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Summary and Problems of Lecture 2 *1

Shintaro Yanagida (office: A441)

yanagida [at] math.nagoya-u.ac.jp

https://www.math.nagoya-u.ac.jp/~yanagida

The assignments are Exercises 2.1–2.8. The deadline of the report is October 29th (Monday).

2 Macdonald symmetric polynomials

K = Q(q, t), K[x±1] = K[x±
1 , . . . , x

±
n ], W = Sn, P+ = Pn = {λ = (λ1, . . . , λn) ∈ Nn | λ1 ≥ · · · ≥ λn}.

2.1 The Macdonald difference operator and polynomials

Definition. The (first order) Macdonald difference operator D
(1)
x = Dx is defined to be

Dx :=
∑

1≤k≤n

(∏
j ̸=k(txk − xj)/(xk − xj)

)
Tq,xk

,

where Tq,xk
: K[x±1] → K[x±1], (Tq,xk

f)(x1, . . . , xn) := f(x1, . . . , qxk, . . . , xn) is the q-shift operator.

Proposition 2.1. Dx satisfies the following properties.

(1) Dx is W -invariant, i.e., wDx = Dxw for any w ∈ W .

(2) Let ∆(x) :=
∏

1≤i<j≤n(xi − xj). Then for any f(x) ∈ K[x] we have

(Dxf)(x) = (∆(x))−1∑n
k=1∆(x1, . . . , txk, . . . , xn)f(x1, . . . , qxk, . . . , xn).

(3) Dx preserves K[x]W , i.e., Dx(K[x]W ) ⊂ K[x]W .

Exercise 2.1 (∗). Give a proof of Proposition 2.1.

Theorem 2.2. For each λ ∈ P+ there exists Pλ = Pλ(x; q, t) ∈ K[x]W such that

(1) Pλ ∈ mλ +
∑

µ<λ Kmµ, where λ ≥ µ is the dominance ordering on P+.

(2) DxPλ(x; q, t) = Pλ(x; q, t) · e1(qλtδ), e1(q
λtδ) :=

∑n
k=1q

λktn−k.

Moreover such Pλ is uniquely determined. It is called the Macdonald symmetric polynomials.

Corollary 2.3. {Pλ | λ ∈ P+} is a K-basis of K[x]W .

Exercise 2.2 (∗). Give a proof of Corollary 2.3 using Theorem 2.2.

Exercise 2.3 (∗∗). Using Theorem 2.2, show that Pλ satisfies the following properties.

(1) Let (x; q)l := (1− x)(1− qx) · · · (1− ql−1x) for l ∈ N. For λ = (k) we have

(t; q)k
(q; q)k

P(k)(x; q, t) =
∑
m

(t; q)m1 · · · (t; q)mn

(q; q)m1
· · · (q; q)mn

xm1
1 · · ·xmn

n ,

where m = (m1, . . . ,mn) runs over Nn with m1 + · · ·+mn = k.

(2) Pλ(x; q, 1) = mλ(x). (3) Pλ(x; q, q) = sλ(x).

2.2 Family of difference operators

Definition. We set D
(0)
x := 1, and for r = 1, . . . , n

D(r)
x :=

∑
I⊂{1,...,n}, |I|=rAI(x; t)T

I
q,x, AI(x; t) := t(

r
2)
∏

i∈I, j /∈I(txi − xj)/(xi − xj).
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D(r) is called the r-th order Macdonald difference operator. We also set Dx(u) :=
∑n

r=0(−u)rD
(r)
x .

Exercise 2.4 (∗). Show that AI(x; t) = (T I
t,x∆(x))/∆(x).

Proposition 2.4. Let δ = (δ1, δ2, . . . , δn) := (n− 1, n− 2, . . . , 0). Then we have

Dx(u)mλ(x) ∈ (1− uqλ1tδ1) · · · (1− uqλntδn)mλ(x) +
∑

µ<λKmµ(x).

Corollary 2.5. D
(r)
x mλ(x) = er(q

λtδ)mλ(x) + (lower order terms), and D
(1)
x = Dx satisfies

∀λ ∈ P+ Φmλ = cλλmλ +
∑

µ<λcλµmµ, cλλ ̸= 0; ∀µ < λ cµµ ̸= cλλ.

Exercise 2.5 (∗). Check Corollary 2.5 using Proposition 2.4.

2.3 Commutativity of Macdonald difference operators

Theorem 2.6. (1) The difference operators D
(r)
x are commutative:

[D(r)
x , D(s)

x ] = 0 (r, s = 0, . . . , n).

(2) Pλ is a join eigenfunctionof the operators D
(r)
x (r = 0, . . . , n). More precisely, we have

D(r)
x Pλ(x) = Pλ(x)er(q

λtδ).

Assume either of the following two conditions is satisfied.

• q, t ∈ C and 0 < |q|, |t| < 1. • t = qk, k ∈ N.
Define the pairing ⟨·, ·⟩q,t on K[x±1]W by

⟨f, g⟩q,t := |W |−1 C.T.[f(x−1)g(x)w(x; q, t)],

where C.T.[φ(x)] denotes the constant term of the Laurent expansion of φ(x) in terms of x, and

w(x; q, t) :=
∏

i ̸=j(xi/xj ; q)∞/(txi/xj ; q)∞, (a; q)∞ := lim
n→∞

(a; q)n =
∏∞

i=0(1− aqi).

Proposition 2.7. (1) ⟨D(r)f, g⟩q,t = ⟨f,D(r)g⟩q,t. for any f, g ∈ K[x±1]W .

(2) For λ, µ ∈ P+ with λ ̸= µ we have ⟨Pλ, Pµ⟩q,t = 0.

Exercise 2.6 (∗∗). Prove Proposition 2.7.

2.4 Macdonald-Cauchy kernel function

Theorem 2.8. Set Π(x, y) = Π(x, y; q, t) :=
∏n

i,j=1(txiyj ; q)∞/(xiyj ; q)∞. Then

Π(x, y) =
∑

λ∈P+bλPλ(x)Pλ(y), bλ :=
∏

s∈λ(1− qa(s)tl(s)+1)/(1− qa(s)+1tl(s)).

The function Π(x, y) is called the Macdonald-Cauchy kernel function.

Exercise 2.7 (∗). Check that Theorem 2.8 in the case t = q reduces to the Schur case.

Exercise 2.8 (∗∗∗). Give a proof of Theorem 2.8 by taking the following steps.

(1) Using Proposition 2.7 check that Π(x, y) =
∑

λ∈P+ cλPλ(x)Pλ(y) with some cλ ∈ K ⇐⇒
Dx(u)Π(x, y) = Dy(u)Π(x, y).

(2) Check that the equality Dx(u)Π(x, y; q, t) = Dy(u)Π(x, y; q, t) can be reduced to a q-independent

identity, which is nothing but the Schur case. (Since the Schur case is already known, the proof is

completed.)


