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Lecture 1: classical theory of symmetric polynomials *1

Shintaro YANAGIDA (office: A441)

yanagida [at] math.nagoya-u.ac.jp

https://www.math.nagoya-u.ac.jp/~yanagida

1 Symmetric polynomials

General notation:

N := Z≥0 = {0, 1, 2, . . .}.
n will denote a positive integer unless otherwise stated*2.

K denotes a field of characteristic 0*3.

1.1 Symmetric groups and symmetric polynomials

Let us denote by Sn the n-th symmetric group*4. It consists of permutations*5of the set {1, 2, . . . , n}.
One can express an element σ ∈ Sn as

σ =

(
1 2 · · · i · · · n− 1 n

σ(1) σ(2) · · · σ(i) · · · σ(n− 1) σ(n)

)
.

The multiplication of the group Sn is defined to be the composition*6 of permutation. In other words,

we have
στ := σ ◦ τ, (στ)(i) = σ(τ(i)).

Then the associativity condition (στ)µ = σ(τµ) holds for any σ, τ, µ ∈ Sn. The unit*7 of the group Sn

is the identity permutation*8

e = id =

(
1 2 · · · n− 1 n
1 2 · · · n− 1 n

)
.

Recall that Sn is generated by the transposition*9. For i = 1, 2, . . . , n− 1, set

si := (i, i+ 1) =

(
1 · · · i i+ 1 · · · n
1 · · · i+ 1 i · · · n

)
.

The element si is called a simple reflection*10. Then Sn is generated by the simple reflections

s1, s2, . . . , sn−1. Simple reflections enjoy the following relations.

s2i = 1, sisi+1si = si+1sisi+1, sisj = sjsi. (1.1)

*1 2018/10/02, ver. 0.3.
*2 断らない限り
*3 標数 0の体
*4 n次対称群
*5 置換
*6 合成
*7 (群の)単位元
*8 恒等置換
*9 互換

*10 単純鏡映
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Let us denote the polynomial ring*11of n variables x = (x1, . . . , xn) over K by the symbol

K[x] = K[x1, . . . , xn].

The n-th symmetric group Sn acts*12on k[x] by permuting variables x*13. In other words, let an element

σ ∈ Sn act on polynomials of x1, . . . , xn by the rule

σ.xi = xσ(i). (1.2)

Then this action extends naturally to that on a polynomial f ∈ K[x], and we have

e.f = f, σ.(τ.f) = (στ).f.

Definition 1.1. A symmetric polynomial*14 of n variables is an element f ∈ K[x] such that σ.f = f

for any σ ∈ Sn. Then the K-linear space

K[x]Sn := {symmetric polynomials} = {f ∈ K[x] | σ.f = f ∀σ ∈ Sn}

is a commutative ring, which is called the ring of symmetric polynomials*15.

The same construction works if we replace K by a commutative ring R. In particular, it works for Z,
the ring of integers. We denote by

R[x]Sn , Z[x]Sn

the ring of symmetric polynomials over R or Z.

Definition 1.2. For r = 0, 1, . . . , n, the r-th elementary symmetric polynomial *16 er is given by*17

er(x) :=
∑

1≤j1<···<jr≤n

xj1 · · ·xjr ∈ Z[x]Sn .

The generating function*18 of er’s is given by

n∑
r=0

zrer(x) = (1 + zx1)(1 + zx2) · · · (1 + zxn).

Recall the following well-known statement.

Theorem 1.3. K[x]Sn = K[e1(x), . . . , en(x)].

A proof of this theorem will be sketched in §1.3. As a preliminary let us introduce notations on

partitions.

*11 多項式環
*12 (群が)作用する
*13 変数 x = (x1, . . . , xn)を置換する (ことで)
*14 対称多項式
*15 対称多項式環
*16 基本対称多項式
*17 modified in ver. 0.3.
*18 母函数
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1.2 Partitions

A partition*19 means a finite non-increasing sequence of positive integers. In other words, a partition

λ is a sequence expressed as

λ = (λ1, . . . , λk), λi ∈ Z, λ1 ≥ λ2 ≥ · · · ≥ λk > 0.

For a partition λ = (λ1, . . . , λk), we set

|λ| :=
∑
i

λi, ℓ(λ) := (length of λ) = k.

We identify a partition with the sequence padded with 0’s. Thus

λ = (λ1, . . . , λk) = (λ1, . . . , λk, 0) = (λ1, . . . , λk, 0, 0, . . .).

We also regard ∅ := () = (0) as a partition.

If a partition λ satisfies |λ| = d, then we say λ is a partition of d. We set

Pd := {partitions of d}, P :=
⊔
d∈N

Pd

The integer p(d) := |Pd| is called the partition number*20of d.

Here are the partitions of d ≤ 6. We use the abbreviations like (12) = (1, 1), (23) = (2, 2, 2).

d p(d) Pd

0 ()
1 1 (1)
2 2 (2), (12)
3 3 (3), (2, 1), (13)
4 5 (4), (3, 1), (22), (2, 12), (14)
5 7 (5), (4, 1), (3, 2), (3, 12), (22, 1), (2, 13), (15)
6 11 (6), (5, 1), (4, 2), (4, 12), (32), (3, 2, 1), (3, 13), (23), (22, 12), (2, 14), (16)

Dealing with partitions, it is sometimes very convenient to use Young diagrams*21. We will use the

English style*22 of Young diagrams as in Figure 1.

(1) (2) (12) (3) (2, 1) (13) (4) (3, 1) (22) (2, 12) (14)

Figure 1 Young diagrams corresponding to partitions λ with |λ| ≤ 4

*19 分割
*20 分割数
*21 Young図形
*22 There is another way of drawing Young diagram called French style.
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Exercise 1.1 (∗). *23 Explain that the generating functionG(z) :=
∑

d≥0 p(d)z
d of the partition numbers

is equal to the following infinite product.

G(z) =
∏
m∈N

1

1− zm
=

1

1− z

1

1− z2
1

1− z3
· · · .

G(z) is sometimes called the partition function.

Definition 1.4. For a partition λ, its transpose*24 tλ means the partition whose Young diagram is

obtained by the transposition of the Young diagram of λ.

For example, we have

t(n) = (1n), t(2, 1) = (2, 1), t(3, 1) = (2, 12), t(2, 2) = (2, 2).

We also have t(tλ) = λ.

1.3 Classical symmetric polynomials

We continue to use the notation x = (x1, . . . , xn). Hereafter we denote the ring of symmetric polyno-

mials over Z by
Λn = Λn(x) := Z[x]Sn .

Its degree d part is denoted by

Λd
n = Λd

n(x) := {f(x) ∈ Λn | deg f(x) = d}.

In this subsection we introduce several well-known bases of Λn and explain a proof of Theorem 1.3.

It is convenient to introduce the following symbol. For α = (α1, . . . , αn) ∈ Nn, we set

xα := xα1
1 xα2

2 · · ·xαn
n .

We also set |α| := α1 + · · ·+ αn. So we have deg xα = |α|. The action of w ∈ Sn on xα is given by

w.xα = w.(xα1
1 xα2

2 · · ·xαn
n ) = xα1

w(1)x
α2

w(2) · · ·x
αn

w(n) = x
αw−1(1)

1 x
αw−1(2)

2 · · ·x
αw−1(n)
n .

Therefore if we define the action of Sn on Nn by

w.α = w.(α1, . . . , αn) := (αw(1), . . . , αw(n)), w ∈ Sn, α ∈ Nn, (1.3)

then we have
w.xα = xw−1.α. (1.4)

Let us also introduce

Pn := {non-increasing sequences of non-negative integers of length n}
= {λ = (λ1, λ2, . . . , λn) ∈ Nn | λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0}.

*23 The number of ∗’s denotes the difficulty of the exercise.
*24 転置
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Similarly as in the case of partitions, we set |λ| :=
∑

i λi for λ ∈ Pn. We also set ℓ(λ) to be the maximal

number k such that λk ̸= 0. Finally we set

Pd
n := {λ ∈ Pn | |λ| = d}.

So Pn = ⊔d≥0P
d
n. We have an obvious identification

Pd
n = {λ ∈ Pd | ℓ(λ) ≤ n}.

Now we have

Proposition 1.5. Under the action (1.3) of Sn on Nn, the orbit decomposition*25 is given by

Nn = ⊔λ∈PnSn.λ.

For the subset {α ∈ Nn | |α| = d}, we have the orbit decomposition {α ∈ Nn | |α| = d} = ⊔λ∈Pd
n
Sn.λ.

Exercise 1.2 (∗). Show Proposition 1.5.

Definition 1.6. For λ = (λ1, . . . , λn) ∈ Pn, the monomial symmetric polynomial *26mλ ∈ Λn is

defined to be

mλ(x) :=
∑

α∈Sn.λ

xα =
∑

α=(α1,...,αn):
different permutations of λ

xα1
1 xα2

2 · · ·xαn
n .

In the first expression we denoted by Sn.λ the orbit of λ ∈ Zn under the action of Sn.

Example. In the case n = 3, we have

m(3)(x) = m(3)(x1, x2, x3) =
∑

α∈S3.(3,0,0)

xα = x(3,0,0) + x(0,3,0) + x(0,0,3) = x3
1 + x3

2 + x3
3,

m(2,1)(x) =
∑

α∈S3.(2,1,0)

xα = x(2,1,0) + x(2,0,1) + x(1,2,0) + x(1,0,2) + x(0,2,1) + x(0,1,2)

= x2
1x2 + x2

1x3 + x1x
2
2 + x1x

2
3 + x2 − 2x3 + x2x

2
3,

m(13)(x) =
∑

α∈S3.(1,1,1)

xα = x(1,1,1) = x1x2x3.

Note also that er = m(1r) for any r ∈ N.

Proposition 1.7. Λn is a free Z-module, and {mλ | λ ∈ Pn} is a basis of Λn. In other words

Λn =
⊕

λ∈Pn
Zmλ

Proof. It is enough to show Λd
n = ⊕λ∈Pd

n
Zmλ for each d ∈ N. Any f ∈ Λd

n can be expressed as

f(x) =
∑

α∈Nn, |α|=d cαx
α. Since f is a symmetric polynomial, we have w.f = f for any w ∈ Sn.

Recalling (1.4), we see that w.f =
∑

α cαx
w−1.α =

∑
α cw.αx

α. Thus w.f = f implies cw.α = cα. Then

using Proposition 1.5 we have

f =
∑

α∈Nn,|α|=d

cαx
α =

∑
λ∈Pd

n

∑
α∈Sn.λ

cαx
α =

∑
λ∈Pd

n

cλ
∑

α∈Sn.λ

cαx
α =

∑
λ∈Pd

n

cλmλ(x).

*25 軌道分解
*26 単項対称多項式, またはモノミアル対称多項式
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So any f ∈ Λd
n can be expressed as a summation of mλ with integer coefficients, and such an expression

is unique. Therefore Λd
n = ⊕λ∈Pd

n
Zmλ.

Now we introduce

Definition 1.8. For λ = (λ1, . . . , λn) ∈ Pd
n, we define

eλ := eλ1
eλ2

· · · eλn
∈ Λd

n.

By Proposition 1.7, we find that each f ∈ Λd
n can be expressed as a linear combination of {mµ | µ ∈ Pd

n}.
In the case f = etλ, we have the following statement.

Theorem 1.9. *27 For any λ ∈ Pd one can expand etλ in terms of {mµ | µ ∈ Pd} as

etλ = mλ +
∑
µ<λ

aλ,µmµ, aλ,µ ∈ Z.

Here we used the dominance ordering *28 µ ≤ λ, which is defined by

µ ≤ λ ⇐⇒ |µ| = |λ| and µ1 + · · ·+ µk ≤ λ1 + · · ·+ λk ∀ k = 1, 2, . . . . (1.5)

Actually the dominance ordering is a total order*29 on Pd with d ≤ 5. We have

(2) > (1, 1),

(3) > (2, 1) > (1, 1, 1),

(4) > (3, 1) > (2, 2) > (2, 1, 1) > (1, 1, 1, 1),

(5) > (4, 1) > (3, 2) > (3, 12) > (22, 1) > (2, 13) > (15).

However, on Pd with n ≥ 6 the dominance ordering is a partial order*30.

(6) > (5, 1) > (4, 2)
> (4, 12) >
> (32) >

(3, 2, 1)
> (3, 13) >
> (23) >

(22, 12) > (2, 14) > (16).

For d = 7, 8, it looks as in Figure 2.

Exercise 1.3 (∗∗). Give a proof of Theorem 1.9 (see [O06, 定理 9.2] for example).

As a corollary of Theorem 1.9, we have

Corollary 1.10. Then {eλ | λ ∈ Pd
n} is a basis of Λd

n. Thus

Λd
n =

⊕
λ∈Pd

n
Z eλ.

In particular, Theorem 1.3 holds.

*27 modified in ver. 0.3.
*28 支配順序またはドミナンス順序
*29 全順序
*30 半順序
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Figure 2 The Hasse diagram of dominance ordering on partitions of d = 7, 8

Proof. By Theorem 1.9, if we express etλ =
∑

µ aλ,µmµ, then we have aλ,µ = 0 if µ ̸≤ λ, and aλ,λ = 0.

Now consider the matrix A = (aλ,µ)λ,µ∈Pd
n
, where columns and rows are ordered by the inverse

lexicographic ordering*31. Since this ordering is a total ordering and respects the dominance ordering,

A is an upper triangular matrix*32with integer coefficients and 1’s on the diagonal. In particular A−1

exists and is also an upper triangular matrix with integer coefficients and 1’s on the diagonal.

Then the vectors e := (etλ)λ∈Pd
n
and m := (mλ)λ∈Pd

n
are related by e = Am. So m = A−1e and

mλ = etλ +
∑
µ<λ

bλ,µmtµ, bλ,µ ∈ Z.

Since {mλ} is a basis of Λd
n, we find that {eλ} is also a basis of Λd

n.

*31 逆辞書式順序
*32 上三角行列
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Exercise 1.4 (∗∗). The r-th completely homogeneous symmetric polynomial *33hr ∈ Λr
n is

defined to be
hr(x) :=

∑
1≤i1≤i2≤···≤ir≤n

xi1xi2 · · ·xir .

For λ = (λ1, . . . , λn) ∈ Pd
n, we set

hλ := hλ1
· · ·hλn

∈ Λd
n.

(1) Check the equality hd(x) =
∑

λ∈Pd mλ(x).

(2) Show that {hλ | λ ∈ Pd
n} is a basis of Λd

n.

1.4 Schur polynomials

Definition 1.11. (1) For µ = (µ1, µ2, . . . , µn) ∈ Zn, we define an alternate function*34 aµ(x) by

aµ(x) :=

∣∣∣∣∣∣∣∣∣
xµ1

1 xµ2

1 · · · xµn

1

xµ1

2 xµ2

2 · · · xµn

2
...

. . .
...

xµ1
n xµ2

n · · · xµn
n

∣∣∣∣∣∣∣∣∣ .
(2) For λ = (λ1, λ2, . . . , λn) ∈ Pn, we define the Schur symmetric polynomial to be

sλ(x) :=
aδ+λ(x)

aδ(x)
, δ + λ := (λ1 + n− 1, λ2 + n− 2, . . . , λn), δ := (n− 1, n− 2, . . . , 0).

Example 1.12. For n = |λ| ≤ 3, Schur symmetric polynomials look as follows.

s(1) = x1,

s(2) =

∣∣∣∣x3
1 1

x3
2 1

∣∣∣∣ / ∣∣∣∣x1 1
x2 1

∣∣∣∣ = x2
1 + x1x2 + x2

2 = h2, s(12) =

∣∣∣∣x2
1 x1

1

x2
2 x1

1

∣∣∣∣ / ∣∣∣∣x1 1
x2 1

∣∣∣∣ = x1x2 = e2,

s(3) =

∣∣∣∣∣∣
x5
1 x1 1

x5
2 x2 1

x5
3 x3 1

∣∣∣∣∣∣
/ ∣∣∣∣∣∣

x2
1 x1 1

x2
2 x2 1

x2
3 x3 1

∣∣∣∣∣∣ = x3
1 + x3

2 + x3
3 + x2

1x2 + x2
1x3 + x2

2x3 + x1x
2
2 + x1x

2
3 + x2x

2
3 = h3,

s(2,1) =

∣∣∣∣∣∣
x4
1 x2

1 1
x4
2 x2

2 1
x4
3 x2

3 1

∣∣∣∣∣∣
/ ∣∣∣∣∣∣

x2
1 x1 1

x2
2 x2 1

x2
3 x3 1

∣∣∣∣∣∣ = (x1 + x2)(x2 + x3)(x3 + x1),

s(13) =

∣∣∣∣∣∣
x3
1 x2

1 x1

x3
2 x2

2 x1

x3
3 x2

3 x3

∣∣∣∣∣∣
/ ∣∣∣∣∣∣

x2
1 x1 1

x2
2 x2 1

x2
3 x3 1

∣∣∣∣∣∣ = x1x2x3 = e3.

In the above calculation we used er (see Definition 1.2) and hr (see Exercise 1.4).

Exercise 1.5 (∗). Check that s(1n) = en and s(n) = hn in K[x]Sn .

Proposition 1.13. The Schur symmetric polynomial sλ given in Definition 1.11 is a symmetric poly-

nomial for each λ ∈ Pn.

*33 完全対称多項式
*34 交代式
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Exercise 1.6 (∗∗). Give a proof of Proposition 1.13. More precisely, show that for any λ ∈ Pn

(1) sλ(x) ∈ Z[x], (2) sλ(x) ∈ Λn = Z[x]Sn .

By Proposition 1.7, one can expand sλ in terms of mµ.

Theorem 1.14. For any λ ∈ Pn we have

sλ = mλ +
∑
µ<λ

Kλ,µmµ, Kλ,µ ∈ N.

Here µ < λ means the dominance ordering (1.5). The number Kλ,µ is called the Kostka number.

Example. For |λ| ≤ 4 we have

s(1) = m(1),

s(2) = m(2) +m(12), s(12) = m(12),

s(3) = m(3) +m(2,1) +m(13), s(2,1) = m(2,1) + 2m(13), s(13) = m(13),

s(4) = m(4) +m(3,1) +m(2,2) +m(2,12) +m(14), s(3,1) = m(3,1) +m(22) + 2m(2,12) + 3m(14),

s(22) = m(22) +m(2,12) + 2m(14), s(2,12) = m(2,12) + 3m(14), s(14) = m(14).

We will not give a proof of Theorem 1.14. See [M95, p. 73, Chap. I §6 (6.5)] or [O06, p. 160, §9.6 系
9.35, 問 9.13] for example. The proofs of these references use the tableau formula (Theorem 1.16).

Corollary 1.15. {sλ | λ ∈ Pn} is a basis of the Z-module Λn.

Exercise 1.7 (∗). Give a proof of Corollary 1.15 using Theorem 1.14.

There is an explicit formula of Schur polynomials.

Theorem 1.16. For any λ ∈ Pn we have

sλ(x) :=
∑

T∈SSTab(λ;n)

xT .

This theorem is called the tableau formula for Schur polynomial.

Some explanations are in order. SSTab(λ;n) denotes the set of semi-standard tableaux*35of shape

λ. A semi-standard tableau T ∈ SSTab(λ;n) is a Young diagram of λ whose boxes are numbered by

1, 2, . . . , n such that in each column numbers appear increasingly, and in each row numbers appear

non-decreasingly. For example, SSTab(λ; 3) looks as in Figure 3. For each T ∈ SSTab(λ;n), we set

xT := x
m1(T )
1 x

m2(T )
2 · · ·xmn(T )

n ,

where mi(T ) denotes the times of the number i appearing in the tableau T .

Example. Let us check Theorem 1.16 in the case |λ| = 3. We can use Figure 3 and Example 1.12 The

result is ∑
T∈SSTab((3),3)

xT = x3
1 + x2

1x2 + x1x2x3 + x3
2 + x2

2x3 + x2x
2
3 + x2

3 = s(3),

*35 半標準盤



2018/10/02 Perspectives in Mathematical Science IV/II (Yanagida), Lecture 1 10/10

∑
T∈SSTab((2,1),3)

xT = x2
1x2 + x2

1x3 + x1x
2
2 + 2x1x2x3 + x1x

2
3 + x2

2x3 + x2x
2
3 = s(2,1),∑

T∈SSTab((13),3)

xT = x1x2x3 = s(13).

1 1 1

1 1 2

1 2 2

1 2 3

2 2 2

2 2 3

2 3 3

3 3 3

1 1
2

1 1
3

1 2
2

1 2
3

1 3
2

1 3
3

2 2
3

2 3
3

1
2
3

Figure 3 Semi-standard tableaux of shape λ with |λ| = 3.

We will not give a proof of Theorem 1.16. See [M95, p. 73, Chap. I §5 (5.12)] or [O06, p. 159, §9.6 定
理 9.33] for example. But let us mention the following key identity.

Theorem 1.17 (The Cauchy formula). For x = (x1, . . . , xn) and y = (y1, . . . , yn) we have

∑
λ∈Pn

sλ(x)sλ(y) =

n∏
i,j=1

1

1− xiyj
.

The right hand side term
∏n

i,j=1
1

1−xiyj
is called the Cauchy kernel (function)*36.

Exercise 1.8 (∗∗). Give a proof of Theorem 1.17.
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