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Lecture 3: Macdonald polynomials for general root systems *!
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3 Macdonald polynomials for general root systems
3.1 Root system

This subsection is the recollection of root systems. See [B68, Chap. 6] for the full account and proofs.
Let V be a Euclidean space, i.e., a finite dimensional real vector space with inner product (-,-). We
denote the norm of v € V by |v| := (v,v)Y/2. For a € V \ {0}, we denote a" := 2a/|a|?, and we define
the reflection*?s, : V — V to be the linear map given by
(v, a)
(a,a)

Definition. A finite subset R C V' \ {0} is called a root system*3in V' if the following three conditions

Sq(v) == v —2 a=v—(v,a)a.

are satisfied for any «, 5 € R.
(RS1) R spans V. (RS2) s.(B) € R. (RS3) (a¥,B) € Z.

Each element of a root system .S is called a root, and dim V' is called the rank of R.
Obviously we have the notion of product of root system. To simplify the argument, we introduce

Definition. A root system R is called irreducible*4if there exists no partition of R into two non-empty

subsets Ry and Ry such that (a1,as) =0 for any «; € S; (i = 1,2).
Hereafter we fix a root system R in V.
Proposition. If «, 8 € R are proportional, then the factor of proportionality is +1, +1/2 or £2.

Definition. (1) A root « € R is called an indivisible root if a/2 ¢ R.
(2) R is called reduced*Sif every « € R is indivisible.

We denote by GL(V') the general linear group of V, i. e., the group consisting of linear automorphisms
of V. We also denote by O(V) the orthogonal group*® of V. We have
o(V) = {AeGL(V) | (Av, Aw) = (v,w) for any v,w € V'}.

Definition. The Weyl group W (R) of a root system R is the subgroup of O(V') generated by {s, |
a € R},
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W(R) has a good presentation in terms of the simple roots.

Definition. A subset {«; | ¢ € I} C R is called the set of simple roots if the following two conditions
are satisfied.
(S1) {a; | i €1} is a basis V.

(S52) If we expand a = ), ; c;a for each a € R, then all the signs of non-zero ¢;’s coincide.
Proposition 3.1. If R is irreducible and reduced, then R has a set of simple roots.

Proposition. Let R be an irreducible and reduced root system, and {a; | i € I} C R be a set of simple

roots. Then the Weyl group W = W (R) has the following presentation®”.
W = (s; (i € I)| (si8,)™) =1 (i,5 € I)),
where s; 1= s,, € W for i € I, and m(4, j) denotes the order of the element s;s; € W.
Note that m(a, a) = 1 since (s,)? = id.

Definition. (1) The Coxeter graph of R is the graph defined by the following rule: the set of
vertices is given by I, the set of simple roots, and the vertices ¢ and j with ¢ # j are joined by
(a4, @) - (0, ;) edges.
(2) The Dynkin diagram of R is the figure obtained by adding an arrow to the shorter of the two
roots in the Coxeter graph of R.

Now we can state the fundamental classification theorem of finite root systems.

Theorem 3.2. Irreducible and reduced root systems are classified into the following types:
An (Tl > 1)5 Bn (TL > 2)7 Cn (n > 3)? Dn (’ﬂ > 4)7 Eﬁa E77 E87 F47 G2~

Each class is described as below.

type A, (n>1): V= {Z?;laiei | Z?;lai =0} CR"! = @?illRei, L:= @?;11251,
R={veV|wv)=2}NL={¢—¢;|1<i#j<n+1},
|R| = (n+ 1)n.
Simple roots: {a1 ;=1 — €2, ag :=€2 — €3, ..., Qp = Ep — Ent1}-

W ~ S,+1, acting on V by permuting indices i of ¢;’s.

Dynkin diagram: o o e o o
aq (€] Qn—1 Qp

type B, (n >2): V:=R" =@} Re;, L := P} Ze,,
R={veV]wuv)=1lor2}NL={te |1<i<n}U{te; +¢;|1<i<j<n},
|R| = 2n + 2n(n — 1) = 2n2.
Simple roots: {a1 :=€1 — €2, Qo 1 =€9 — €3, ..., Qp_1 = Ep—1 — En,y Ay 1= Ep J.
W ~ S, x ({£1})", acting on V by permuting ¢;’s and &; — —¢;.

Dynkin diagram: ° ) iy o=—==——o0
aq Q2 Ap—1 Qp

T (BED) F
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type C,, (n > 3): V:=R" =0 Re;, L=} Ze;,
R={veV|(vv)e{24}}NL={te; +¢;|[1<i<j<n}U{E2e|1<i<n}, |R|=2n%

Simple roots: {a; :=€1 — €9, @ :=E9 — €3, ..., Q1 := En—1 — En, Qp := 26, }.
W ~ S, X (Z/2Z)"™, acting on V in the same way as B,,.
Dynkin diagram: o o e o=—=—o0

aq (&) Qp—1 (a7

type D, (n >4): V:=R" =@ Re;, L:=@" Ze,,
R={veV]wv)=2}NL={te;+¢; |1 <i<j<n}, |R =2n(n-1),
Simple roots: {a1 :=€1 — €2, Qg :=€9 — €3, ..., Ap_1 = Ep—1 — Eny Ap :=En—_1 +En}.

W ~ S, x(Z/2Z)"~!, acting on V by permuting ¢;’s and by even number of sign changes &; — —¢;.
o

Qn—1
Dynkin diagram: o o e o / "

a1 Qo an—N

o
Qp

type Bg: Vi=R3 = @8 Re;, L:={>0 jciei| i €2, S5 i € 22} + Z(X5_,€i/2),
R:={vel|(vv)=2}={fe;+¢; |1 <i<j<8}U {Z§:1 +£;/2 | number of — is even},
IR| =284+ 28/2 = 72 + 128 = 240.

Simple roots: {Oél = (61 —E9g —E3 —E4 —E5 —Eg — E7 —1-68)/2, Qg =€ +E9, O :=E;—1 — Ei_g}.
()

Q2
Dynkin diagram: o o o o o o o
aq a3 Qg Qs Qg ar ag
type E7: Denote the simple roots of Eg as {a1,...,as} C R(Eg) CR8.  V:=R{ay,...,a7} C R8,
R:=R(Es)NV
={te; £¢; |1 <i<j <6 U{E(er —eg)} U{E(er —eg +Z?:1 +¢;)/2 | number of — is odd},
|R|=4-15+2+2-26/2 =62+ 64 =126.  Simple roots: {aq, ..., ar}.
o arg
Dynkin diagram: o o o ) o o
aq Qg Oy Qs Qg ar

type Eg: Use again R(Eg) C R®.  V :=R{ay,...,as} C R,
R:=R(Eg)NV ={te;%e; |1 <i<j< 5}U{i(€g—67—€6+Z?:1:|:€i)/2 | number of — is odd},
|R|=4-10+2-25/2=40+32=172. Simple roots: {ay, ..., ag}

o
Q2

Dynkin diagram: o o ) o o
a1 Qs (7] Qs (6733

type Fur Vi=R* =30 Re;, L= &L Ze; + Z(Y_ci/2),
R:={velL|(v,v)=1or2}
= {#e; | 1<i<A}U{(keyteytestey)/2}U{te;+e; [1<i<j<4}, |R|=24+24=48.
Simple roots: {ay :=e3 — €3, g := €3 — &4, a3 1= €4, g 1= (€1 — 3 — €3 — £4)/2}.

Dynkin diagram: o o=———o0 o
a1 (6%} Qs (67}
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type Go: V= {320 Lasei | 320 ja; =0} C R, L:=a}_ Ze,,
R:={veV|(v,v)=2o0r6}NL
={£(ei—g;) | 1<i<j<3yU{£(2—¢c; —ex) | {i,j k} ={1,2,3}}, |R|=6+6=12.
Simple roots: {ay := &1 — €2, ag := —2e1 + €2 + £3}.
W ~ the dihedral group™® of order 12.

Dynkin diagram: o===o
(65} (65)

Next we recall
Proposition. For a root system R in V, the set RV := {a" | a € R} is again a root system in V.
Definition. The root system R" is called the dual root system.

By the description in Theorem 3.2, we have
RY =R (R=A,,D,,E,), (B, =C,, (C," =B,.

As for non-reduced root systems, we have

Theorem 3.3. For each n € Zx1, there exists, up to isomorphism, a unique irreducible non-reduced
root system of rank n. This root system is called of type BC,,, and described as follows.
type BC,, (n >1): V:=R" =@ |Re;, L:=®! Ze,
R:={veV]|(v,v)=1,20r4}NL=R(B,) UR(C,)
={teg |1<i<n}U{fe;+¢e;|1<i<j<n}U{*2,|1<i<n}, |R=2(n+1)n.
W =W(B,) ~ S, x ({£1})", acting on V in the same way as B,,.

3.2 Admissible pair
Subsections §§3.2-3.4 follow [K92, §2] and [MO03, §2]. Let V' be a Euclidean space.

Definition. A pair (R, S) of root systems in V is called admissible if it satisfies
(AP1) R is irreducible (but not necessarily reduced). S is irreducible and reduced.
(AP2) The sets of lines {Ra | a € R} and {Rb | b € S} coincide.

(AP3) W(R) = W(S).

By Theorems 3.2 and 3.3, admissible pairs are classified as

Proposition 3.4. Every admissible pair (R, S) is either of the following three classes.
e (R,S)=(S,S5) with S listed in Theorem 3.2.
e (R,S)=(5,8V) with S listed in Theorem 3.2.
e (R,S)=(BC,,B,) or (BC,,C,).

Now recall the notion of positive roots of root systems. We introduce a restricted definition which is

enough in our context.

8 iR
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Definition. For an admissible pair (R, S), it we can decompose R = RT U (—R™), then we call elements

of Rt the positive roots of R.

Proposition 3.5. There exists a (not unique) decomposition R = RT U (—R™") for any admissible pair
(R, S).

Proof. First assume that R is reduced. Then by Proposition 3.1 we can choose the set {a; |i € I} C R
of simple roots, Then every a@ € R can be expanded as o = Y. _; ¢;; with all the signs of ¢;’s being

equal. Thus we can set Rt := {a € R | ¢; > 0}.

icl

Next assume that R is non-reduced, so R = BC,,.
Using the notation in Theorem 3.3, take the set of simple roots as {a; = ¢;—¢;41 | 1 < i <n—1}U{a, =
£ }. Then each a € R is expanded as a = ) .-, ¢;a; with all the signs of ¢;’s being equal. Thus we can

set R* as in the reduced case. O

Definition 3.6. Choose a decomposition R = R* U (—RT).
(1) The root lattice @ C R and the positive cone QT C Q of positive roots in R are defined to be

Q := ZR = Z-span of R, Q" := NR'.
(2) The weight lattice™ P and the cone P+ of dominant weights*!%f R are defined to be
P={eV|(\a")€EZ YaeR}, PT:={\eV|(\aY)eN VaeR'}.
(3) The dominance order is a partial order on P defined by
A>p <= A—puecQt.

Exercise 3.1 (x). Consider the root system R of type A, with the set of simple roots described in
Theorem 3.2. Let R = RT U(—R™") be the decomposition of R given in Proof of Proposition 3.5. Check
that PT is then given by

Pt =3 Nuw = {d=Xw +- 4+ Xw, | N € N},
=1

where w; is the fundamental weight*!! given by
n+1—1 (14 +25) 1 ( I )
wi = ———(e1 4+ +&) — —— (& e Ena).
n+l ! n1 i

3.3 Macdonald polynomials for general root systems

In this and the next subsections, we fix an admissible pair (R, S) of root systems in a Euclidean space
V. We denote W := W(R) = W(S). We also fix a decomposition R = RT U(—R") and use the symbols
Q,Q%, P, PT given in Definition 3.6.

0o AT
“10 ey = 1 |
i T UEEE)
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For A € P, let e* be the function on V defined by
e*v) = exp(i(\,v)), veW
Extend this function holomorphically to V 4 iV. For a function f on V we also define
(wf)(v) == flwv), weW, veV.

A LwA

Thus we have we e

Definition. We set
A := C[P] = Cspanof {* | Xe P}, AV = {fecA|lwf=f Ywe W}

Proposition. A basis of A" is given by {m, | A € PT} with
D ST S
wew HEW A

where W) denotes the stabilizer of A € PT in W.

Remark. Note that my(v) = my(—v) for A € PT and v € V, where ¢ denotes the complex conjugate
of c€ C. If —id € W, then f(v) = f(—v) for f € AW. Thus, if —id € W, then m, is real-valued on V.

Next we want to introduce a Hermitian pairing on A" via integration with certain weight function.

For this purpose, consider the dual root lattice QV, i.e.,
QY := ZRY = Z-span of R".

Then
T = V/(27QY)

is a torus, in other words, T' ~ (R/Z)™ as a group (n := dim V). Below we denote by ¢ the image in T’
of v € V. For A € P, we define the function e* on T by

M) = exp(i(\,v)).
e*(¥) is obviously well-defined.

Proposition 3.7. For each « € R, there exists a unique u, > 0 such that a, := a/u, € S.

Proof. Recalling Proposition 3.4, we first assume R = S. Then we have u, = 1 for any a € R.

Next assume S = RV. In the case R = A,,,D,,, E,,, we have u, = 1 for any o € R. In the case R = B,,,
we have u,, = 1 or 1/2. In the case R = C,, or F,,, we have u, = 1 or 2. In the case R = G, we have
Uy = 1 or 3.

Assume R = BC,, and S = B,,. Then we have u, = 1 or 2. Finally assume R = BC,, and S = C,,.
Then we hvae u, =1 or 1/2. O

Hereafter we fix a real number g such that 0 < ¢ < 1. We also choose a W-invariant function

ar—t,

on R taking values in (0,1). Then we have
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Proposition. For a € R, the value ¢, depends only on |a|.
Definition. For each o € R, define q,, := g%~ and k, > 0 by ¢ =t,.

Remark 3.8. In particular, in the case R = A,,,D,,E, the value ¢, is independent of @« € R. We
denote it by t := t4. Since u, = 1 for any o € R by Proof of Proposition 3.7, we denote k := k.

Recall the ¢-shifted factorial:

(oo} T
(@)oo = [[(1—ad”), (a1,... 05000 = [[(ai:0)s
3=0 i=1
for a,aq,...,a, € C. Using g-shifted factorials, we introduce

Definition. Assume R is reduced.
(1) The weight function A(v) on v € V is defined to be

12 a ().
A(U) — H (t2a ( )7qa)00

1/2
ack (tatyh’ e (v);4a)os
Here we set t, := 1 for a € V'\ R.
(2) A pairing (-,-) on AW is defined to be

() = W [ f@@AG) s, f.g €AY, (3.1)
T
where dv denotes the Haar measure on 1" with the normalization fT dv =1.

Proposition. The pairing (-, ) is a Hermitian inner product on AW.

Exercise 3.2 (x). (1) Check that (-,-) is a Hermitian pairing, i.e., (f,g) = (g, f).
(2) Assume R = S = A,, as in Exercise 3.1, and put z; := €. Recalling Remark 3.8, show that the
weight function A is given by

A= I (@35 @)oo
1 (tri/T5;q) 0
1<i#j<n+1 J

Now we can state

Theorem 3.9. Assume R is reduced. There exists a unique family {Py | A € P*} € A" such that
(i) Px=my + Zu<A My, with some ¢y, € C.
(i) (Px,mu) =0if p < A, where < denotes the dominance order in Definition 3.6 (3).

Each Py € AW is called the Macdonald polynomial of the admissible pair (R, S).

The Macdonald polynomial P is an orthogonal polynomial in the following sense.
Theorem 3.10. Assume R is reduced. The family {Py | A € P*} satisfies
(PvP) =0 A

The following theorem on the norm of P, was conjectured by Macdonald and named Macdonald’s

evaluation conjecture. It was solved in full generality by Cherednik [C95].
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Theorem 3.11. Assume R is reduced. We have

PP = ] (g Hrea)ig) o (PP g) o
’ acR+ (tq1+()‘+9k7(¥v);q>oo (tq(A+Pk7aV);q)oo’

where py, is defined to be
1
Pk = 3 E kaor. (3.2)

a€Rt

3.4 Macdonald difference operators for general root systems

We continue to use the same symbols as in the previous subsections. Define the ¢-shift operator

T4, = T, on the functions f : V — C to be
(T, f)(z) := f(x—ilogg-v) (z,veV).

In particular, for A\ € P we have

so that we have T, : A — A.
Recall that by Proposition 3.7 we have a, = a/u, € S for any a € R.

Proposition 3.12. For an admissible pair (R,S) with S not being of type Eg, Fy nor Go, there is a

o € V such that
{(o,0) | € R} C {0, 1}.

In the other cases, there is a o € V such that
{(o,au) [ € R} € {0,1,2}.
Remark. In the case S # Eg, Fy, Go, 0 is a minuscule fundamental weight for SV.

Exercise 3.3 (x). Assume R =S = A,, as in Exercise 3.2 (2). As for ¢ in Proposition 3.12, show that

we can put 0 = w, for each r =1,... n.

Definition. We set 12
A+ o (t2(x ea;qu)OO

1/2
aERT (tatz(/l ea;Qa)oo

Remark. Since R = RT U (—R"), we have A = ATAF,

Definition 3.13. Using ¢ in the previous Proposition 3.12, we set

T,AT
o, = AT

o Dof = Wol ™' > w(®o(Tof — 1))

weWw

The operator D, : AW — AW is called the Macdonald difference operator.

Exercise 3.4 (). Assume R = S = A,, as in Exercise 3.3, and take 0 = w,.. Using the notation z; = e,

check the following formula.

T, AT "li[l 1—tx,/x;

+ == — ] .
A el 1—z,/z;
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Theorem 3.14. Assume R is reduced. The operator D, preserves A", and the Macdonald polynomial

P, is an eigenfunction of D, with eigenvalue
q(a’pk)(ﬁla(/\ + pk‘) - ma(pk))'

where pj, is given in (3.2) and

o) = Wol 3 g,
weWw

Remark. (1) The case R is non-reduced will be treated in Lecture 4, where the corresponding The-
orems 3.9, 3.10, 3.11 and 3.14 will be explained.

(2) The generalization of the theory of Macdonald symmetric polynomial to general root systems was
started by Macdonald in the years around 1988. Theorems 3.9, 3.10 and 3.14 are established in
[M88]. As mentioned before, the evaluation conjecture (Theorem 3.11) was remained unsolved
until the work of Cherednik [C95].

3.5 GL, case

In this subsection we check that the Macdonald polynomial in the case R = .S = A,,_1 is essentially the
same as the Macdonald symmetric polynomial explained in §2. Precisely speaking, we replace A = C[P]
by A= Cle*®:,..., e**"]. This replacement can be regarded as switching SL,, picture to GL,, picture.
The references of this subsection are [Mi04, §4.11, §4.12] and [N97].

Recall the setting for R=S5 = A,,_1:

R"=3" Re; DV = {31 ciei | >oiyci =0},

R={ei—c;|1<i#j<n} DR ={ei—g;|1<i<j<n}, as=gi—en (1<i<n-1),
Q = Z[R] = X5 Za;i 5 Q = N[RY] = X5 Nay,

W = S,.

Definition. We set
]3 = E?:lzﬂ', c~ul =&+ +E; (ISZSTZ), g = (C[P] = C[eisl,...,eisn].

Note that (A\,a) =0 for any A € P and a € R, and (w;, o) = 0; ;.

Recall Proposition 3.12 and Exercise 3.3 on the element 0. We have the following alternative choices.
Proposition. For r =1,...,n, the following holds.
{(@,a) | @€ RT} C {0,1}.

Now we can recover the operator D) in §2.2 from the operator Dy in Definition 3.13. We slightly

change the definition of Dy _ as follows.

Proposition 3.15. For v € V, consider the operator

Eof = [Wo[7' > w(®,T,f).

weW
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Then for r =1,...,n, we have

E; = Z AI(x;t)Tq{I, A = H Q
Ic{1,....n}, |I|=r iel, j¢l
Here we used the notation x; = e**. Thus we have ¢(7) E; = D).
Exercise 3.5 (x). Show Proposition 3.15.

Since Ej, is essentially the same as the Macdonald difference operators in §2.2, the Macdonald sym-

metric function B
Py(z;q,t) € Clz]" c ClzTW = AS»

is the simultaneous eigenfunction of Eg ’s. As for the eigenvalue, we have

Proposition 3.16. Under the notation in Theorem 3.14, the eigenvalue of Py(x;q,t) with respect to
L, is given by
q(wmpk)m%(/\ + pr)-

Exercise 3.6 (). Check that Proposition 3.16 is consistent with Theorem 2.6, which says that the
cigenvalue of Py (z;q,t) with respect to D) is e,.(¢*t?).
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