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3 Macdonald polynomials for general root systems

3.1 Root system

This subsection is the recollection of root systems. See [B68, Chap. 6] for the full account and proofs.

Let V be a Euclidean space, i.e., a finite dimensional real vector space with inner product (·, ·). We

denote the norm of v ∈ V by |v| := (v, v)1/2. For a ∈ V \ {0}, we denote a∨ := 2a/|a|2, and we define

the reflection*2sa : V → V to be the linear map given by

sa(v) := v − 2
(v, a)

(a, a)
a = v − (v, a)a∨.

Definition. A finite subset R ⊂ V \ {0} is called a root system*3in V if the following three conditions

are satisfied for any α, β ∈ R.

(RS1) R spans V . (RS2) sα(β) ∈ R. (RS3) (α∨, β) ∈ Z.
Each element of a root system S is called a root, and dimV is called the rank of R.

Obviously we have the notion of product of root system. To simplify the argument, we introduce

Definition. A root system R is called irreducible*4if there exists no partition of R into two non-empty

subsets R1 and R2 such that (α1, α2) = 0 for any αi ∈ Si (i = 1, 2).

Hereafter we fix a root system R in V .

Proposition. If α, β ∈ R are proportional, then the factor of proportionality is ±1, ±1/2 or ±2.

Definition. (1) A root α ∈ R is called an indivisible root if α/2 /∈ R.

(2) R is called reduced*5if every α ∈ R is indivisible.

We denote by GL(V ) the general linear group of V , i. e., the group consisting of linear automorphisms

of V . We also denote by O(V ) the orthogonal group*6 of V . We have

O(V ) = {A ∈ GL(V ) | (Av,Aw) = (v, w) for any v, w ∈ V }.

Definition. The Weyl group W (R) of a root system R is the subgroup of O(V ) generated by {sα |
α ∈ R}.

*1 2018/10/14, ver. 0.2.
*2 鏡映
*3 ルート系
*4 既約
*5 被約
*6 直交群
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W (R) has a good presentation in terms of the simple roots.

Definition. A subset {αi | i ∈ I} ⊂ R is called the set of simple roots if the following two conditions

are satisfied.

(S1) {αi | i ∈ I} is a basis V .

(S2) If we expand α =
∑

i∈I ciαi for each α ∈ R, then all the signs of non-zero ci’s coincide.

Proposition 3.1. If R is irreducible and reduced, then R has a set of simple roots.

Proposition. Let R be an irreducible and reduced root system, and {αi | i ∈ I} ⊂ R be a set of simple

roots. Then the Weyl group W = W (R) has the following presentation*7.

W = ⟨si (i ∈ I) | (sisj)m(i,j) = 1 (i, j ∈ I)⟩,

where si := sαi
∈ W for i ∈ I, and m(i, j) denotes the order of the element sisj ∈ W .

Note that m(α, α) = 1 since (sα)
2 = id.

Definition. (1) The Coxeter graph of R is the graph defined by the following rule: the set of

vertices is given by I, the set of simple roots, and the vertices i and j with i ̸= j are joined by

(αi, αj) · (αj , αi) edges.

(2) The Dynkin diagram of R is the figure obtained by adding an arrow to the shorter of the two

roots in the Coxeter graph of R.

Now we can state the fundamental classification theorem of finite root systems.

Theorem 3.2. Irreducible and reduced root systems are classified into the following types:

An (n ≥ 1), Bn (n ≥ 2), Cn (n ≥ 3), Dn (n ≥ 4), E6, E7, E8, F4, G2.

Each class is described as below.

type An (n ≥ 1): V := {
∑n+1

i=1 aiεi |
∑n+1

i=1 ai = 0} ⊂ Rn+1 = ⊕n+1
i=1 Rεi, L := ⊕n+1

i=1 Zεi,
R := {v ∈ V | (v, v) = 2} ∩ L = {εi − εj | 1 ≤ i ̸= j ≤ n+ 1},
|R| = (n+ 1)n.

Simple roots: {α1 := ε1 − ε2, α2 := ε2 − ε3, . . . , αn := εn − εn+1}.
W ≃ Sn+1, acting on V by permuting indices i of εi’s.

Dynkin diagram: ◦
α1

◦
α2

· · · ◦
αn−1

◦
αn

type Bn (n ≥ 2): V := Rn = ⊕n
i=1Rεi, L := ⊕n

i=1Zεi,
R := {v ∈ V | (v, v) = 1 or 2} ∩ L = {±εi | 1 ≤ i ≤ n} ∪ {±εi ± εj | 1 ≤ i < j ≤ n},
|R| = 2n+ 2n(n− 1) = 2n2.

Simple roots: {α1 := ε1 − ε2, α2 := ε2 − ε3, . . . , αn−1 := εn−1 − εn, αn := εn}.
W ≃ Sn ⋉ ({±1})n, acting on V by permuting εi’s and εi 7→ −εi.

Dynkin diagram: ◦
α1

◦
α2

· · · ◦
αn−1

◦//

αn

*7 (群の)表示
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type Cn (n ≥ 3): V := Rn = ⊕n
i=1Rεi, L := ⊕n

i=1Zεi,
R := {v ∈ V | (v, v) ∈ {2, 4}} ∩ L = {±εi ± εj | 1 ≤ i < j ≤ n} ∪ {±2εi | 1 ≤ i ≤ n}, |R| = 2n2.

Simple roots: {α1 := ε1 − ε2, α2 := ε2 − ε3, . . . , αn−1 := εn−1 − εn, αn := 2εn}.
W ≃ Sn ⋉ (Z/2Z)n, acting on V in the same way as Bn.

Dynkin diagram: ◦
α1

◦
α2

· · · ◦
αn−1

◦oo

αn

type Dn (n ≥ 4): V := Rn = ⊕n
i=1Rεi, L := ⊕n

i=1Zεi,
R := {v ∈ V | (v, v) = 2} ∩ L = {±εi ± εj | 1 ≤ i < j ≤ n}, |R| = 2n(n− 1),

Simple roots: {α1 := ε1 − ε2, α2 := ε2 − ε3, . . . , αn−1 := εn−1 − εn, αn := εn−1 + εn}.
W ≃ Sn⋉(Z/2Z)n−1, acting on V by permuting εi’s and by even number of sign changes εi 7→ −εi.

Dynkin diagram: ◦
α1

◦
α2

· · · ◦
αn−2

◦ooooooo αn−1

◦O
OOO

OOO

αn

type E8: V := R8 = ⊕8
i=1Rεi, L := {

∑8
i=1ciεi | ci ∈ Z,

∑8
i=1εi ∈ 2Z}+ Z(

∑8
i=1εi/2),

R := {v ∈ L | (v, v) = 2} = {±εi ± εj | 1 ≤ i < j ≤ 8} ∪ {
∑8

i=1 ± εi/2 | number of − is even},
|R| = 28 · 4 + 28/2 = 72 + 128 = 240.

Simple roots: {α1 := (ε1 − ε2 − ε3 − ε4 − ε5 − ε6 − ε7 + ε8)/2, α2 := ε1 + ε2, αi := εi−1 − εi−2}.

Dynkin diagram: ◦
α1

◦
α3

◦
α4

◦
α2

◦
α5

◦
α6

◦
α7

◦
α8

type E7: Denote the simple roots of E8 as {α1, . . . , α8} ⊂ R(E8) ⊂ R8. V := R{α1, . . . , α7} ⊂ R8,

R := R(E8) ∩ V

= {±εi ± εj | 1 ≤ i < j ≤ 6} ∪ {±(ε7 − ε8)} ∪ {±(ε7 − ε8 +
∑6

i=1 ± εi)/2 | number of − is odd},
|R| = 4 · 15 + 2 + 2 · 26/2 = 62 + 64 = 126. Simple roots: {α1, . . . , α7}.

Dynkin diagram: ◦
α1

◦
α3

◦
α4

◦
α2

◦
α5

◦
α6

◦
α7

type E6: Use again R(E8) ⊂ R8. V := R{α1, . . . , α6} ⊂ R8,

R := R(E8)∩V = {±εi±εj | 1 ≤ i < j ≤ 5}∪{±(ε8−ε7−ε6+
∑5

i=1±εi)/2 | number of − is odd},
|R| = 4 · 10 + 2 · 25/2 = 40 + 32 = 72. Simple roots: {α1, . . . , α6}.

Dynkin diagram: ◦
α1

◦
α3

◦
α4

◦
α2

◦
α5

◦
α6

type F4: V := R4 =
∑4

i=1 Rεi, L := ⊕4
i=1Zεi + Z(

∑4
i=1εi/2),

R := {v ∈ L | (v, v) = 1 or 2}
= {±εi | 1 ≤ i ≤ 4}∪{(±ε1±ε2±ε3±ε4)/2}∪{±εi±εj | 1 ≤ i < j ≤ 4}, |R| = 24+24 = 48.

Simple roots: {α1 := ε2 − ε3, α2 := ε3 − ε4, α3 := ε4, α4 := (ε1 − ε2 − ε3 − ε4)/2}.
Dynkin diagram: ◦

α1

◦
α2

◦//

α3

◦
α4



2018/10/16 Perspectives in Mathematical Science IV (Yanagida), Lecture 3 4/10

type G2: V := {
∑3

i=1aiεi |
∑3

i=1ai = 0} ⊂ R3, L := ⊕3
i=1Zεi,

R := {v ∈ V | (v, v) = 2 or 6} ∩ L

= {±(εi − εj) | 1 ≤ i < j ≤ 3} ∪ {±(2εi − εj − εk) | {i, j, k} = {1, 2, 3}}, |R| = 6 + 6 = 12.

Simple roots: {α1 := ε1 − ε2, α2 := −2ε1 + ε2 + ε3}.
W ≃ the dihedral group*8 of order 12.

Dynkin diagram: ◦
α1

◦oo

α2

Next we recall

Proposition. For a root system R in V , the set R∨ := {a∨ | a ∈ R} is again a root system in V .

Definition. The root system R∨ is called the dual root system.

By the description in Theorem 3.2, we have

R∨ = R (R = An,Dn,En), (Bn)
∨ = Cn, (Cn)

∨ = Bn.

As for non-reduced root systems, we have

Theorem 3.3. For each n ∈ Z≥1, there exists, up to isomorphism, a unique irreducible non-reduced

root system of rank n. This root system is called of type BCn, and described as follows.

type BCn (n ≥ 1): V := Rn = ⊕n
i=1Rεi, L := ⊕n

i=1Zεi,
R := {v ∈ V | (v, v) = 1, 2 or 4} ∩ L = R(Bn) ∪R(Cn)

= {±εi | 1 ≤ i ≤ n} ∪ {±εi ± εj | 1 ≤ i < j ≤ n} ∪ {±2εi | 1 ≤ i ≤ n}, |R| = 2(n+ 1)n.

W = W (Bn) ≃ Sn ⋉ ({±1})n, acting on V in the same way as Bn.

3.2 Admissible pair

Subsections §§3.2–3.4 follow [K92, §2] and [M03, §2]. Let V be a Euclidean space.

Definition. A pair (R,S) of root systems in V is called admissible if it satisfies

(AP1) R is irreducible (but not necessarily reduced). S is irreducible and reduced.

(AP2) The sets of lines {Ra | a ∈ R} and {Rb | b ∈ S} coincide.

(AP3) W (R) = W (S).

By Theorems 3.2 and 3.3, admissible pairs are classified as

Proposition 3.4. Every admissible pair (R,S) is either of the following three classes.

• (R,S) = (S, S) with S listed in Theorem 3.2.

• (R,S) = (S, S∨) with S listed in Theorem 3.2.

• (R,S) = (BCn,Bn) or (BCn,Cn).

Now recall the notion of positive roots of root systems. We introduce a restricted definition which is

enough in our context.

*8 二面体群
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Definition. For an admissible pair (R,S), it we can decompose R = R+∪ (−R+), then we call elements

of R+ the positive roots of R.

Proposition 3.5. There exists a (not unique) decomposition R = R+ ∪ (−R+) for any admissible pair

(R,S).

Proof. First assume that R is reduced. Then by Proposition 3.1 we can choose the set {αi | i ∈ I} ⊂ R

of simple roots, Then every α ∈ R can be expanded as α =
∑

i∈I ciαi with all the signs of ci’s being

equal. Thus we can set R+ := {α ∈ R | ci ≥ 0}.
Next assume that R is non-reduced, so R = BCn.

Using the notation in Theorem 3.3, take the set of simple roots as {αi = εi−εi+1 | 1 ≤ i ≤ n−1}∪{αn =

εn}. Then each α ∈ R is expanded as a =
∑n

i=1 ciαi with all the signs of ci’s being equal. Thus we can

set R± as in the reduced case.

Definition 3.6. Choose a decomposition R = R+ ∪ (−R+).

(1) The root lattice Q ⊂ R and the positive cone Q+ ⊂ Q of positive roots in R are defined to be

Q := ZR = Z-span of R, Q+ := NR+.

(2) The weight lattice*9 P and the cone P+ of dominant weights*10of R are defined to be

P := {λ ∈ V | (λ, α∨) ∈ Z ∀α ∈ R}, P+ := {λ ∈ V | (λ, α∨) ∈ N ∀α ∈ R+}.

(3) The dominance order is a partial order on P defined by

λ ≥ µ ⇐⇒ λ− µ ∈ Q+.

Exercise 3.1 (∗). Consider the root system R of type An with the set of simple roots described in

Theorem 3.2. Let R = R+ ∪ (−R+) be the decomposition of R given in Proof of Proposition 3.5. Check

that P+ is then given by

P+ =

n∑
i=1

Nωi = {λ = λ1ω1 + · · ·+ λnωn | λi ∈ N},

where ωi is the fundamental weight*11 given by

ωi =
n+ 1− i

n+ 1
(ε1 + · · ·+ εi)−

i

n+ 1
(εi+1 + · · ·+ εn+1).

3.3 Macdonald polynomials for general root systems

In this and the next subsections, we fix an admissible pair (R,S) of root systems in a Euclidean space

V . We denote W := W (R) = W (S). We also fix a decomposition R = R+ ∪ (−R+) and use the symbols

Q,Q+, P, P+ given in Definition 3.6.

*9 ウェイト格子
*10 優整ウェイト
*11 基本ウェイト
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For λ ∈ P , let eλ be the function on V defined by

eλ(v) := exp
(
i(λ, v)

)
, v ∈ V.

Extend this function holomorphically to V + iV . For a function f on V we also define

(wf)(v) := f(w−1v), w ∈ W, v ∈ V.

Thus we have weλ = ewλ.

Definition. We set

A := C[P ] = C-span of {eλ | λ ∈ P}, AW := {f ∈ A | wf = f ∀w ∈ W}.

Proposition. A basis of AW is given by {mλ | λ ∈ P+} with

mλ := |Wλ|−1
∑
w∈W

ewλ =
∑

µ∈Wλ

eµ,

where Wλ denotes the stabilizer of λ ∈ P+ in W .

Remark. Note that mλ(v) = mλ(−v) for λ ∈ P+ and v ∈ V , where c denotes the complex conjugate

of c ∈ C. If − id ∈ W , then f(v) = f(−v) for f ∈ AW . Thus, if − id ∈ W , then mλ is real-valued on V .

Next we want to introduce a Hermitian pairing on AW via integration with certain weight function.

For this purpose, consider the dual root lattice Q∨, i.e.,

Q∨ := ZR∨ = Z-span of R∨.

Then
T := V/(2πQ∨)

is a torus, in other words, T ≃ (R/Z)n as a group (n := dimV ). Below we denote by v̇ the image in T

of v ∈ V . For λ ∈ P , we define the function eλ on T by

eλ(v̇) := exp(i(λ, v)).

eλ(v̇) is obviously well-defined.

Proposition 3.7. For each α ∈ R, there exists a unique uα > 0 such that α∗ := α/uα ∈ S.

Proof. Recalling Proposition 3.4, we first assume R = S. Then we have uα = 1 for any α ∈ R.

Next assume S = R∨. In the case R = An,Dn,En, we have uα = 1 for any α ∈ R. In the case R = Bn,

we have uα = 1 or 1/2. In the case R = Cn or Fn, we have uα = 1 or 2. In the case R = Gn, we have

uα = 1 or 3.

Assume R = BCn and S = Bn. Then we have uα = 1 or 2. Finally assume R = BCn and S = Cn.

Then we hvae uα = 1 or 1/2.

Hereafter we fix a real number q such that 0 < q < 1. We also choose a W -invariant function

α 7−→ tα

on R taking values in (0, 1). Then we have
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Proposition. For α ∈ R, the value tα depends only on |α|.

Definition. For each α ∈ R, define qα := quα and kα ≥ 0 by qkα
α = tα.

Remark 3.8. In particular, in the case R = An,Dn,En the value tα is independent of α ∈ R. We

denote it by t := tα. Since uα = 1 for any α ∈ R by Proof of Proposition 3.7, we denote k := kα.

Recall the q-shifted factorial:

(a; q)∞ :=

∞∏
j=0

(1− aqj), (a1, . . . , ar; q)∞ :=

r∏
i=1

(ai; q)∞

for a, a1, . . . , ar ∈ C. Using q-shifted factorials, we introduce

Definition. Assume R is reduced.

(1) The weight function ∆(v) on v ∈ V is defined to be

∆(v) :=
∏
α∈R

(t
1/2
2α eα(v); qα)∞

(tαt
1/2
2α eα(v); qα)∞

.

Here we set ta := 1 for a ∈ V \R.

(2) A pairing ⟨·, ·⟩ on AW is defined to be

⟨f, g⟩ := |W |−1

∫
T

f(v̇)g(v̇)∆(v̇) dv̇, f, g ∈ AW , (3.1)

where dv̇ denotes the Haar measure on T with the normalization
∫
T
dv̇ = 1.

Proposition. The pairing ⟨·, ·⟩ is a Hermitian inner product on AW .

Exercise 3.2 (∗). (1) Check that ⟨·, ·⟩ is a Hermitian pairing, i.e., ⟨f, g⟩ = ⟨g, f⟩.
(2) Assume R = S = An as in Exercise 3.1, and put xi := eεi . Recalling Remark 3.8, show that the

weight function ∆ is given by

∆ =
∏

1≤i̸=j≤n+1

(xi/xj ; q)∞
(txi/xj ; q)∞

.

Now we can state

Theorem 3.9. Assume R is reduced. There exists a unique family {Pλ | λ ∈ P+} ⊂ AW such that

(i) Pλ = mλ +
∑

µ<λ cλ,µmµ with some cλ,µ ∈ C.
(ii) ⟨Pλ,mµ⟩ = 0 if µ < λ, where < denotes the dominance order in Definition 3.6 (3).

Each Pλ ∈ AW is called the Macdonald polynomial of the admissible pair (R,S).

The Macdonald polynomial Pλ is an orthogonal polynomial in the following sense.

Theorem 3.10. Assume R is reduced. The family {Pλ | λ ∈ P+} satisfies

⟨Pλ, Pµ⟩ = 0 λ ̸= µ.

The following theorem on the norm of Pλ was conjectured by Macdonald and named Macdonald’s

evaluation conjecture. It was solved in full generality by Cherednik [C95].
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Theorem 3.11. Assume R is reduced. We have

⟨Pλ, Pλ⟩ =
∏

α∈R+

(q1+(λ+ρk,α
∨); q)∞

(tq1+(λ+ρk,α∨); q)∞

(q(λ+ρk,α
∨); q)∞

(tq(λ+ρk,α∨); q)∞
,

where ρk is defined to be

ρk :=
1

2

∑
α∈R+

kαα. (3.2)

3.4 Macdonald difference operators for general root systems

We continue to use the same symbols as in the previous subsections. Define the q-shift operator

Tq,v = Tv on the functions f : V → C to be

(Tvf)(x) := f(x− i log q · v) (x, v ∈ V ).

In particular, for λ ∈ P we have
Tve

λ = q(v,λ)eλ,

so that we have Tv : A → A.

Recall that by Proposition 3.7 we have α∗ = α/uα ∈ S for any α ∈ R.

Proposition 3.12. For an admissible pair (R,S) with S not being of type E8, F4 nor G2, there is a

σ ∈ V such that
{(σ, α∗) | α ∈ R+} ⊂ {0, 1}.

In the other cases, there is a σ ∈ V such that

{(σ, α∗) | α ∈ R+} ⊂ {0, 1, 2}.

Remark. In the case S ̸= E8,F4,G2, σ is a minuscule fundamental weight for S∨.

Exercise 3.3 (∗). Assume R = S = An as in Exercise 3.2 (2). As for σ in Proposition 3.12, show that

we can put σ = ωr for each r = 1, . . . , n.

Definition. We set

∆+ :=
∏

α∈R+

(t
1/2
2α eα; qα)∞

(tαt
1/2
2α eα; qα)∞

.

Remark. Since R = R+ ∪ (−R+), we have ∆ = ∆+∆+.

Definition 3.13. Using σ in the previous Proposition 3.12, we set

Φσ :=
Tσ∆

+

∆+
, Dσf := |Wσ|−1

∑
w∈W

w(Φσ(Tσf − f)).

The operator Dσ : AW → AW is called the Macdonald difference operator.

Exercise 3.4 (∗). Assume R = S = An as in Exercise 3.3, and take σ = ωr. Using the notation xi = eεi ,

check the following formula.

Tωr
∆+

∆+
=

n+1∏
j=r+1

1− txr/xj

1− xr/xj
.
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Theorem 3.14. Assume R is reduced. The operator Dσ preserves AW , and the Macdonald polynomial

Pλ is an eigenfunction of Dσ with eigenvalue

q(σ,ρk)(m̃σ(λ+ ρk)− m̃σ(ρk)).

where ρk is given in (3.2) and

m̃σ(λ) := |Wσ|−1
∑
w∈W

q(wσ,λ).

Remark. (1) The case R is non-reduced will be treated in Lecture 4, where the corresponding The-

orems 3.9, 3.10, 3.11 and 3.14 will be explained.

(2) The generalization of the theory of Macdonald symmetric polynomial to general root systems was

started by Macdonald in the years around 1988. Theorems 3.9, 3.10 and 3.14 are established in

[M88]. As mentioned before, the evaluation conjecture (Theorem 3.11) was remained unsolved

until the work of Cherednik [C95].

3.5 GLn case

In this subsection we check that the Macdonald polynomial in the case R = S = An−1 is essentially the

same as the Macdonald symmetric polynomial explained in §2. Precisely speaking, we replace A = C[P ]

by Ã = C[e±ε1 , . . . , e±εn ]. This replacement can be regarded as switching SLn picture to GLn picture.

The references of this subsection are [Mi04, §4.11, §4.12] and [N97].

Recall the setting for R = S = An−1:

Rn =
∑n

i=1Rεi ⊃ V = {
∑n

i=1ciεi |
∑n

i=1ci = 0},
R = {εi − εj | 1 ≤ i ̸= j ≤ n} ⊃ R+ = {εi − εj | 1 ≤ i < j ≤ n}, αi = εi − εi+1 (1 ≤ i ≤ n− 1),

Q = Z[R] =
∑n−1

i=1 Zαi ⊃ Q+ = N[R+] =
∑n−1

i=1 Nαi,

W = Sn.

Definition. We set

P̃ :=
∑n

i=1Zεi, ω̃i := ε1 + · · ·+ εi (1 ≤ i ≤ n), Ã := C[P̃ ] = C[e±ε1 , . . . , e±εn ].

Note that (λ, α) = 0 for any λ ∈ P and α ∈ R, and (ω̃i, αj) = δi,j .

Recall Proposition 3.12 and Exercise 3.3 on the element σ. We have the following alternative choices.

Proposition. For r = 1, . . . , n, the following holds.

{(ω̃r, α) | α ∈ R+} ⊂ {0, 1}.

Now we can recover the operator D(r) in §2.2 from the operator Dω̃r
in Definition 3.13. We slightly

change the definition of Dω̃r
as follows.

Proposition 3.15. For v ∈ V , consider the operator

Evf := |Wv|−1
∑
w∈W

w(ΦvTvf).
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Then for r = 1, . . . , n, we have

Eω̃r
=

∑
I⊂{1,...,n}, |I|=r

ÃI(x; t)T
I
q,x, ÃI :=

∏
i∈I, j /∈I

txi − xj

xi − xj
.

Here we used the notation xi = eεi . Thus we have t(
n
r)Eω̃r

= D(r).

Exercise 3.5 (∗). Show Proposition 3.15.

Since Eω̃r
is essentially the same as the Macdonald difference operators in §2.2, the Macdonald sym-

metric function
Pλ(x; q, t) ∈ C[x]W ⊂ C[x±1]W = ÃSn

is the simultaneous eigenfunction of Eω̃r
’s. As for the eigenvalue, we have

Proposition 3.16. Under the notation in Theorem 3.14, the eigenvalue of Pλ(x; q, t) with respect to

Eω̃r
is given by

q(ω̃r,ρk)m̃ω̃r
(λ+ ρk).

Exercise 3.6 (∗). Check that Proposition 3.16 is consistent with Theorem 2.6, which says that the

eigenvalue of Pλ(x; q, t) with respect to D(r) is er(q
λtδ).
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