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Lecture 2: Macdonald symmetric polynomials *!
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2 Macdonald symmetric polynomials

Today we set K := Q(g,t). We denote K[z*!] := K[z, ..., 2], and switch some notation:

n

W =S, (symmetric group), P :=P, = {A=(A1,...,\) €N"[ A > > A, )

2.1 The Macdonald difference operator and polynomials

Fork =1,...,n, we denote by T ., the g-shift operator or the ¢-difference operator*2with respect

to xy. It is a K-algebra isomorphism K[z*!] — K[z*!] given by
TQJJk : K['ril] — K[xil]’ (T‘Lka)('rl? T 7$n) = f(xlv <o QT - - ,.73”)-

Definition. The (first order) Macdonald difference operator DM = D, is defined to be
- try —x;
D, = 3 (I 5 =52) Tom
k=1 gk kTN
Proposition 2.1. D, satisfies the following properties.
(1) D, is W-invariant, i.e., wD, = D,w for any w € W.
(2) Let A(z) :=[[1<;<j<n(®i — 2;). Then for any f(z) € K[z] we have

(DN = 575

ZA(xl,...,txk,...,xn)f(arl,...,qu,...,a:n).

k=1

(3) D, preserves K[z]V, ie., D,(K[z]") Cc K[z]".
Exercise 2.1 (). Give a proof of Proposition 2.1.
The Macdonald symmetric polynomial is defined as an eigenfunction of the operator D,.

Theorem 2.2 ([M88]). For each A € P* there exists Py = P\(z;¢,t) € K[z]" such that
(1) Px€mx+>2, 5 Kmy, where A > 1 is the dominance ordering on P*.

(2) P, is an eigenfunction of D,. More precisely, we have
DmP)\(m;qat) = P)\(.’E, qat) ! el(q)\té)v el(q)\tts) = ZZ‘:lqutnfk.

Moreover such P is uniquely determined. It is called the Macdonald symmetric polynomial.

*12018/10/16, ver. 0.6.
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Corollary 2.3. {P, | A € P*} is a K-basis of K[z]".
Exercise 2.2 (). Give a proof of Corollary 2.3 using Theorem 2.2.
The proof of Theorem 2.2 is based on

Theorem. Assume that a K-linear operator ® : K[z]"V — K[z]" satisfies

AN = P+ ‘I)m)\ = cyxmy + E;},<)\C}\Mmﬂ7 CA\ 7é 07

(2.1)
Vi< X Cup 7 Canre

Then there exists uniquely Py € K[z]" for any A € P* such that
o Py(z) €mr+ 3, Kmy

° ‘I)P,\(J:) = Py(Z)cxn-

Exercise 2.3 (#x). Using Theorem 2.2, show that P, satisfies the following properties.
(1) Let (z;9); := (1 —x)(1 — qz)--- (1 — ¢'~'z) for | € N. For A = (k) we have

(t; Q)

(¢:9)x

n )

P(k)(x;q,t)iz(. ) 1...( .q) eyt

where m = (mq,...,m,) runs over N” with m; +--- +m,, = k.
(2) Px(x;q,1) = my(z) (monomial symmetric polynomial).

(3) Pr(x;q,q) = sx(x) (Schur symmetric polynomial).

2.2 Family of difference operators

The purpose of this subsection is to check the condition (2.1). We will introduce higher order analogue

of D, using the following symbol for g-difference operators.
T, = Tow, Toas, - Toi s 1T = {i1,... ir}.
Definition. We set DJ(EO) :=1,and forr=1,...,n
r tr; —x;
(r) .— . I ) e— ? J
D) .= S AwOTL,,  Ar(zt) = 0 | H P
Ic{1,...n}, |I|=r iel, j¢I

D) is called the r-th order Macdonald difference operator. We also set

n

Dy(u) == > (—uw)' D = > (—uw)A;(z;0)T) .

r=0 Ic{1,...,n}

Exercise 2.4 (). Recalling A(z) = ]],<; <, (zi — z;), show the following formula:

TtIxA(x)
Ap(z;t) = W

Proposition 2.4 (Triangularity of Macdonald operators). Let § = (01, 02,...,0,) :== (n—1,n—2,...,0).

Then we have
Dy (uwymy(z) € (1 —ug*t°) - (1 — ug* % Ymy (x) + Z Ky, ().
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n

Outline of Proof. Use the formula D, (u) = A(lT) det [xgi(l — utd Tq)xj)} , O
e 714 5=1

Corollary 2.5. Dg(f)m,\(x) = e, (g t%)my(x)+ (lower order terms), and DY = D, satisfies the condition
(2.1).

Exercise 2.5 (). Check Corollary 2.5 using Proposition 2.4.

2.3 Commutativity of Macdonald difference operators
Theorem 2.6. (1) The difference operators DY are commutative:
(DY DY) =0 (r,s=0,...,n).
(2) P, is a join eigenfunction*3of the operators Dy (r=0,...,n). More precisely, we have
DI Py(z) = Py(z) - e (qt).

Outline of Proof. Tt is enough to show [D,(u), D,(v)] = 0. For that, let us introduce an inner product
(-, )q.t on K[z]". Assume either of the following two conditions is satisfied.

e g, tcCand 0<|q,|t] <1

et=q" k=0,1,...
Define the pairing (-, ), on K[z*1]" by

(fr9)qr = C.T.[f(xz"Yg(z)w(z; q,1)],

1
W
where C.T.[p(x)] denotes the constant term of the Laurent expansion of ¢(z) in terms of x, and

o0

wizsq,t) = [[ L2590 (i) = tim (aiq)e = [[(1—aq).

i (tzi/xj5 )00 i=0

Proposition 2.7. (1) D" = D is self-adjoint with respect to (-,-)q,t- In other words, for any
f,9 € K[zF" we have
(DOf,g)qe = (£, D7)

(2) For A\, u € Pt with A # p we have (Py, P,)q,: = 0.
Exercise 2.6 (+x). Prove Proposition 2.7.

Proposition. There exists a unique subset {Qx}rep+ of K[X]" such that
(1) @x = my + (lower order terms), (2) (@x, Qu)gr =0 for A\, p € PT with X # p.

Corollary. We have
9

Proposition. For any ® € K(z)[T} ], if ®|g[;jw = 0 then & = 0.

Thus the proof of Theorem 2.6 is finished. O

*3 [ IR [ 47 BT
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2.4 Macdonald-Cauchy kernel function

Recall the Cauchy kernel for Schur polynomials:

n

11 o > sa(@)sa(y). (2.2)

I v
Macdonald introduced a ¢, t-analogue of this Cauchy kernel. To explain it, let us introduce the arm and
leg functions. Regard A € PT C P as a Young diagram and set the coordinate (i,5) of boxes in A such
that 1 <7 </¢(\), 1 <j < \;. Then for a box s = (i,5) we define

a(s) = a)\(s) =\ 7].5 l(S) = a”)\(jai)a
where ‘) is the transpose of \.

Theorem 2.8. Set

n

M(z,y) = TW(z,y;q,0) == []

ij=1

(tz3Y53q) o
(T3Y53 @)oo

Then we have
1— qa(s)tl(s)+1

H(e,y) = 3 bR, b= ] e
AeP+ SEA q

Here s runs over the boxes of the Young diagram associated to A. The function II(z,y) is called the

Macdonald-Cauchy kernel function.
Exercise 2.7 (). Check that Theorem 2.8 in the case t = ¢ reduces to the Schur case (2.2).

Exercise 2.8 (#xx). Give a proof of Theorem 2.8 by taking the following steps.
(1) Using Proposition 2.7 check that II(z,y) = > \cp+ cxPa(z)Pr(y) with some ¢y € K <«
Dy (u)Il(z, y) = Dy(u)l(z,y).
(2) Check that the equality D, (u)II(z,y;q,t) = Dy(uw)II(z, y; g,t) can be reduced to a ¢g-independent
identity, which is nothing but the Schur case. (Since the Schur case is already known, the proof is

completed.)
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