Summary and Problems of Lecture 2 *1

Shintaro Yanagida (office: A441) yanagida [at] math.nagoya-u.ac.jp https://www.math.nagoya-u.ac.jp/~yanagida

The assignments are Exercises 2.1–2.8. The deadline of the report is October 29th (Monday).

2 Macdonald symmetric polynomials

 $\mathbb{K} = \mathbb{Q}(q,t), \ \mathbb{K}[x^{\pm 1}] = \mathbb{K}[x_1^{\pm}, \dots, x_n^{\pm}], \ W = S_n, \ P^+ = \mathcal{P}_n = \{\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{N}^n \mid \lambda_1 \ge \dots \ge \lambda_n\}.$

2.1 The Macdonald difference operator and polynomials

Definition. The (first order) Macdonald difference operator $D_x^{(1)} = D_x$ is defined to be

$$D_x := \sum_{1 \le k \le n} \left(\prod_{j \ne k} (tx_k - x_j) / (x_k - x_j) \right) T_{q, x_k},$$

where $T_{q,x_k} : \mathbb{K}[x^{\pm 1}] \to \mathbb{K}[x^{\pm 1}], (T_{q,x_k}f)(x_1,\ldots,x_n) := f(x_1,\ldots,qx_k,\ldots,x_n)$ is the *q*-shift operator.

Proposition 2.1. D_x satisfies the following properties.

- (1) D_x is W-invariant, i.e., $wD_x = D_x w$ for any $w \in W$.
- (2) Let $\Delta(x) := \prod_{1 \le i \le j \le n} (x_i x_j)$. Then for any $f(x) \in K[x]$ we have

$$(D_x f)(x) = (\Delta(x))^{-1} \sum_{k=1}^n \Delta(x_1, \dots, tx_k, \dots, x_n) f(x_1, \dots, qx_k, \dots, x_n).$$

(3) D_x preserves $\mathbb{K}[x]^W$, i.e., $D_x(\mathbb{K}[x]^W) \subset \mathbb{K}[x]^W$.

Exercise 2.1 (*). Give a proof of Proposition 2.1.

Theorem 2.2. For each $\lambda \in P^+$ there exists $P_{\lambda} = P_{\lambda}(x;q,t) \in \mathbb{K}[x]^W$ such that

(1) $P_{\lambda} \in m_{\lambda} + \sum_{\mu < \lambda} \mathbb{K}m_{\mu}$, where $\lambda \ge \mu$ is the dominance ordering on P^+ .

(2) $D_x P_{\lambda}(x;q,t) = P_{\lambda}(x;q,t) \cdot e_1(q^{\lambda}t^{\delta}), \quad e_1(q^{\lambda}t^{\delta}) := \sum_{k=1}^n q^{\lambda_k} t^{n-k}.$

Moreover such P_{λ} is uniquely determined. It is called **the Macdonald symmetric polynomials**.

Corollary 2.3. $\{P_{\lambda} \mid \lambda \in P^+\}$ is a \mathbb{K} -basis of $\mathbb{K}[x]^W$.

Exercise 2.2 (*). Give a proof of Corollary 2.3 using Theorem 2.2.

Exercise 2.3 (**). Using Theorem 2.2, show that P_{λ} satisfies the following properties.

(1) Let $(x;q)_l := (1-x)(1-qx)\cdots(1-q^{l-1}x)$ for $l \in \mathbb{N}$. For $\lambda = (k)$ we have

$$\frac{(t;q)_k}{(q;q)_k}P_{(k)}(x;q,t) = \sum_m \frac{(t;q)_{m_1}\cdots(t;q)_{m_n}}{(q;q)_{m_1}\cdots(q;q)_{m_n}} x_1^{m_1}\cdots x_n^{m_n},$$

where $m = (m_1, \ldots, m_n)$ runs over \mathbb{N}^n with $m_1 + \cdots + m_n = k$.

(2) $P_{\lambda}(x;q,1) = m_{\lambda}(x).$ (3) $P_{\lambda}(x;q,q) = s_{\lambda}(x).$

2.2 Family of difference operators

Definition. We set $D_x^{(0)} := 1$, and for $r = 1, \ldots, n$

$$D_x^{(r)} := \sum_{I \subset \{1, \dots, n\}, |I| = r} A_I(x; t) T_{q, x}^I, \quad A_I(x; t) := t^{\binom{r}{2}} \prod_{i \in I, j \notin I} (tx_i - x_j) / (x_i - x_j).$$

^{*1 2018/10/16,} ver. 0.4.

 $D^{(r)}$ is called the *r*-th order Macdonald difference operator. We also set $D_x(u) := \sum_{r=0}^n (-u)^r D_x^{(r)}$. Exercise 2.4 (*). Show that $A_I(x;t) = (T_{t,x}^I \Delta(x))/\Delta(x)$.

Proposition 2.4. Let $\delta = (\delta_1, \delta_2, \dots, \delta_n) := (n - 1, n - 2, \dots, 0)$. Then we have

$$D_x(u)m_\lambda(x) \in (1 - uq^{\lambda_1}t^{\delta_1})\cdots(1 - uq^{\lambda_n}t^{\delta_n})m_\lambda(x) + \sum_{\mu < \lambda} \mathbb{K}m_\mu(x)$$

Corollary 2.5. $D_x^{(r)}m_\lambda(x) = e_r(q^\lambda t^\delta)m_\lambda(x) + (\text{lower order terms}), \text{ and } D_x^{(1)} = D_x \text{ satisfies}$

$$\forall \lambda \in P^+ \quad \Phi \, m_\lambda \,=\, c_{\lambda\lambda} m_\lambda + \sum_{\mu < \lambda} c_{\lambda\mu} m_\mu, \quad c_{\lambda\lambda} \neq 0; \qquad \forall \, \mu < \lambda \quad c_{\mu\mu} \neq c_{\lambda\lambda}.$$

Exercise 2.5 (*). Check Corollary 2.5 using Proposition 2.4.

2.3 Commutativity of Macdonald difference operators

Theorem 2.6. (1) The difference operators $D_x^{(r)}$ are commutative:

$$[D_x^{(r)}, D_x^{(s)}] = 0 \quad (r, s = 0, \dots, n)$$

(2) P_{λ} is a join eigenfunction of the operators $D_x^{(r)}$ $(r=0,\ldots,n)$. More precisely, we have

$$D_x^{(r)} P_{\lambda}(x) = P_{\lambda}(x) e_r(q^{\lambda} t^{\delta}).$$

Assume either of the following two conditions is satisfied.

• $q, t \in \mathbb{C}$ and 0 < |q|, |t| < 1. • $t = q^k, k \in \mathbb{N}$. Define the pairing $\langle \cdot, \cdot \rangle_{q,t}$ on $\mathbb{K}[x^{\pm 1}]^W$ by

$$\langle f, g \rangle_{q,t} := |W|^{-1} \operatorname{C.T.}[f(x^{-1})g(x)w(x;q,t)],$$

where C.T.[$\varphi(x)$] denotes the constant term of the Laurent expansion of $\varphi(x)$ in terms of x, and

$$w(x;q,t) := \prod_{i \neq j} (x_i/x_j;q)_{\infty}/(tx_i/x_j;q)_{\infty}, \quad (a;q)_{\infty} := \lim_{n \to \infty} (a;q)_n = \prod_{i=0}^{\infty} (1-aq^i).$$

Proposition 2.7. (1) $\langle D^{(r)}f,g\rangle_{q,t} = \langle f,D^{(r)}g\rangle_{q,t}$. for any $f,g \in \mathbb{K}[x^{\pm 1}]^W$.

(2) For $\lambda, \mu \in P^+$ with $\lambda \neq \mu$ we have $\langle P_{\lambda}, P_{\mu} \rangle_{q,t} = 0$.

Exercise 2.6 (**). Prove Proposition 2.7.

2.4 Macdonald-Cauchy kernel function

Theorem 2.8. Set $\Pi(x,y) = \Pi(x,y;q,t) := \prod_{i,j=1}^{n} (tx_i y_j;q)_{\infty} / (x_i y_j;q)_{\infty}$. Then

$$\Pi(x,y) = \sum_{\lambda \in P^+} b_\lambda P_\lambda(x) P_\lambda(y), \quad b_\lambda := \prod_{s \in \lambda} (1 - q^{a(s)} t^{l(s)+1}) / (1 - q^{a(s)+1} t^{l(s)}).$$

The function $\Pi(x, y)$ is called the Macdonald-Cauchy kernel function.

Exercise 2.7 (*). Check that Theorem 2.8 in the case t = q reduces to the Schur case.

Exercise 2.8 (***). Give a proof of Theorem 2.8 by taking the following steps.

- (1) Using Proposition 2.7 check that $\Pi(x,y) = \sum_{\lambda \in P^+} c_\lambda P_\lambda(x) P_\lambda(y)$ with some $c_\lambda \in \mathbb{K} \iff D_x(u) \Pi(x,y) = D_y(u) \Pi(x,y).$
- (2) Check that the equality $D_x(u)\Pi(x, y; q, t) = D_y(u)\Pi(x, y; q, t)$ can be reduced to a q-independent identity, which is nothing but the Schur case. (Since the Schur case is already known, the proof is completed.)