2018/10/02 Perspectives in Mathematical Science IV/II (Yanagida), Lecture 1 1/10

Lecture 1: classical theory of symmetric polynomials *!

Shintaro YANAGIDA (office: A441)
yanagida [at] math.nagoya-u.ac.jp

https://www.math.nagoya-u.ac.jp/~yanagida

1  Symmetric polynomials

General notation:
N:=Z>o={0,1,2,...}.
n will denote a positive integer unless otherwise stated*2.

K denotes a field of characteristic 0*3.

1.1 Symmetric groups and symmetric polynomials

Let us denote by S,, the n-th symmetric group**. It consists of permutations*of the set {1,2,...,n}.

One can express an element o € S, as

_ 1 2 . T e n—1 n
7= \e(1) o2 -+ o@i) - on—1) o))"
The multiplication of the group S, is defined to be the composition*® of permutation. In other words,
we have
or :=oco7, (o7)(i) = o(7(3)).
Then the associativity condition (o7)u = o(7u) holds for any o, 7, € S,,. The unit*” of the group S,

is the identity permutation*®

—id = 12 . n-1n
c=e =\ o2 v on-1 n)
Recall that S, is generated by the transposition*®. For i =1,2,...,n — 1, set
o (1 - i i+1 -+ n
8; = (z,z—i—l)—(l il n)

The element s; is called a simple reflection*!. Then S, is generated by the simple reflections
S1,82,---,8n—1. Simple reflections enjoy the following relations.

512 = 1, SiSi+1S8i = Si+15iSi+1, §i8j; = 5584 (11)
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*11

Let us denote the polynomial ring***of n variables = (x1,...,x,) over K by the symbol

Klz] = Klz1,...,zp].

The n-th symmetric group S, acts*?on k[z] by permuting variables z*13. In other words, let an element
o € S, act on polynomials of x1,...,x, by the rule
0T = To(s) (1.2)

Then this action extends naturally to that on a polynomial f € K[z], and we have
e.f = f, o(r.f)=(o7).f.

Definition 1.1. A symmetric polynomial*'* of n variables is an element f € K[z] such that o.f = f

for any o € S,,. Then the K-linear space
K[z]%" := {symmetric polynomials} = {f € K[z] |o.f = f Vo€ S,}

is a commutative ring, which is called the ring of symmetric polynomials*'®.

The same construction works if we replace K by a commutative ring R. In particular, it works for Z,

the ring of integers. We denote by
R[z],  Z[z]%

the ring of symmetric polynomials over R or Z.

*16 *17

Definition 1.2. For r =0,1,...,n, the r-th elementary symmetric polynomial

er(z) == Z xj, oxy € Lx]n.

1< < <gr<n.

e, is given by

The generating function*!® of e,’s is given by

erer(x) = (14 zz1)(1 + zz2) - - - (1 + zx,,).
r=0
Recall the following well-known statement.

Theorem 1.3. K[z]» = Kle1(x),...,en(z)].

A proof of this theorem will be sketched in §1.3. As a preliminary let us introduce notations on

partitions.
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1.2 Partitions

A partition*!? means a finite non-increasing sequence of positive integers. In other words, a partition

A is a sequence expressed as
A= (A1,-52), NMEZ, A >X>--2> )X >0
For a partition A = (Aq,..., A\g), we set

A== >"Xi, () == (length of \) = k.

We identify a partition with the sequence padded with 0’s. Thus
A=, 0) = (A, 2, 0) = (A, 00, A8, 0,0,.00).

We also regard §) := () = (0) as a partition.
If a partition A satisfies |A| = d, then we say A is a partition of d. We set
P4 .= {partitions of d}, P := |_| Ppd
deN

The integer p(d) := |P?| is called the partition number*?°of d.
Here are the partitions of d < 6. We use the abbreviations like (12) = (1,1), (23) = (2,2,2).

d| p(d) | P

0 0

1 1)

2 2| (2), (1%

3 31(3),(2,1), (1%)

4 51 (4), (3,1), (22), (2,12), (1%)

5 71 (5), (4,1), (3,2), (3,1%), (22,1), (2,1%), (1°)

6| 11](6),(51),(4,2), (4,1%), (3%), (3,2,1), (3,1%), (2°), (22,1%), (2,1%), (19)

Dealing with partitions, it is sometimes very convenient to use Young diagrams*?'. We will use the

*22

English style®** of Young diagrams as in Figure 1.

"mET P TR EP

O @ @ 6 @nyaC) @ G @) 210

Figure 1 Young diagrams corresponding to partitions A with |[A| < 4

*19 sy

*20 g%

*21 Young M

*22 There is another way of drawing Young diagram called French style.
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Exercise 1.1 (x). *?3 Explain that the generating function G(2) := 3" ;5 p(d)z? of the partition numbers

is equal to the following infinite product.

1 1 1 1
(2) I_EINl—zm 1—21—221—-23

G(#) is sometimes called the partition function.

Definition 1.4. For a partition ), its transpose*?* ‘\ means the partition whose Young diagram is

obtained by the transposition of the Young diagram of \.
For example, we have
t(n) = (]‘n)ﬂ t(Qv ]-) = (23 1)7 t(3a 1) = (27 12)7 t(27 2) = (27 2)

We also have *(*\) = \.

1.3 Classical symmetric polynomials

We continue to use the notation z = (z1,...,x,). Hereafter we denote the ring of symmetric polyno-

mials over Z by

Its degree d part is denoted by
AL = Af(2) = {f(z) € Ay | deg f(z) = d}.

In this subsection we introduce several well-known bases of A,, and explain a proof of Theorem 1.3.

It is convenient to introduce the following symbol. For a = (ay, ..., a,) € N*, we set
¢ = aftag? e adn.
We also set |a| :==ay + -+ + ap. So we have degx® = |a|. The action of w € S, on z¢ is given by
wa® = w(eag? e al) = ahay a,y = o ey,

Therefore if we define the action of S,, on N by
w.a = w.(ar,. .., 0n) = (1), Quny), WE Sy, a €N, (1.3)

then we have

Let us also introduce

P, := {non-increasing sequences of non-negative integers of length n}
={ A=A ) eNT [ A 2> >\, >0}

*23 The number of #’s denotes the difficulty of the exercise.
*24 i
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Similarly as in the case of partitions, we set |A| := > A; for A € P,,. We also set /() to be the maximal
number k such that Ay # 0. Finally we set

Pl={AeP, ||\ =d}.
So P, = I_IdZOfPfL. We have an obvious identification
Pd = INe P!\ <n}.
Now we have
Proposition 1.5. Under the action (1.3) of S, on N", the orbit decomposition*?® is given by
N" = Ujep, Sn-A.
For the subset {a € N" | |a| = d}, we have the orbit decomposition {a € N" | |a] = d} = Uycpa Sy

Exercise 1.2 (x). Show Proposition 1.5.

Definition 1.6. For A = (A\1,...,)\,) € P,, the monomial symmetric polynomial **®m, € A, is
defined to be

ma(x) = E xt = g A AR e

aE€Sy. A a:(al’.“,an):
different permutations of A

In the first expression we denoted by S,,.\ the orbit of A € Z™ under the action of S,.

Example. In the case n = 3, we have

m(3) (x) = m(s) (x1,29,23) = Z 2 = (300 + 2(0:3:0) + 2(0:03) = x? + x% + a:g,
«€8S3.(3,0,0)
m(2,1)($) — Z z® = ¢(&10) 4 2(2,01) | (1,2,0) 4 .(1,0,2) | .(0,2,1) 4 ,.(0,1,2)
a€S3.(2,1,0)

2 2 2 2 2
= x{T2 + x7T3 + 2125 + T123 + T2 — 273 + T273,

msy(z) = Z 2 = 200D = gz,
a€S3.(1,1,1)

Note also that e, = m - for any r € N.

Proposition 1.7. A, is a free Z-module, and {m | A € P, } is a basis of A,,. In other words

An = @AE‘PW,ZmA
Proof. Tt is enough to show A% = @®reps Zmy for each d € N. Any f € A can be expressed as
flx) = ZaeN",m\:d cqr®. Since f is a symmetric polynomial, we have w.f = f for any w € S,.
Recalling (1.4), we see that w.f =), Car® O = Y Cwar®. Thus w.f = f implies ¢y.q = ¢o. Then
using Proposition 1.5 we have

f= Z Cox® = Z Z Cox® = Z cx Z Cox® = Z exmy(z).

€N, |al=d AEPL €S, A AEPL  @€S,.A AePd

*25 #3853 fiRt
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So any f € A? can be expressed as a summation of m) with integer coefficients, and such an expression

is unique. Therefore A = Oaepd Zmy. O

Now we introduce
Definition 1.8. For A = (\y,...,\,) € P4, we define
— d
E) 1= €e)E), €y, € An

By Proposition 1.7, we find that each f € AZ can be expressed as a linear combination of {m,, | € P2}.

In the case f = e:), we have the following statement.

Theorem 1.9. *27 For any A € P4 one can expand ey in terms of {m, | u € P4} as

ety = my + E ax My, axy € 2.
<

Here we used the dominance ordering *?® ;i < A, which is defined by
p<XAN<= |ul =N and p1 4+ Fpur <A+ + XN VE=1,2,.... (1.5)

Actually the dominance ordering is a total order*?® on P? with d < 5. We have

(2)>(1,1),

(3) > (2,1) > (1,1,1),

(4)>(3,1) > (2,2) > (2,1,1) > (1,1,1,1),

(5) > (4,1) > (3,2) > (3,1%) > (22,1) > (2,1%) > (1°).

However, on Pe with n > 6 the dominance ordering is a partial order*39,

2 > (3,1%) >

> (2%) >

> (4,1%) >

(6) > (5a 1) > (472) > (:’32) >

(3,2,1) (2%,1%) > (2,1%) > (19).
For d = 7,8, it looks as in Figure 2.
Exercise 1.3 (xx). Give a proof of Theorem 1.9 (see [006, EEE 9.2] for example).
As a corollary of Theorem 1.9, we have
Corollary 1.10. Then {ey | A € P4} is a basis of AZ. Thus
Ay = @/\e:Pg Ley.

In particular, Theorem 1.3 holds.

*27 modified in ver. 0.3.
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Figure 2 The Hasse diagram of dominance ordering on partitions of d = 7,8

Proof. By Theorem 1.9, if we express ety = Zu ax,,my, then we have ay , = 0if p £ A, and ay » = 0.

Now consider the matrix A = (ax,) Auepd, where columns and rows are ordered by the inverse
lexicographic ordering*3!. Since this ordering is a total ordering and respects the dominance ordering,
A is an upper triangular matrix*?with integer coefficients and 1’s on the diagonal. In particular A~*
exists and is also an upper triangular matrix with integer coefficients and 1’s on the diagonal.

Then the vectors e := (e:x)epa and m := (my)epa are related by e = Am. So m = A~'e and

my = et) + Z b)\’#WLtl“ b)\,p € Z.
<A

Since {m,} is a basis of A%, we find that {ex} is also a basis of AL.

*31 sy e
*32 | = 475
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Exercise 1.4 (xx). The r-th completely homogeneous symmetric polynomial **3h, € A’ is
defined to be
he(x) :== Z Ty iy " T,
1< <io < <ir<n
For A = (A1,...,\,) € P4 we set
hy = hkl"'hAn € Ag.
(1) Check the equality hq(x) = >, cpa ma(2).
(2) Show that {hy | A € P} is a basis of AZ.
1.4 Schur polynomials
Definition 1.11. (1) For p = (u1, 2, .., un) € Z", we define an alternate function*3* a,(z) by
.'L'ﬁbl mli@ x?n
bt xh? xh"
a,(z) =
xél xﬁZ xt}][n

(2) For A = (A1, e, ..., ) € P, we define the Schur symmetric polynomial to be

a T
saz) = L()7 d+A:=M+n—Li+n—2,...,0,),0 := (n—1,n—2,...,0).
as(x)
Example 1.12. For n = |\| < 3, Schur symmetric polynomials look as follows.
S(1) = T1,

3 2 .1
_xll/xll_g 2 _xlzl/:cll_ _
S2) = 43 1 P +x122 + 25 = ha, 512 = 32 4l oy 1] = T2 = €2

x? zy 1 $% x1 1
s3) = xg To 1 / x% To 1| = x:{’ + x% + gcg + x%xg + .’L‘%l’g + LU%(E;), + :le% + xlxg + :1:2333 = hg,
3 x3 1 3 z3 1
i 2?1 2?2 r 1
5(2,1) = vy 23 1 / 3wy 1| = (21 + x2) (w2 + 73) (73 + 71),
:z:fa,L m% 1 9::2), 3 1
3 2d i w1
s13) = x% x% T / x% To 1| = x1x023 = e3.
x% x% T3 m% 3 1

In the above calculation we used e, (see Definition 1.2) and h, (see Exercise 1.4).

Exercise 1.5 (x). Check that s(1n) = €, and s(,,) = hy, in K[z]%".

Proposition 1.13. The Schur symmetric polynomial sy given in Definition 1.11 is a symmetric poly-

nomial for each \ € P,,.

*33 SE NI N
*34 A
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Exercise 1.6 (xx). Give a proof of Proposition 1.13. More precisely, show that for any A € P,
(1) sa(z) € Z[x], (2) sx(w) € A, = Z[z]%".

By Proposition 1.7, one can expand sy in terms of m,,.
Theorem 1.14. For any A\ € P,, we have
S\ = m,\—&—ZK)\,NmW KNMGN'

<A

Here 1 < A means the dominance ordering (1.5). The number K , is called the Kostka number.

Example. For |\| <4 we have
S(1) = M(1);
8(2) = M(2) TM@2), 512 = Ma2),
S(3) = M) +Mmey tmas), S = M T 2mas),  Sas) = mas),
S(a) = Mqa) F M)t me2) +meaz) Fmas, Se) = M T mer) +2meaz) +3mas),
S(22) = My22) +M(2,12) + 2m(14)7 S(2,12) = My2,12) + 3m(14)7 S(14) = My14).
We will not give a proof of Theorem 1.14. See [M95, p. 73, Chap. I §6 (6.5)] or [O06, p. 160, §9.6 &
9.35, [ 9.13] for example. The proofs of these references use the tableau formula (Theorem 1.16).

Corollary 1.15. {s) | A € P,,} is a basis of the Z-module A,,.
Exercise 1.7 (). Give a proof of Corollary 1.15 using Theorem 1.14.
There is an explicit formula of Schur polynomials.

Theorem 1.16. For any A € P,, we have
sa(z) = Z zT.
TeSSTab(A;n)

This theorem is called the tableau formula for Schur polynomial.

*350f shape

Some explanations are in order. SSTab(A;n) denotes the set of semi-standard tableaux
A. A semi-standard tableau T' € SSTab(A;n) is a Young diagram of A whose boxes are numbered by
1,2,...,n such that in each column numbers appear increasingly, and in each row numbers appear

non-decreasingly. For example, SSTab(\; 3) looks as in Figure 3. For each T € SSTab(A;n), we set
2T = g D2 gma(T)
where m;(T) denotes the times of the number ¢ appearing in the tableau 7.
Example. Let us check Theorem 1.16 in the case |A\| = 3. We can use Figure 3 and Example 1.12 The

result is

E T = xi’ + 1’%1’2 + x12223 + xg’ + mgxg + :@x% + :rg = 5(3),
TeSSTab((3),3)

*35 ey
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T 2 2 2 2 2 2
g Tt = riTo + xix3 + 2125 + 22120003 + T1T3 + T3T3 + T2X53 = S(2,1),

TESSTab((2,1),3)

E l‘T = X1T2T3 = 5(13).

TESSTab((13),3)

[1]1]1] 1] 1[3]
E
[111]2]
1] 2[2]
11212 3]
[1]2]3] 2] 2|3]
3
2[272 o
2]
2[213
[2]3]3] 3]

Figure 3 Semi-standard tableaux of shape A with |A| = 3.

We will not give a proof of Theorem 1.16. See [M95, p. 73, Chap. I §5 (5.12)] or [006, p. 159, §9.6 &
H 9.33] for example. But let us mention the following key identity.

Theorem 1.17 (The Cauchy formula). For x = (zq,..

The right hand side term []}

Exercise 1.8 (#x). Give a proof of Theorem 1.17.
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