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The assignments are Exercises 2.1-2.8. The deadline of the report is October 29th (Monday).

2 Macdonald symmetric polynomials

K =Q(q,t), Klz*' ]| = K[zT,...,2E], W=258,, Pt =P, ={A=(\,...; ) eN" | A1 >--- >\, }.

rYn

2.1 The Macdonald difference operator and polynomials

Definition. The (first order) Macdonald difference operator DM = D, is defined to be

Dy = 3 cpen Tsn (ton — ) /(2 — 2)) Ty s

where T, ,, : Klz*] = K[zFY, (T, 2, f) (1, ..., 2n) = f(z1,...,qTk,...,T,) is the g-shift operator.

Proposition 2.1. D, satisfies the following properties.
(1) D, is W-invariant, i.e., wD, = D,w for any w € W.
(2) Let A(z) :=[[1<;<j<pn(@i — 2;). Then for any f(z) € K[z] we have

(Do f)(x) = (A@) 'S0 A@r, ety oo 20 F(T1 e, QT o T).
(3) D, preserves K[z]", i.e., D, (K[z]") C K[z]".
Exercise 2.1 (). Give a proof of Proposition 2.1.

Theorem 2.2. For each A € Pt there exists Py = Py(;q,t) € K[z]" such that
(1) Px€mx+>2, 5 Kmy, where A > 1 is the dominance ordering on P*.
(2) DuPa(z59,t) = Pa(w;0,1) - ex (%), ea(qMt?) i= o0 g™t r.

Moreover such Py is uniquely determined. It is called the Macdonald symmetric polynomials.
Corollary 2.3. {P, | A € P*} is a K-basis of K[z]".
Exercise 2.2 (x). Give a proof of Corollary 2.3 using Theorem 2.2.

Exercise 2.3 (xx). Using Theorem 2.2, show that Py satisfies the following properties.
(1) Let (z;9); ;= (1 —2)(1 —qz) - (1 — ¢'~'2) for I € N. For A = (k) we have

t; L@)my (G Qmn my m
( Q)kp(k)(m;q’t)zz( Dmy - (5 9) 2 g,

(¢ @)k —~ (G Dmy (G D, "
where m = (mq,...,m,) runs over N” with m; +--- +m,, = k.
(2) P(w;q,1) = mx(z). (3) Pa(34,q) = sa(w).

2.2 Family of difference operators
Definition. We set DJ(CO) :=1,and forr=1,...,n

DO = i AL @ OTE Ar(at) = (O Loy o (s — 1))/ (2 — ).
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D) is called the 7-th order Macdonald difference operator. We also set D,.(u) := Zfzo(—u)’”D(J).
Exercise 2.4 (). Show that Aj(z;t) = (T}, A(x))/A(x).
Proposition 2.4. Let § = (§1,02,...,0,) := (n—1,n—2,...,0). Then we have
Da(uymaz) € (1 — ug %) - (1 — g™ 15 )iy (2) + 3, Ky (2).
Corollary 2.5. D{"'m,(z) = e,(¢**)m(z) + (lower order terms), and DS = D, satisfies
YA€ Pt ®dmy = cxamy +Z#<>\C>\umw e #£0; Vi< A cup # e

Exercise 2.5 (). Check Corollary 2.5 using Proposition 2.4.

2.3 Commutativity of Macdonald difference operators

Theorem 2.6. (1) The difference operators Dg) are commutative:
(DY D) =0 (r,s=0,...,n).
(2) Py is a join eigenfunctionof the operators D) (r=0,...,n). More precisely, we have
DI Py(z) = Pa(x)e, (gt).

Assume either of the following two conditions is satisfied.
e ¢g,t € Cand0<|q|,|t] < 1. ot=¢" keN.
Define the pairing (-, ), on K[z*1]" by

(f.9)qe = W7 C.T[f(z7)g(a)w(z; g, 1)),

where C.T.[p(x)] denotes the constant term of the Laurent expansion of ¢(x) in terms of z, and

o0

w(w; g, t) = Tl (/255 oo/ (i) 255 D)oo (a3 Qoo = lim (a59)n = T[;Zo(1 — ag’).

n—oo
Proposition 2.7. (1) (D) f, gt = (f,D(’”)g>q7t. for any f,g € K[zT1W.
(2) For A\, u € Pt with A # p we have (Py, P,)q,: = 0.

Exercise 2.6 (xx). Prove Proposition 2.7.

2.4 Macdonald-Cauchy kernel function
Theorem 2.8. Set II(x,y) = U(x,y;q,t) := szzl(txiyj;q)oo/(a:iyj;q)oo. Then

I(z,y) = Laepr W Pa@)Pa(y),  ba = [Len(l = ¢"OH) /(1 — g,

The function II(z,y) is called the Macdonald-Cauchy kernel function.
Exercise 2.7 (). Check that Theorem 2.8 in the case t = ¢ reduces to the Schur case.

Exercise 2.8 (#xx). Give a proof of Theorem 2.8 by taking the following steps.
(1) Using Proposition 2.7 check that Il(x,y) = > \cp+ cxPa(z)Pr(y) with some ¢y € K <=
D, (u)li(z.y) = D, (u)l(z,y).
(2) Check that the equality D, (u)II(z,y;q,t) = Dy(uw)II(z,y; g,t) can be reduced to a ¢g-independent
identity, which is nothing but the Schur case. (Since the Schur case is already known, the proof is

completed.)



