Lecture 1: classical theory of symmetric polynomials *1

Shintaro YANAGIDA (office: A441) yanagida [at] math.nagoya-u.ac.jp https://www.math.nagoya-u.ac.jp/~yanagida

1 Symmetric polynomials

General notation:

 $\mathbb{N} := \mathbb{Z}_{>0} = \{0, 1, 2, \ldots\}.$

n will denote a positive integer unless otherwise stated^{*2}.

 \mathbbm{K} denotes a field of characteristic $0^{*3}.$

1.1 Symmetric groups and symmetric polynomials

Let us denote by S_n the *n*-th symmetric group^{*4}. It consists of permutations^{*5} of the set $\{1, 2, ..., n\}$. One can express an element $\sigma \in S_n$ as

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & i & \cdots & n-1 & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(i) & \cdots & \sigma(n-1) & \sigma(n) \end{pmatrix}$$

The multiplication of the group S_n is defined to be the composition^{*6} of permutation. In other words, we have

$$\sigma \tau := \sigma \circ \tau, \quad (\sigma \tau)(i) = \sigma(\tau(i)).$$

Then the associativity condition $(\sigma \tau)\mu = \sigma(\tau \mu)$ holds for any $\sigma, \tau, \mu \in S_n$. The unit^{*7} of the group S_n is the identity permutation^{*8}

$$e = id = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ 1 & 2 & \cdots & n-1 & n \end{pmatrix}.$$

Recall that S_n is generated by the transposition^{*9}. For i = 1, 2, ..., n - 1, set

$$s_i := (i, i+1) = \begin{pmatrix} 1 & \cdots & i & i+1 & \cdots & n \\ 1 & \cdots & i+1 & i & \cdots & n \end{pmatrix}$$

The element s_i is called a **simple reflection**^{*10}. Then S_n is generated by the simple reflections $s_1, s_2, \ldots, s_{n-1}$. Simple reflections enjoy the following relations.

$$s_i^2 = 1, \quad s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}, \quad s_i s_j = s_j s_i.$$
 (1.1)

- *¹ 2018/10/02, ver. 0.3. *² 断らない限り *³ 標数 0 の体 *⁴ n 次対称群 *⁵ 置換
- *⁶ 合成
- ^{*7} (群の) 単位元
- *⁸ 恒等置換
- *⁹ 互換
- *¹⁰ 単純鏡映

$$\mathbb{K}[x] = \mathbb{K}[x_1, \dots, x_n].$$

The *n*-th symmetric group $S_n \operatorname{acts}^{*12}$ on k[x] by permuting variables x^{*13} . In other words, let an element $\sigma \in S_n$ act on polynomials of x_1, \ldots, x_n by the rule

$$\sigma x_i = x_{\sigma(i)}.\tag{1.2}$$

Then this action extends naturally to that on a polynomial $f \in \mathbb{K}[x]$, and we have

$$e.f = f, \quad \sigma.(\tau.f) = (\sigma\tau).f.$$

Definition 1.1. A symmetric polynomial^{*14} of *n* variables is an element $f \in \mathbb{K}[x]$ such that $\sigma f = f$ for any $\sigma \in S_n$. Then the \mathbb{K} -linear space

$$\mathbb{K}[x]^{S_n} := \{ \text{symmetric polynomials} \} = \{ f \in \mathbb{K}[x] \mid \sigma. f = f \quad \forall \sigma \in S_n \}$$

is a commutative ring, which is called **the ring of symmetric polynomials**^{*15}.

The same construction works if we replace \mathbb{K} by a commutative ring R. In particular, it works for \mathbb{Z} , the ring of integers. We denote by

 $R[x]^{S_n}, \quad \mathbb{Z}[x]^{S_n}$

the ring of symmetric polynomials over R or \mathbb{Z} .

Definition 1.2. For r = 0, 1, ..., n, the *r*-th elementary symmetric polynomial ${}^{*16} e_r$ is given by *17

$$e_r(x) := \sum_{1 \le j_1 < \dots < j_r \le n} x_{j_1} \cdots x_{j_r} \in \mathbb{Z}[x]^{S_n}.$$

The generating function^{*18} of e_r 's is given by

$$\sum_{r=0}^{n} z^{r} e_{r}(x) = (1+zx_{1})(1+zx_{2})\cdots(1+zx_{n}).$$

Recall the following well-known statement.

Theorem 1.3. $\mathbb{K}[x]^{S_n} = \mathbb{K}[e_1(x), \dots, e_n(x)].$

A proof of this theorem will be sketched in §1.3. As a preliminary let us introduce notations on partitions.

*14 対称多項式

^{*11} 多項式環

^{*&}lt;sup>12</sup> (群が) 作用する

^{*&}lt;sup>13</sup> 変数 $x = (x_1, \dots, x_n)$ を置換する (ことで)

^{*15} 対称多項式環

^{*16} 基本対称多項式

 $^{^{*17}}$ modified in ver. 0.3.

^{*18} 母函数

1.2 Partitions

A **partition**^{*19} means a finite non-increasing sequence of positive integers. In other words, a partition λ is a sequence expressed as

$$\lambda = (\lambda_1, \dots, \lambda_k), \quad \lambda_i \in \mathbb{Z}, \quad \lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_k > 0.$$

For a partition $\lambda = (\lambda_1, \ldots, \lambda_k)$, we set

$$|\lambda| := \sum_{i} \lambda_{i}, \quad \ell(\lambda) := (\text{length of } \lambda) = k.$$

We identify a partition with the sequence padded with 0's. Thus

$$\lambda = (\lambda_1, \dots, \lambda_k) = (\lambda_1, \dots, \lambda_k, 0) = (\lambda_1, \dots, \lambda_k, 0, 0, \dots).$$

We also regard $\emptyset := () = (0)$ as a partition.

If a partition λ satisfies $|\lambda| = d$, then we say λ is a **partition of** d. We set

$$\mathcal{P}^d := \{ \text{partitions of } d \}, \quad \mathcal{P} := \bigsqcup_{d \in \mathbb{N}} \mathcal{P}^d$$

The integer $p(d) := |\mathcal{P}^d|$ is called the **partition number**^{*20} of *d*.

Here are the partitions of $d \leq 6$. We use the abbreviations like $(1^2) = (1, 1), (2^3) = (2, 2, 2)$.

d	p(d)	\mathbb{P}^d
0		
1	1	(1)
2	2	$(2), (1^2)$
3	3	$(3), (2,1), (1^3)$
4	5	$(4), (3,1), (2^2), (2,1^2), (1^4)$
5	7	$(5), (4,1), (3,2), (3,1^2), (2^2,1), (2,1^3), (1^5)$
6	11	$(6), (5,1), (4,2), (4,1^2), (3^2), (3,2,1), (3,1^3), (2^3), (2^2,1^2), (2,1^4), (1^6)$

Dealing with partitions, it is sometimes very convenient to use **Young diagrams**^{*21}. We will use the English style^{*22} of Young diagrams as in Figure 1.

Figure 1 Young diagrams corresponding to partitions λ with $|\lambda| \leq 4$

^{*&}lt;sup>19</sup> 分割

^{*20} 分割数

^{*21} Young 図形

^{*22} There is another way of drawing Young diagram called French style.

Exercise 1.1 (*). *²³ Explain that the generating function $G(z) := \sum_{d \ge 0} p(d) z^d$ of the partition numbers is equal to the following infinite product.

$$G(z) = \prod_{m \in \mathbb{N}} \frac{1}{1 - z^m} = \frac{1}{1 - z} \frac{1}{1 - z^2} \frac{1}{1 - z^3} \cdots$$

G(z) is sometimes called the partition function.

Definition 1.4. For a partition λ , its **transpose**^{*24} $t\lambda$ means the partition whose Young diagram is obtained by the transposition of the Young diagram of λ .

For example, we have

$$t^{t}(n) = (1^{n}), \quad t(2,1) = (2,1), \quad t(3,1) = (2,1^{2}), \quad t(2,2) = (2,2).$$

We also have ${}^{t}({}^{t}\lambda) = \lambda$.

1.3 Classical symmetric polynomials

We continue to use the notation $x = (x_1, \ldots, x_n)$. Hereafter we denote the ring of symmetric polynomials over \mathbb{Z} by

$$\Lambda_n = \Lambda_n(x) := \mathbb{Z}[x]^{S_n}.$$

Its degree d part is denoted by

$$\Lambda_n^d = \Lambda_n^d(x) := \{ f(x) \in \Lambda_n \mid \deg f(x) = d \}.$$

In this subsection we introduce several well-known bases of Λ_n and explain a proof of Theorem 1.3.

It is convenient to introduce the following symbol. For $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$, we set

$$x^{\alpha} := x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}.$$

We also set $|\alpha| := \alpha_1 + \cdots + \alpha_n$. So we have deg $x^{\alpha} = |\alpha|$. The action of $w \in S_n$ on x^{α} is given by

$$w.x^{\alpha} = w.(x_1^{\alpha_1}x_2^{\alpha_2}\cdots x_n^{\alpha_n}) = x_{w(1)}^{\alpha_1}x_{w(2)}^{\alpha_2}\cdots x_{w(n)}^{\alpha_n} = x_1^{\alpha_{w^{-1}(1)}}x_2^{\alpha_{w^{-1}(2)}}\cdots x_n^{\alpha_{w^{-1}(n)}}.$$

Therefore if we define the action of S_n on \mathbb{N}^n by

$$w.\alpha = w.(\alpha_1, \dots, \alpha_n) := (\alpha_{w(1)}, \dots, \alpha_{w(n)}), \quad w \in S_n, \ \alpha \in \mathbb{N}^n,$$
(1.3)

then we have

$$w.x^{\alpha} = x^{w^{-1}.\alpha}.\tag{1.4}$$

Let us also introduce

$$\begin{aligned} \mathcal{P}_n &:= \{ \text{non-increasing sequences of non-negative integers of length } n \} \\ &= \{ \lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{N}^n \mid \lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n \geq 0 \}. \end{aligned}$$

*24 転置

 $^{*^{23}}$ The number of *'s denotes the difficulty of the exercise.

Similarly as in the case of partitions, we set $|\lambda| := \sum_i \lambda_i$ for $\lambda \in \mathcal{P}_n$. We also set $\ell(\lambda)$ to be the maximal number k such that $\lambda_k \neq 0$. Finally we set

$$\mathcal{P}_n^d := \{\lambda \in \mathcal{P}_n \mid |\lambda| = d\}.$$

So $\mathcal{P}_n = \bigsqcup_{d \ge 0} \mathcal{P}_n^d$. We have an obvious identification

$$\mathcal{P}_n^d = \{\lambda \in \mathcal{P}^d \mid \ell(\lambda) \le n\}.$$

Now we have

Proposition 1.5. Under the action (1.3) of S_n on \mathbb{N}^n , the orbit decomposition^{*25} is given by

$$\mathbb{N}^n = \bigsqcup_{\lambda \in \mathcal{P}_n} S_n . \lambda.$$

For the subset $\{\alpha \in \mathbb{N}^n \mid |\alpha| = d\}$, we have the orbit decomposition $\{\alpha \in \mathbb{N}^n \mid |\alpha| = d\} = \bigsqcup_{\lambda \in \mathcal{P}^d_n} S_n \lambda$.

Exercise 1.2 (*). Show Proposition 1.5.

Definition 1.6. For $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathcal{P}_n$, the monomial symmetric polynomial ${}^{*26}m_{\lambda} \in \Lambda_n$ is defined to be

$$m_{\lambda}(x) := \sum_{\alpha \in S_{n,\lambda}} x^{\alpha} = \sum_{\substack{\alpha = (\alpha_1, \dots, \alpha_n): \\ \text{different permutations of } \lambda}} x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}.$$

In the first expression we denoted by $S_n \lambda$ the orbit of $\lambda \in \mathbb{Z}^n$ under the action of S_n .

Example. In the case n = 3, we have

$$\begin{split} m_{(3)}(x) &= m_{(3)}(x_1, x_2, x_3) = \sum_{\alpha \in S_3.(3,0,0)} x^{\alpha} = x^{(3,0,0)} + x^{(0,3,0)} + x^{(0,0,3)} = x_1^3 + x_2^3 + x_3^3, \\ m_{(2,1)}(x) &= \sum_{\alpha \in S_3.(2,1,0)} x^{\alpha} = x^{(2,1,0)} + x^{(2,0,1)} + x^{(1,2,0)} + x^{(1,0,2)} + x^{(0,2,1)} + x^{(0,1,2)} \\ &= x_1^2 x_2 + x_1^2 x_3 + x_1 x_2^2 + x_1 x_3^2 + x_2 - 2x_3 + x_2 x_3^2, \\ m_{(1^3)}(x) &= \sum_{\alpha \in S_3.(1,1,1)} x^{\alpha} = x^{(1,1,1)} = x_1 x_2 x_3. \end{split}$$

Note also that $e_r = m_{(1^r)}$ for any $r \in \mathbb{N}$.

Proposition 1.7. Λ_n is a free \mathbb{Z} -module, and $\{m_{\lambda} \mid \lambda \in \mathcal{P}_n\}$ is a basis of Λ_n . In other words

$$\Lambda_n = \bigoplus_{\lambda \in \mathcal{P}_n} \mathbb{Z} m_\lambda$$

Proof. It is enough to show $\Lambda_n^d = \bigoplus_{\lambda \in \mathcal{P}_n^d} \mathbb{Z} m_\lambda$ for each $d \in \mathbb{N}$. Any $f \in \Lambda_n^d$ can be expressed as $f(x) = \sum_{\alpha \in \mathbb{N}^n, |\alpha| = d} c_\alpha x^\alpha$. Since f is a symmetric polynomial, we have w.f = f for any $w \in S_n$. Recalling (1.4), we see that $w.f = \sum_{\alpha} c_\alpha x^{w^{-1}.\alpha} = \sum_{\alpha} c_{w.\alpha} x^\alpha$. Thus w.f = f implies $c_{w.\alpha} = c_\alpha$. Then using Proposition 1.5 we have

$$f = \sum_{\alpha \in \mathbb{N}^n, |\alpha| = d} c_{\alpha} x^{\alpha} = \sum_{\lambda \in \mathcal{P}^d_n} \sum_{\alpha \in S_n, \lambda} c_{\alpha} x^{\alpha} = \sum_{\lambda \in \mathcal{P}^d_n} c_{\lambda} \sum_{\alpha \in S_n, \lambda} c_{\alpha} x^{\alpha} = \sum_{\lambda \in \mathcal{P}^d_n} c_{\lambda} m_{\lambda}(x).$$

*25 軌道分解

^{*26} 単項対称多項式、またはモノミアル対称多項式

So any $f \in \Lambda_n^d$ can be expressed as a summation of m_λ with integer coefficients, and such an expression is unique. Therefore $\Lambda_n^d = \bigoplus_{\lambda \in \mathcal{P}_n^d} \mathbb{Z} m_\lambda$.

Now we introduce

Definition 1.8. For $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathcal{P}_n^d$, we define

$$e_{\lambda} := e_{\lambda_1} e_{\lambda_2} \cdots e_{\lambda_n} \in \Lambda_n^d$$

By Proposition 1.7, we find that each $f \in \Lambda_n^d$ can be expressed as a linear combination of $\{m_\mu \mid \mu \in \mathcal{P}_n^d\}$. In the case $f = e_{\iota_\lambda}$, we have the following statement.

Theorem 1.9. *27 For any $\lambda \in \mathbb{P}^d$ one can expand e_{λ} in terms of $\{m_{\mu} \mid \mu \in \mathbb{P}^d\}$ as

$$e_{t_{\lambda}} = m_{\lambda} + \sum_{\mu < \lambda} a_{\lambda,\mu} m_{\mu}, \quad a_{\lambda,\mu} \in \mathbb{Z}.$$

Here we used the **dominance ordering** *28 $\mu \leq \lambda$, which is defined by

$$\mu \le \lambda \iff |\mu| = |\lambda| \text{ and } \mu_1 + \dots + \mu_k \le \lambda_1 + \dots + \lambda_k \quad \forall k = 1, 2, \dots$$
 (1.5)

Actually the dominance ordering is a total order^{*29} on \mathcal{P}^d with $d \leq 5$. We have

$$\begin{aligned} &(2) > (1,1), \\ &(3) > (2,1) > (1,1,1), \\ &(4) > (3,1) > (2,2) > (2,1,1) > (1,1,1,1), \\ &(5) > (4,1) > (3,2) > (3,1^2) > (2^2,1) > (2,1^3) > (1^5). \end{aligned}$$

However, on \mathcal{P}^d with $n \ge 6$ the dominance ordering is a partial order^{*30}.

$$(6) > (5,1) > (4,2) > (4,1^2) > (3,2,1) > (3,1^3) > (2^2,1^2) > (2,1^4) > (1^6).$$

For d = 7, 8, it looks as in Figure 2.

Exercise 1.3 (**). Give a proof of Theorem 1.9 (see [O06, 定理 9.2] for example).

As a corollary of Theorem 1.9, we have

Corollary 1.10. Then $\{e_{\lambda} \mid \lambda \in \mathcal{P}_n^d\}$ is a basis of Λ_n^d . Thus

$$\Lambda_n^d = \bigoplus_{\lambda \in \mathcal{P}_n^d} \mathbb{Z} e_\lambda.$$

In particular, Theorem 1.3 holds.

 $^{^{*27}}$ modified in ver. 0.3.

^{*&}lt;sup>28</sup> 支配順序またはドミナンス順序

^{*&}lt;sup>29</sup> 全順序

^{*30} 半順序

7/10

Figure 2 The Hasse diagram of dominance ordering on partitions of d = 7, 8

Proof. By Theorem 1.9, if we express $e_{\lambda} = \sum_{\mu} a_{\lambda,\mu} m_{\mu}$, then we have $a_{\lambda,\mu} = 0$ if $\mu \leq \lambda$, and $a_{\lambda,\lambda} = 0$. Now consider the matrix $A = (a_{\lambda,\mu})_{\lambda,\mu\in\mathcal{P}_n^d}$, where columns and rows are ordered by the inverse lexicographic ordering^{*31}. Since this ordering is a total ordering and respects the dominance ordering, A is an upper triangular matrix^{*32} with integer coefficients and 1's on the diagonal. In particular A^{-1} exists and is also an upper triangular matrix with integer coefficients and 1's on the diagonal.

Then the vectors $e := (e_{\lambda})_{\lambda \in \mathcal{P}_n^d}$ and $m := (m_{\lambda})_{\lambda \in \mathcal{P}_n^d}$ are related by e = Am. So $m = A^{-1}e$ and

$$m_{\lambda} = e_{t_{\lambda}} + \sum_{\mu < \lambda} b_{\lambda,\mu} m_{t_{\mu}}, \quad b_{\lambda,\mu} \in \mathbb{Z}.$$

Since $\{m_{\lambda}\}$ is a basis of Λ_n^d , we find that $\{e_{\lambda}\}$ is also a basis of Λ_n^d .

^{*31} 逆辞書式順序

^{*32} 上三角行列

Exercise 1.4 (**). The *r*-th completely homogeneous symmetric polynomial ${}^{*33}h_r \in \Lambda_n^r$ is defined to be

$$h_r(x) := \sum_{1 \le i_1 \le i_2 \le \dots \le i_r \le n} x_{i_1} x_{i_2} \cdots x_{i_r}.$$

For $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathcal{P}_n^d$, we set

$$h_{\lambda} := h_{\lambda_1} \cdots h_{\lambda_n} \in \Lambda_n^d.$$

- (1) Check the equality $h_d(x) = \sum_{\lambda \in \mathcal{P}^d} m_\lambda(x)$.
- (2) Show that $\{h_{\lambda} \mid \lambda \in \mathcal{P}_n^d\}$ is a basis of Λ_n^d .

1.4 Schur polynomials

Definition 1.11. (1) For $\mu = (\mu_1, \mu_2, \dots, \mu_n) \in \mathbb{Z}^n$, we define an alternate function^{*34} $a_{\mu}(x)$ by

$$a_{\mu}(x) := \begin{vmatrix} x_1^{\mu_1} & x_1^{\mu_2} & \cdots & x_1^{\mu_n} \\ x_2^{\mu_1} & x_2^{\mu_2} & \cdots & x_2^{\mu_n} \\ \vdots & & \ddots & \vdots \\ x_n^{\mu_1} & x_n^{\mu_2} & \cdots & x_n^{\mu_n} \end{vmatrix}.$$

(2) For $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathcal{P}_n$, we define the **Schur symmetric polynomial** to be

$$s_{\lambda}(x) := \frac{a_{\delta+\lambda}(x)}{a_{\delta}(x)}, \quad \delta+\lambda := (\lambda_1+n-1, \lambda_2+n-2, \dots, \lambda_n), \delta := (n-1, n-2, \dots, 0).$$

Example 1.12. For $n = |\lambda| \leq 3$, Schur symmetric polynomials look as follows.

$$\begin{split} s_{(1)} &= x_1, \\ s_{(2)} &= \begin{vmatrix} x_1^3 & 1 \\ x_2^3 & 1 \end{vmatrix} / \begin{vmatrix} x_1 & 1 \\ x_2 & 1 \end{vmatrix} = x_1^2 + x_1 x_2 + x_2^2 = h_2, \qquad s_{(1^2)} = \begin{vmatrix} x_1^2 & x_1^1 \\ x_2^2 & x_1^1 \end{vmatrix} / \begin{vmatrix} x_1 & 1 \\ x_2 & 1 \end{vmatrix} = x_1 x_2 = e_2, \\ s_{(3)} &= \begin{vmatrix} x_1^5 & x_1 & 1 \\ x_2^5 & x_2 & 1 \\ x_3^5 & x_3 & 1 \end{vmatrix} / \begin{vmatrix} x_1^2 & x_1 & 1 \\ x_2^2 & x_2 & 1 \\ x_3^2 & x_3 & 1 \end{vmatrix} = x_1^3 + x_2^3 + x_3^3 + x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_3 + x_1 x_2^2 + x_1 x_3^2 + x_2 x_3^2 = h_3. \\ s_{(2,1)} &= \begin{vmatrix} x_1^4 & x_1^2 & 1 \\ x_2^4 & x_2^2 & 1 \\ x_3^4 & x_3^2 & 1 \end{vmatrix} / \begin{vmatrix} x_1^2 & x_1 & 1 \\ x_2^2 & x_2 & 1 \\ x_3^2 & x_3 & 1 \end{vmatrix} = (x_1 + x_2)(x_2 + x_3)(x_3 + x_1), \\ s_{(1^3)} &= \begin{vmatrix} x_1^3 & x_1^2 & x_1 \\ x_3^2 & x_2^2 & x_1 \\ x_3^3 & x_3^2 & x_3 \end{vmatrix} / \begin{vmatrix} x_1^2 & x_1 & 1 \\ x_2^2 & x_2 & 1 \\ x_3^2 & x_3 & 1 \end{vmatrix} = x_1 x_2 x_3 = e_3. \end{split}$$

In the above calculation we used e_r (see Definition 1.2) and h_r (see Exercise 1.4).

Exercise 1.5 (*). Check that $s_{(1^n)} = e_n$ and $s_{(n)} = h_n$ in $\mathbb{K}[x]^{S_n}$.

Proposition 1.13. The Schur symmetric polynomial s_{λ} given in Definition 1.11 is a symmetric polynomial for each $\lambda \in \mathcal{P}_n$.

^{*33} 完全対称多項式

^{*&}lt;sup>34</sup> 交代式

Exercise 1.6 (**). Give a proof of Proposition 1.13. More precisely, show that for any $\lambda \in \mathcal{P}_n$ (1) $s_{\lambda}(x) \in \mathbb{Z}[x]$, (2) $s_{\lambda}(x) \in \Lambda_n = \mathbb{Z}[x]^{S_n}$.

By Proposition 1.7, one can expand s_{λ} in terms of m_{μ} .

Theorem 1.14. For any $\lambda \in \mathcal{P}_n$ we have

$$s_{\lambda} = m_{\lambda} + \sum_{\mu < \lambda} K_{\lambda,\mu} m_{\mu}, \quad K_{\lambda,\mu} \in \mathbb{N}.$$

Here $\mu < \lambda$ means the dominance ordering (1.5). The number $K_{\lambda,\mu}$ is called the **Kostka number**.

Example. For $|\lambda| \leq 4$ we have

$$\begin{split} s_{(1)} &= m_{(1)}, \\ s_{(2)} &= m_{(2)} + m_{(1^2)}, \quad s_{(1^2)} = m_{(1^2)}, \\ s_{(3)} &= m_{(3)} + m_{(2,1)} + m_{(1^3)}, \quad s_{(2,1)} = m_{(2,1)} + 2m_{(1^3)}, \quad s_{(1^3)} = m_{(1^3)}, \\ s_{(4)} &= m_{(4)} + m_{(3,1)} + m_{(2,2)} + m_{(2,1^2)} + m_{(1^4)}, \quad s_{(3,1)} = m_{(3,1)} + m_{(2^2)} + 2m_{(2,1^2)} + 3m_{(1^4)}, \\ s_{(2^2)} &= m_{(2^2)} + m_{(2,1^2)} + 2m_{(1^4)}, \quad s_{(2,1^2)} = m_{(2,1^2)} + 3m_{(1^4)}, \quad s_{(1^4)} = m_{(1^4)}. \end{split}$$

We will not give a proof of Theorem 1.14. See [M95, p. 73, Chap. I §6 (6.5)] or [O06, p. 160, §9.6 系 9.35, 問 9.13] for example. The proofs of these references use the tableau formula (Theorem 1.16).

Corollary 1.15. $\{s_{\lambda} \mid \lambda \in \mathcal{P}_n\}$ is a basis of the \mathbb{Z} -module Λ_n .

Exercise 1.7 (*). Give a proof of Corollary 1.15 using Theorem 1.14.

There is an explicit formula of Schur polynomials.

Theorem 1.16. For any $\lambda \in \mathcal{P}_n$ we have

$$s_{\lambda}(x) := \sum_{T \in \text{SSTab}(\lambda;n)} x^T.$$

This theorem is called the **tableau formula** for Schur polynomial.

Some explanations are in order. $\text{SSTab}(\lambda; n)$ denotes the set of **semi-standard tableaux**^{*35} of shape λ . A semi-standard tableau $T \in \text{SSTab}(\lambda; n)$ is a Young diagram of λ whose boxes are numbered by $1, 2, \ldots, n$ such that in each column numbers appear increasingly, and in each row numbers appear non-decreasingly. For example, $\text{SSTab}(\lambda; 3)$ looks as in Figure 3. For each $T \in \text{SSTab}(\lambda; n)$, we set

$$x^T := x_1^{m_1(T)} x_2^{m_2(T)} \cdots x_n^{m_n(T)}$$

where $m_i(T)$ denotes the times of the number *i* appearing in the tableau *T*.

Example. Let us check Theorem 1.16 in the case $|\lambda| = 3$. We can use Figure 3 and Example 1.12 The result is

$$\sum_{\in SSTab((3),3)} x^T = x_1^3 + x_1^2 x_2 + x_1 x_2 x_3 + x_2^3 + x_2^2 x_3 + x_2 x_3^2 + x_3^2 = s_{(3)},$$

*³⁵ 半標準盤

T

$$\sum_{\substack{T \in \text{SSTab}((2,1),3)\\T \in \text{SSTab}((1^3),3)}} x^T = x_1^2 x_2 + x_1^2 x_3 + x_1 x_2^2 + 2x_1 x_2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2 = s_{(2,1)},$$

Figure 3 Semi-standard tableaux of shape λ with $|\lambda| = 3$.

We will not give a proof of Theorem 1.16. See [M95, p. 73, Chap. I §5 (5.12)] or [O06, p. 159, §9.6 定 理 9.33] for example. But let us mention the following key identity.

Theorem 1.17 (The Cauchy formula). For $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ we have

$$\sum_{\lambda \in \mathcal{P}_n} s_{\lambda}(x) s_{\lambda}(y) = \prod_{i,j=1}^n \frac{1}{1 - x_i y_j}.$$

The right hand side term $\prod_{i,j=1}^{n} \frac{1}{1-x_i y_i}$ is called **the Cauchy kernel** (function)^{*36}.

Exercise 1.8 (**). Give a proof of Theorem 1.17.

References

- [M95] I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford University Press, 1995.
- [M95] I. G. Macdonald, Symmetric functions and orthogonal polynomials, University Lecture Series, 12, American Mathematical Society, 1998.
- [N97] 野海正俊述,長谷川浩司記,「アフィン Hecke 環と多変数直交多項式— Macdonald-Cherednik 理 論—」東北大学集中講義講義録, 1997;

available at https://www.math.nagoya-u.ac.jp/~yanagida/others-j.html

[O06] 岡田聡一, 古典群の表現論と組み合わせ論 下, 培風館, 2006.

^{*36} Cauchy 核 (関数)