Summary and Problems of Lecture $2^{* 1}$

Shintaro Yanagida (office: A441) yanagida [at] math.nagoya-u.ac.jp
https://www.math.nagoya-u.ac.jp/~yanagida

The assignments are Exercises 2.1-2.8. The deadline of the report is October 29th (Monday).

2 Macdonald symmetric polynomials

$$
\mathbb{K}=\mathbb{Q}(q, t), \mathbb{K}\left[x^{ \pm 1}\right]=\mathbb{K}\left[x_{1}^{ \pm}, \ldots, x_{n}^{ \pm}\right], \quad W=S_{n}, \quad P^{+}=\mathcal{P}_{n}=\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{N}^{n} \mid \lambda_{1} \geq \cdots \geq \lambda_{n}\right\}
$$

2.1 The Macdonald difference operator and polynomials

Definition. The (first order) Macdonald difference operator $D_{x}^{(1)}=D_{x}$ is defined to be

$$
D_{x}:=\sum_{1 \leq k \leq n}\left(\prod_{j \neq k}\left(t x_{k}-x_{j}\right) /\left(x_{k}-x_{j}\right)\right) T_{q, x_{k}},
$$

where $T_{q, x_{k}}: \mathbb{K}\left[x^{ \pm 1}\right] \rightarrow \mathbb{K}\left[x^{ \pm 1}\right],\left(T_{q, x_{k}} f\right)\left(x_{1}, \ldots, x_{n}\right):=f\left(x_{1}, \ldots, q x_{k}, \ldots, x_{n}\right)$ is the q-shift operator.
Proposition 2.1. D_{x} satisfies the following properties.
(1) D_{x} is W-invariant, i.e., $w D_{x}=D_{x} w$ for any $w \in W$.
(2) Let $\Delta(x):=\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)$. Then for any $f(x) \in K[x]$ we have

$$
\left(D_{x} f\right)(x)=(\Delta(x))^{-1} \sum_{k=1}^{n} \Delta\left(x_{1}, \ldots, t x_{k}, \ldots, x_{n}\right) f\left(x_{1}, \ldots, q x_{k}, \ldots, x_{n}\right)
$$

(3) D_{x} preserves $\mathbb{K}[x]^{W}$, i.e., $D_{x}\left(\mathbb{K}[x]^{W}\right) \subset \mathbb{K}[x]^{W}$.

Exercise 2.1 (*). Give a proof of Proposition 2.1.
Theorem 2.2. For each $\lambda \in P^{+}$there exists $P_{\lambda}=P_{\lambda}(x ; q, t) \in \mathbb{K}[x]^{W}$ such that
(1) $P_{\lambda} \in m_{\lambda}+\sum_{\mu<\lambda} \mathbb{K} m_{\mu}$, where $\lambda \geq \mu$ is the dominance ordering on P^{+}.
(2) $D_{x} P_{\lambda}(x ; q, t)=P_{\lambda}(x ; q, t) \cdot e_{1}\left(q^{\lambda} t^{\delta}\right), \quad e_{1}\left(q^{\lambda} t^{\delta}\right):=\sum_{k=1}^{n} q^{\lambda_{k}} t^{n-k}$.

Moreover such P_{λ} is uniquely determined. It is called the Macdonald symmetric polynomials.
Corollary 2.3. $\left\{P_{\lambda} \mid \lambda \in P^{+}\right\}$is a \mathbb{K}-basis of $\mathbb{K}[x]^{W}$.
Exercise 2.2 (*). Give a proof of Corollary 2.3 using Theorem 2.2.
Exercise $2.3(* *)$. Using Theorem 2.2, show that P_{λ} satisfies the following properties.
(1) Let $(x ; q)_{l}:=(1-x)(1-q x) \cdots\left(1-q^{l-1} x\right)$ for $l \in \mathbb{N}$. For $\lambda=(k)$ we have

$$
\frac{(t ; q)_{k}}{(q ; q)_{k}} P_{(k)}(x ; q, t)=\sum_{m} \frac{(t ; q)_{m_{1}} \cdots(t ; q)_{m_{n}}}{(q ; q)_{m_{1}} \cdots(q ; q)_{m_{n}}} x_{1}^{m_{1}} \cdots x_{n}^{m_{n}}
$$

where $m=\left(m_{1}, \ldots, m_{n}\right)$ runs over \mathbb{N}^{n} with $m_{1}+\cdots+m_{n}=k$.
(2) $P_{\lambda}(x ; q, 1)=m_{\lambda}(x)$.
(3) $P_{\lambda}(x ; q, q)=s_{\lambda}(x)$.

2.2 Family of difference operators

Definition. We set $D_{x}^{(0)}:=1$, and for $r=1, \ldots, n$

$$
\left.D_{x}^{(r)}:=\sum_{I \subset\{1, \ldots, n\},|I|=r} A_{I}(x ; t) T_{q, x}^{I}, \quad A_{I}(x ; t):=t^{(r}{ }_{2}^{r}\right) \prod_{i \in I, j \notin I}\left(t x_{i}-x_{j}\right) /\left(x_{i}-x_{j}\right) .
$$

[^0]$D^{(r)}$ is called the r-th order Macdonald difference operator. We also set $D_{x}(u):=\sum_{r=0}^{n}(-u)^{r} D_{x}^{(r)}$.
Exercise 2.4 (*). Show that $A_{I}(x ; t)=\left(T_{t, x}^{I} \Delta(x)\right) / \Delta(x)$.
Proposition 2.4. Let $\delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right):=(n-1, n-2, \ldots, 0)$. Then we have
$$
D_{x}(u) m_{\lambda}(x) \in\left(1-u q^{\lambda_{1}} t^{\delta_{1}}\right) \cdots\left(1-u q^{\lambda_{n}} t^{\delta_{n}}\right) m_{\lambda}(x)+\sum_{\mu<\lambda} \mathbb{K} m_{\mu}(x)
$$

Corollary 2.5. $D_{x}^{(r)} m_{\lambda}(x)=e_{r}\left(q^{\lambda} t^{\delta}\right) m_{\lambda}(x)+$ (lower order terms), and $D_{x}^{(1)}=D_{x}$ satisfies

$$
\forall \lambda \in P^{+} \quad \Phi m_{\lambda}=c_{\lambda \lambda} m_{\lambda}+\sum_{\mu<\lambda} c_{\lambda \mu} m_{\mu}, \quad c_{\lambda \lambda} \neq 0 ; \quad \forall \mu<\lambda \quad c_{\mu \mu} \neq c_{\lambda \lambda} .
$$

Exercise 2.5 (*). Check Corollary 2.5 using Proposition 2.4.

2.3 Commutativity of Macdonald difference operators

Theorem 2.6. (1) The difference operators $D_{x}^{(r)}$ are commutative:

$$
\left[D_{x}^{(r)}, D_{x}^{(s)}\right]=0 \quad(r, s=0, \ldots, n)
$$

(2) P_{λ} is a join eigenfunctionof the operators $D_{x}^{(r)}(r=0, \ldots, n)$. More precisely, we have

$$
D_{x}^{(r)} P_{\lambda}(x)=P_{\lambda}(x) e_{r}\left(q^{\lambda} t^{\delta}\right)
$$

Assume either of the following two conditions is satisfied.

$$
\text { - } q, t \in \mathbb{C} \text { and } 0<|q|,|t|<1 . \quad \bullet t=q^{k}, k \in \mathbb{N}
$$

Define the pairing $\langle\cdot, \cdot\rangle_{q, t}$ on $\mathbb{K}\left[x^{ \pm 1}\right]^{W}$ by

$$
\langle f, g\rangle_{q, t}:=|W|^{-1} \text { C.T. }\left[f\left(x^{-1}\right) g(x) w(x ; q, t)\right],
$$

where C.T. $[\varphi(x)]$ denotes the constant term of the Laurent expansion of $\varphi(x)$ in terms of x, and

$$
w(x ; q, t):=\prod_{i \neq j}\left(x_{i} / x_{j} ; q\right)_{\infty} /\left(t x_{i} / x_{j} ; q\right)_{\infty}, \quad(a ; q)_{\infty}:=\lim _{n \rightarrow \infty}(a ; q)_{n}=\prod_{i=0}^{\infty}\left(1-a q^{i}\right)
$$

Proposition 2.7. (1) $\left\langle D^{(r)} f, g\right\rangle_{q, t}=\left\langle f, D^{(r)} g\right\rangle_{q, t}$. for any $f, g \in \mathbb{K}\left[x^{ \pm 1}\right]^{W}$.
(2) For $\lambda, \mu \in P^{+}$with $\lambda \neq \mu$ we have $\left\langle P_{\lambda}, P_{\mu}\right\rangle_{q, t}=0$.

Exercise 2.6 (**). Prove Proposition 2.7.

2.4 Macdonald-Cauchy kernel function

Theorem 2.8. Set $\Pi(x, y)=\Pi(x, y ; q, t):=\prod_{i, j=1}^{n}\left(t x_{i} y_{j} ; q\right)_{\infty} /\left(x_{i} y_{j} ; q\right)_{\infty}$. Then

$$
\Pi(x, y)=\sum_{\lambda \in P^{+}} b_{\lambda} P_{\lambda}(x) P_{\lambda}(y), \quad b_{\lambda}:=\prod_{s \in \lambda}\left(1-q^{a(s)} t^{l(s)+1}\right) /\left(1-q^{a(s)+1} t^{l(s)}\right)
$$

The function $\Pi(x, y)$ is called the Macdonald-Cauchy kernel function.
Exercise 2.7 (*). Check that Theorem 2.8 in the case $t=q$ reduces to the Schur case.
Exercise $2.8(* * *)$. Give a proof of Theorem 2.8 by taking the following steps.
(1) Using Proposition 2.7 check that $\Pi(x, y)=\sum_{\lambda \in P^{+}} c_{\lambda} P_{\lambda}(x) P_{\lambda}(y)$ with some $c_{\lambda} \in \mathbb{K} \Longleftrightarrow$ $D_{x}(u) \Pi(x, y)=D_{y}(u) \Pi(x, y)$.
(2) Check that the equality $D_{x}(u) \Pi(x, y ; q, t)=D_{y}(u) \Pi(x, y ; q, t)$ can be reduced to a q-independent identity, which is nothing but the Schur case. (Since the Schur case is already known, the proof is completed.)

[^0]: ${ }^{* 1} 2018 / 10 / 16$, ver. 0.4 .

