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2 Macdonald symmetric polynomials

Today we set K := Q(q, t). We denote K[x±1] := K[x±1
1 , . . . , x±1

n ], and switch some notation:

W := Sn (symmetric group), P+ := Pn = {λ = (λ1, . . . , λn) ∈ Nn | λ1 ≥ · · · ≥ λn}.

2.1 The Macdonald difference operator and polynomials

For k = 1, . . . , n, we denote by Tq,xk
the q-shift operator or the q-difference operator*2with respect

to xk. It is a K-algebra isomorphism K[x±1] → K[x±1] given by

Tq,xk
: K[x±1] −→ K[x±1], (Tq,xk

f)(x1, . . . , xn) := f(x1, . . . , qxk, . . . , xn).

Definition. The (first order) Macdonald difference operator D
(1)
x = Dx is defined to be

Dx :=

n∑
k=1

(∏
j ̸=k

txk − xj

xk − xj

)
Tq,xk

.

Proposition 2.1. Dx satisfies the following properties.

(1) Dx is W -invariant, i.e., wDx = Dxw for any w ∈ W .

(2) Let ∆(x) :=
∏

1≤i<j≤n(xi − xj). Then for any f(x) ∈ K[x] we have

(Dxf)(x) =
1

∆(x)

n∑
k=1

∆(x1, . . . , txk, . . . , xn)f(x1, . . . , qxk, . . . , xn).

(3) Dx preserves K[x]W , i.e., Dx(K[x]W ) ⊂ K[x]W .

Exercise 2.1 (∗). Give a proof of Proposition 2.1.

The Macdonald symmetric polynomial is defined as an eigenfunction of the operator Dx.

Theorem 2.2 ([M88]). For each λ ∈ P+ there exists Pλ = Pλ(x; q, t) ∈ K[x]W such that

(1) Pλ ∈ mλ +
∑

µ<λ Kmµ, where λ ≥ µ is the dominance ordering on P+.

(2) Pλ is an eigenfunction of Dx. More precisely, we have

DxPλ(x; q, t) = Pλ(x; q, t) · e1(qλtδ), e1(q
λtδ) :=

∑n
k=1q

λktn−k.

Moreover such Pλ is uniquely determined. It is called the Macdonald symmetric polynomial.

*1 2018/10/16, ver. 0.6.
*2 q 差分作用素
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Corollary 2.3. {Pλ | λ ∈ P+} is a K-basis of K[x]W .

Exercise 2.2 (∗). Give a proof of Corollary 2.3 using Theorem 2.2.

The proof of Theorem 2.2 is based on

Theorem. Assume that a K-linear operator Φ : K[x]W → K[x]W satisfies

∀λ ∈ P+ Φmλ = cλλmλ +
∑

µ<λcλµmµ, cλλ ̸= 0,

∀µ < λ cµµ ̸= cλλ.
(2.1)

Then there exists uniquely Pλ ∈ K[x]W for any λ ∈ P+ such that

• Pλ(x) ∈ mλ +
∑

µ<λ Kmµ

• ΦPλ(x) = Pλ(x)cλλ.

Exercise 2.3 (∗∗). Using Theorem 2.2, show that Pλ satisfies the following properties.

(1) Let (x; q)l := (1− x)(1− qx) · · · (1− ql−1x) for l ∈ N. For λ = (k) we have

(t; q)k
(q; q)k

P(k)(x; q, t) =
∑
m

(t; q)m1 · · · (t; q)mn

(q; q)m1
· · · (q; q)mn

xm1
1 · · ·xmn

n ,

where m = (m1, . . . ,mn) runs over Nn with m1 + · · ·+mn = k.

(2) Pλ(x; q, 1) = mλ(x) (monomial symmetric polynomial).

(3) Pλ(x; q, q) = sλ(x) (Schur symmetric polynomial).

2.2 Family of difference operators

The purpose of this subsection is to check the condition (2.1). We will introduce higher order analogue

of Dx using the following symbol for q-difference operators.

T I
q,x := Tq,xi1

Tq,xi2
· · ·Tq,xir

, I = {i1, . . . , ir}.

Definition. We set D
(0)
x := 1, and for r = 1, . . . , n

D(r)
x :=

∑
I⊂{1,...,n}, |I|=r

AI(x; t)T
I
q,x, AI(x; t) := t(

r
2)

∏
i∈I, j /∈I

txi − xj

xi − xj
.

D(r) is called the r-th order Macdonald difference operator. We also set

Dx(u) :=

n∑
r=0

(−u)rD(r)
x =

∑
I⊂{1,...,n}

(−u)|I|AI(x; t)T
I
q,x.

Exercise 2.4 (∗). Recalling ∆(x) =
∏

1≤i<j≤n(xi − xj), show the following formula:

AI(x; t) =
T I
t,x∆(x)

∆(x)
.

Proposition 2.4 (Triangularity of Macdonald operators). Let δ = (δ1, δ2, . . . , δn) := (n−1, n−2, . . . , 0).

Then we have
Dx(u)mλ(x) ∈ (1− uqλ1tδ1) · · · (1− uqλntδn)mλ(x) +

∑
µ<λ

Kmµ(x).



2018/10/09 Perspectives in Mathematical Science IV (Yanagida), Lecture 2 3/4

Outline of Proof. Use the formula Dx(u) = 1
∆(x) det

[
xδi
j (1− utδiTq,xj )

]n
i,j=1

.

Corollary 2.5. D
(r)
x mλ(x) = er(q

λtδ)mλ(x)+(lower order terms), andD
(1)
x = Dx satisfies the condition

(2.1).

Exercise 2.5 (∗). Check Corollary 2.5 using Proposition 2.4.

2.3 Commutativity of Macdonald difference operators

Theorem 2.6. (1) The difference operators D
(r)
x are commutative:

[D(r)
x , D(s)

x ] = 0 (r, s = 0, . . . , n).

(2) Pλ is a join eigenfunction*3of the operators D
(r)
x (r = 0, . . . , n). More precisely, we have

D(r)
x Pλ(x) = Pλ(x) · er(qλtδ).

Outline of Proof. It is enough to show [Dx(u), Dx(v)] = 0. For that, let us introduce an inner product

⟨·, ·⟩q,t on K[x]W . Assume either of the following two conditions is satisfied.

• q, t ∈ C and 0 < |q|, |t| < 1

• t = qk, k = 0, 1, . . ..

Define the pairing ⟨·, ·⟩q,t on K[x±1]W by

⟨f, g⟩q,t :=
1

|W |
C.T.[f(x−1)g(x)w(x; q, t)],

where C.T.[φ(x)] denotes the constant term of the Laurent expansion of φ(x) in terms of x, and

w(x; q, t) :=
∏
i ̸=j

(xi/xj ; q)∞
(txi/xj ; q)∞

, (a; q)∞ := lim
n→∞

(a; q)n =

∞∏
i=0

(1− aqi).

Proposition 2.7. (1) D(r) = D
(r)
x is self-adjoint with respect to ⟨·, ·⟩q,t. In other words, for any

f, g ∈ K[x±1]W we have

⟨D(r)f, g⟩q,t = ⟨f,D(r)g⟩q,t.

(2) For λ, µ ∈ P+ with λ ̸= µ we have ⟨Pλ, Pµ⟩q,t = 0.

Exercise 2.6 (∗∗). Prove Proposition 2.7.

Proposition. There exists a unique subset {Qλ}λ∈P+ of K[X]W such that

(1) Qλ = mλ + (lower order terms), (2) ⟨Qλ, Qµ⟩q,t = 0 for λ, µ ∈ P+ with λ ̸= µ.

Corollary. We have

[Dx(u), Dx(v)]
∣∣∣
K[x]W

= 0.

Proposition. For any Φ ∈ K(x)[Tq,x], if Φ|K[x]W = 0 then Φ = 0.

Thus the proof of Theorem 2.6 is finished.

*3 同時固有関数
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2.4 Macdonald-Cauchy kernel function

Recall the Cauchy kernel for Schur polynomials:

n∏
i,j=1

1

1− xiyj
=

∑
λ∈P+

sλ(x)sλ(y). (2.2)

Macdonald introduced a q, t-analogue of this Cauchy kernel. To explain it, let us introduce the arm and

leg functions. Regard λ ∈ P+ ⊂ P as a Young diagram and set the coordinate (i, j) of boxes in λ such

that 1 ≤ i ≤ ℓ(λ), 1 ≤ j ≤ λi. Then for a box s = (i, j) we define

a(s) = aλ(s) := λi − j, l(s) = atλ(j, i),

where tλ is the transpose of λ.

Theorem 2.8. Set

Π(x, y) = Π(x, y; q, t) :=

n∏
i,j=1

(txiyj ; q)∞
(xiyj ; q)∞

.

Then we have

Π(x, y) =
∑

λ∈P+

bλPλ(x)Pλ(y), bλ :=
∏
s∈λ

1− qa(s)tl(s)+1

1− qa(s)+1tl(s)
.

Here s runs over the boxes of the Young diagram associated to λ. The function Π(x, y) is called the

Macdonald-Cauchy kernel function.

Exercise 2.7 (∗). Check that Theorem 2.8 in the case t = q reduces to the Schur case (2.2).

Exercise 2.8 (∗∗∗). Give a proof of Theorem 2.8 by taking the following steps.

(1) Using Proposition 2.7 check that Π(x, y) =
∑

λ∈P+ cλPλ(x)Pλ(y) with some cλ ∈ K ⇐⇒
Dx(u)Π(x, y) = Dy(u)Π(x, y).

(2) Check that the equality Dx(u)Π(x, y; q, t) = Dy(u)Π(x, y; q, t) can be reduced to a q-independent

identity, which is nothing but the Schur case. (Since the Schur case is already known, the proof is

completed.)
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