =T, on the functions f: V — C to be
(Tpf)(x) := f(x—ilogq-v) (z,veV).
We have T,, : A — A. Recall that by Proposition 3.7 we have o, = a/u, € S for any o € R.

Proposition 3.12. For an admissible pair (R,S) with S not being of type Eg, Fy nor Go, there is a
o € V such that {(¢,a.) |« € RT} C {0,1}.

Exercise 3.3 (x). Assume R =S5 = A,, as in Exercise 3.2 (2). As for ¢ in Proposition 3.12, show that

we can put 0 = w, foreach r=1,... n.

Definition. We set 12
AJr o H (t2a ea;qa)oo
T 1/2 4.
aERT (toztza € 7qa)oo

Definition 3.13. Using o in the previous Proposition 3.12, we set

T,At
o, = AT

, Dof = [Wo| ™' Y w(®(T, f — f)).

weWw

The operator D, : AW — AW is called the Macdonald difference operator.
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Exercise 3.4 (). Assume R = S = A,, as in Exercise 3.3, and take 0 = w,.. Using the notation z; = e,

check the following formula.

T, AT "li[l 1 —tx,/x;

A+ 1—a,/z;

Jj=r+1
Theorem 3.14. Assume R is reduced. The operator D, preserves A", and the Macdonald polynomial

P, is an eigenfunction of D, with eigenvalue
¢ (Mg (A + pr) — 1o (p))-

where py, is given in (3.2) and me(X) = [Wo ™' Y o g,

3.5 GL, case

Recall the setting for R=S5 = A,,_1:
R" =371 Re; OV = {3 ciei | 320 = 0},
R={ei—¢cj|1<i#j<n}DR" ={g—¢;|1<i<j<n}, ay=g;—¢eiy1 (1<i<n-—1),
Q = ZIR) = ¥/5/'Za; 5 QF = N[RY] = ¥/ 'Nay, W = S,.
Definition. We set
Pi=Y0" Zey, @ =e+--+e (1<i<n), A:=C[P]=Clet,. .. et

Proposition 3.15. For v € V, consider the operator

Byf = [Wy|™' > w(®,T,f).
weWw
Then for r =1,...,n, we have

= E . 1 . II >y
Ewr = Aj(x,t)Tq@, A[ = . ! £ — l'j .
ICc{1,....n}, |I|=r iel, j¢l

Here we used the notation z; = e**. Thus we have ¢(7) E; = D).
Exercise 3.5 (). Show Proposition 3.15.

Since Eg, is essentially the same as the Macdonald difference operators in §2.2, the Macdonald sym-

metric function

Py(z;q,t) € Clz]V C Clz® " = A5
is the simultaneous eigenfunction of E ’s. As for the eigenvalue, we have

Proposition 3.16. Under the notation in Theorem 3.14, the eigenvalue of Py(x;¢,t) with respect to
E, is given by

q(wr7pk)fﬁ:}r()\ + pk)
Exercise 3.6 (x). Check that Proposition 3.16 is consistent with Theorem 2.6, which says that the
eigenvalue of Py (z;¢,t) with respect to D) is e, (¢ t?).



