Lecture 1：classical theory of symmetric polynomials＊1

Shintaro YANAGIDA（office：A441）
yanagida［at］math．nagoya－u．ac．jp
https：／／www．math．nagoya－u．ac．jp／～yanagida

1 Symmetric polynomials

General notation：
$\mathbb{N}:=\mathbb{Z}_{\geq 0}=\{0,1,2, \ldots\}$.
n will denote a positive integer unless otherwise stated ${ }^{* 2}$ ．
\mathbb{K} denotes a field of characteristic $0^{* 3}$ ．

1．1 Symmetric groups and symmetric polynomials

Let us denote by S_{n} the n－th symmetric group＊4．It consists of permutations ${ }^{* 5}$ of the set $\{1,2, \ldots, n\}$ ． One can express an element $\sigma \in S_{n}$ as

$$
\sigma=\left(\begin{array}{ccccccc}
1 & 2 & \cdots & i & \cdots & n-1 & n \\
\sigma(1) & \sigma(2) & \cdots & \sigma(i) & \cdots & \sigma(n-1) & \sigma(n)
\end{array}\right) .
$$

The multiplication of the group S_{n} is defined to be the composition＊6 of permutation．In other words， we have

$$
\sigma \tau:=\sigma \circ \tau, \quad(\sigma \tau)(i)=\sigma(\tau(i))
$$

Then the associativity condition $(\sigma \tau) \mu=\sigma(\tau \mu)$ holds for any $\sigma, \tau, \mu \in S_{n}$ ．The unit＊7 of the group S_{n} is the identity permutation＊8

$$
e=\mathrm{id}=\left(\begin{array}{ccccc}
1 & 2 & \cdots & n-1 & n \\
1 & 2 & \cdots & n-1 & n
\end{array}\right)
$$

Recall that S_{n} is generated by the transposition ${ }^{* 9}$ ．For $i=1,2, \ldots, n-1$ ，set

$$
s_{i}:=(i, i+1)=\left(\begin{array}{cccccc}
1 & \cdots & i & i+1 & \cdots & n \\
1 & \cdots & i+1 & i & \cdots & n
\end{array}\right) .
$$

The element s_{i} is called a simple reflection ${ }^{* 10}$ ．Then S_{n} is generated by the simple reflections $s_{1}, s_{2}, \ldots, s_{n-1}$ ．Simple reflections enjoy the following relations．

$$
\begin{equation*}
s_{i}^{2}=1, \quad s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}, \quad s_{i} s_{j}=s_{j} s_{i} \tag{1.1}
\end{equation*}
$$

[^0]Let us denote the polynomial ring ${ }^{* 11}$ of n variables $x=\left(x_{1}, \ldots, x_{n}\right)$ over \mathbb{K} by the symbol

$$
\mathbb{K}[x]=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]
$$

The n－th symmetric group S_{n} acts ${ }^{* 12}$ on $k[x]$ by permuting variables $x^{* 13}$ ．In other words，let an element $\sigma \in S_{n}$ act on polynomials of x_{1}, \ldots, x_{n} by the rule

$$
\begin{equation*}
\sigma \cdot x_{i}=x_{\sigma(i)} \tag{1.2}
\end{equation*}
$$

Then this action extends naturally to that on a polynomial $f \in \mathbb{K}[x]$ ，and we have

$$
e . f=f, \quad \sigma .(\tau \cdot f)=(\sigma \tau) . f
$$

Definition 1．1．A symmetric polynomial ${ }^{* 14}$ of n variables is an element $f \in \mathbb{K}[x]$ such that $\sigma . f=f$ for any $\sigma \in S_{n}$ ．Then the \mathbb{K}－linear space

$$
\mathbb{K}[x]^{S_{n}}:=\{\text { symmetric polynomials }\}=\left\{f \in \mathbb{K}[x] \mid \sigma . f=f \quad \forall \sigma \in S_{n}\right\}
$$

is a commutative ring，which is called the ring of symmetric polynomials＊15．
The same construction works if we replace \mathbb{K} by a commutative ring R ．In particular，it works for \mathbb{Z} ， the ring of integers．We denote by

$$
R[x]^{S_{n}}, \quad \mathbb{Z}[x]^{S_{n}}
$$

the ring of symmetric polynomials over R or \mathbb{Z} ．
Definition 1．2．For $r=0,1, \ldots, n$ ，the r－th elementary symmetric polynomial ${ }^{* 16} e_{r}$ is given by ${ }^{* 17}$

$$
e_{r}(x):=\sum_{1 \leq j_{1}<\cdots<j_{r} \leq n} x_{j_{1}} \cdots x_{j_{r}} \in \mathbb{Z}[x]^{S_{n}} .
$$

The generating function ${ }^{* 18}$ of e_{r}＇s is given by

$$
\sum_{r=0}^{n} z^{r} e_{r}(x)=\left(1+z x_{1}\right)\left(1+z x_{2}\right) \cdots\left(1+z x_{n}\right)
$$

Recall the following well－known statement．
Theorem 1．3． $\mathbb{K}[x]^{S_{n}}=\mathbb{K}\left[e_{1}(x), \ldots, e_{n}(x)\right]$.
A proof of this theorem will be sketched in §1．3．As a preliminary let us introduce notations on partitions．

[^1]
1．2 Partitions

A partition ${ }^{* 19}$ means a finite non－increasing sequence of positive integers．In other words，a partition λ is a sequence expressed as

$$
\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right), \quad \lambda_{i} \in \mathbb{Z}, \quad \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}>0
$$

For a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ ，we set

$$
|\lambda|:=\sum_{i} \lambda_{i}, \quad \ell(\lambda):=(\text { length of } \lambda)=k
$$

We identify a partition with the sequence padded with 0＇s．Thus

$$
\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)=\left(\lambda_{1}, \ldots, \lambda_{k}, 0\right)=\left(\lambda_{1}, \ldots, \lambda_{k}, 0,0, \ldots\right)
$$

We also regard $\emptyset:=()=(0)$ as a partition．
If a partition λ satisfies $|\lambda|=d$ ，then we say λ is a partition of d ．We set

$$
\mathcal{P}^{d}:=\{\text { partitions of } d\}, \quad \mathcal{P}:=\bigsqcup_{d \in \mathbb{N}} \mathcal{P}^{d}
$$

The integer $p(d):=\left|\mathcal{P}^{d}\right|$ is called the partition number ${ }^{* 20}$ of d ．
Here are the partitions of $d \leq 6$ ．We use the abbreviations like $\left(1^{2}\right)=(1,1),\left(2^{3}\right)=(2,2,2)$ ．

d	$p(d)$	\mathcal{P}^{d}
0		()
1	1	(1)
2	2	$(2),\left(1^{2}\right)$
3	3	$(3),(2,1),\left(1^{3}\right)$
4	5	$(4),(3,1),\left(2^{2}\right),\left(2,1^{2}\right),\left(1^{4}\right)$
5	7	$(5),(4,1),(3,2),\left(3,1^{2}\right),\left(2^{2}, 1\right),\left(2,1^{3}\right),\left(1^{5}\right)$
6	11	$(6),(5,1),(4,2),\left(4,1^{2}\right),\left(3^{2}\right),(3,2,1),\left(3,1^{3}\right),\left(2^{3}\right),\left(2^{2}, 1^{2}\right),\left(2,1^{4}\right),\left(1^{6}\right)$

Dealing with partitions，it is sometimes very convenient to use Young diagrams＊21．We will use the English style ${ }^{* 22}$ of Young diagrams as in Figure 1.

Figure 1 Young diagrams corresponding to partitions λ with $|\lambda| \leq 4$

[^2]Exercise 1.1 (*). ${ }^{* 23}$ Explain that the generating function $G(z):=\sum_{d \geq 0} p(d) z^{d}$ of the partition numbers is equal to the following infinite product.

$$
G(z)=\prod_{m \in \mathbb{N}} \frac{1}{1-z^{m}}=\frac{1}{1-z} \frac{1}{1-z^{2}} \frac{1}{1-z^{3}} \cdots
$$

$G(z)$ is sometimes called the partition function.
Definition 1.4. For a partition λ, its transpose ${ }^{* 24}{ }^{t} \lambda$ means the partition whose Young diagram is obtained by the transposition of the Young diagram of λ.

For example, we have

$$
{ }^{t}(n)=\left(1^{n}\right), \quad{ }^{t}(2,1)=(2,1), \quad{ }^{t}(3,1)=\left(2,1^{2}\right), \quad{ }^{t}(2,2)=(2,2) .
$$

We also have ${ }^{t}\left({ }^{t} \lambda\right)=\lambda$.

1.3 Classical symmetric polynomials

We continue to use the notation $x=\left(x_{1}, \ldots, x_{n}\right)$. Hereafter we denote the ring of symmetric polynomials over \mathbb{Z} by

$$
\Lambda_{n}=\Lambda_{n}(x):=\mathbb{Z}[x]^{S_{n}}
$$

Its degree d part is denoted by

$$
\Lambda_{n}^{d}=\Lambda_{n}^{d}(x):=\left\{f(x) \in \Lambda_{n} \mid \operatorname{deg} f(x)=d\right\}
$$

In this subsection we introduce several well-known bases of Λ_{n} and explain a proof of Theorem 1.3.
It is convenient to introduce the following symbol. For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$, we set

$$
x^{\alpha}:=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}
$$

We also set $|\alpha|:=\alpha_{1}+\cdots+\alpha_{n}$. So we have $\operatorname{deg} x^{\alpha}=|\alpha|$. The action of $w \in S_{n}$ on x^{α} is given by

$$
w \cdot x^{\alpha}=w \cdot\left(x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}\right)=x_{w(1)}^{\alpha_{1}} x_{w(2)}^{\alpha_{2}} \cdots x_{w(n)}^{\alpha_{n}}=x_{1}^{\alpha_{w^{-1}(1)}} x_{2}^{\alpha_{w^{-1}(2)}} \cdots x_{n}^{\alpha_{w^{-1}(n)}}
$$

Therefore if we define the action of S_{n} on \mathbb{N}^{n} by

$$
\begin{equation*}
w \cdot \alpha=w \cdot\left(\alpha_{1}, \ldots, \alpha_{n}\right):=\left(\alpha_{w(1)}, \ldots, \alpha_{w(n)}\right), \quad w \in S_{n}, \alpha \in \mathbb{N}^{n} \tag{1.3}
\end{equation*}
$$

then we have

$$
\begin{equation*}
w \cdot x^{\alpha}=x^{w^{-1} \cdot \alpha} . \tag{1.4}
\end{equation*}
$$

Let us also introduce

$$
\begin{aligned}
\mathcal{P}_{n} & :=\{\text { non-increasing sequences of non-negative integers of length } n\} \\
& =\left\{\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \mathbb{N}^{n} \mid \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0\right\}
\end{aligned}
$$

[^3]Similarly as in the case of partitions，we set $|\lambda|:=\sum_{i} \lambda_{i}$ for $\lambda \in \mathcal{P}_{n}$ ．We also set $\ell(\lambda)$ to be the maximal number k such that $\lambda_{k} \neq 0$ ．Finally we set

$$
\mathcal{P}_{n}^{d}:=\left\{\lambda \in \mathcal{P}_{n}| | \lambda \mid=d\right\} .
$$

So $\mathcal{P}_{n}=\sqcup_{d \geq 0} \mathcal{P}_{n}^{d}$ ．We have an obvious identification

$$
\mathcal{P}_{n}^{d}=\left\{\lambda \in \mathcal{P}^{d} \mid \ell(\lambda) \leq n\right\}
$$

Now we have
Proposition 1．5．Under the action（1．3）of S_{n} on \mathbb{N}^{n} ，the orbit decomposition＊25 is given by

$$
\mathbb{N}^{n}=\sqcup_{\lambda \in \mathcal{P}_{n}} S_{n} \cdot \lambda
$$

For the subset $\left\{\alpha \in \mathbb{N}^{n}| | \alpha \mid=d\right\}$ ，we have the orbit decomposition $\left\{\alpha \in \mathbb{N}^{n}| | \alpha \mid=d\right\}=\sqcup_{\lambda \in \mathcal{P}_{n}^{d}} S_{n} . \lambda$ ．
Exercise 1．2（＊）．Show Proposition 1．5．
Definition 1．6．For $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathcal{P}_{n}$ ，the monomial symmetric polynomial ${ }^{* 26} m_{\lambda} \in \Lambda_{n}$ is defined to be

$$
m_{\lambda}(x):=\sum_{\alpha \in S_{n}, \lambda} x^{\alpha}=\sum_{\begin{array}{c}
\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right): \\
\text { different permutations of } \lambda
\end{array}} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}} .
$$

In the first expression we denoted by $S_{n} \cdot \lambda$ the orbit of $\lambda \in \mathbb{Z}^{n}$ under the action of S_{n} ．
Example．In the case $n=3$ ，we have

$$
\begin{aligned}
m_{(3)}(x) & =m_{(3)}\left(x_{1}, x_{2}, x_{3}\right)=\sum_{\alpha \in S_{3} \cdot(3,0,0)} x^{\alpha}=x^{(3,0,0)}+x^{(0,3,0)}+x^{(0,0,3)}=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}, \\
m_{(2,1)}(x) & =\sum_{\alpha \in S_{3} \cdot(2,1,0)} x^{\alpha}=x^{(2,1,0)}+x^{(2,0,1)}+x^{(1,2,0)}+x^{(1,0,2)}+x^{(0,2,1)}+x^{(0,1,2)} \\
& =x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2}-2 x_{3}+x_{2} x_{3}^{2}, \\
m_{\left(1^{3}\right)}(x) & =\sum_{\alpha \in S_{3} \cdot(1,1,1)} x^{\alpha}=x^{(1,1,1)}=x_{1} x_{2} x_{3} .
\end{aligned}
$$

Note also that $e_{r}=m_{\left(1^{r}\right)}$ for any $r \in \mathbb{N}$ ．
Proposition 1．7．Λ_{n} is a free \mathbb{Z}－module，and $\left\{m_{\lambda} \mid \lambda \in \mathcal{P}_{n}\right\}$ is a basis of Λ_{n} ．In other words

$$
\Lambda_{n}=\bigoplus_{\lambda \in \mathcal{P}_{n}} \mathbb{Z} m_{\lambda}
$$

Proof．It is enough to show $\Lambda_{n}^{d}=\oplus_{\lambda \in \mathcal{P}_{n}^{d}} \mathbb{Z} m_{\lambda}$ for each $d \in \mathbb{N}$ ．Any $f \in \Lambda_{n}^{d}$ can be expressed as $f(x)=\sum_{\alpha \in \mathbb{N}^{n},|\alpha|=d} c_{\alpha} x^{\alpha}$ ．Since f is a symmetric polynomial，we have $w \cdot f=f$ for any $w \in S_{n}$ ． Recalling（1．4），we see that $w \cdot f=\sum_{\alpha} c_{\alpha} x^{w^{-1} . \alpha}=\sum_{\alpha} c_{w \cdot \alpha} x^{\alpha}$ ．Thus $w \cdot f=f$ implies $c_{w \cdot \alpha}=c_{\alpha}$ ．Then using Proposition 1.5 we have

$$
f=\sum_{\alpha \in \mathbb{N}^{n},|\alpha|=d} c_{\alpha} x^{\alpha}=\sum_{\lambda \in \mathcal{P}_{n}^{d}} \sum_{\alpha \in S_{n} . \lambda} c_{\alpha} x^{\alpha}=\sum_{\lambda \in \mathcal{P}_{n}^{d}} c_{\lambda} \sum_{\alpha \in S_{n}, \lambda} c_{\alpha} x^{\alpha}=\sum_{\lambda \in \mathcal{P}_{n}^{d}} c_{\lambda} m_{\lambda}(x) .
$$

[^4]So any $f \in \Lambda_{n}^{d}$ can be expressed as a summation of m_{λ} with integer coefficients，and such an expression is unique．Therefore $\Lambda_{n}^{d}=\oplus_{\lambda \in \mathcal{P}_{n}^{d}} \mathbb{Z} m_{\lambda}$ ．

Now we introduce
Definition 1．8．For $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathcal{P}_{n}^{d}$ ，we define

$$
e_{\lambda}:=e_{\lambda_{1}} e_{\lambda_{2}} \cdots e_{\lambda_{n}} \in \Lambda_{n}^{d}
$$

By Proposition 1．7，we find that each $f \in \Lambda_{n}^{d}$ can be expressed as a linear combination of $\left\{m_{\mu} \mid \mu \in \mathcal{P}_{n}^{d}\right\}$ ． In the case $f=e_{t_{\lambda}}$ ，we have the following statement．

Theorem 1．9．${ }^{* 27}$ For any $\lambda \in \mathcal{P}^{d}$ one can expand $e_{t_{\lambda}}$ in terms of $\left\{m_{\mu} \mid \mu \in \mathcal{P}^{d}\right\}$ as

$$
e_{t_{\lambda}}=m_{\lambda}+\sum_{\mu<\lambda} a_{\lambda, \mu} m_{\mu}, \quad a_{\lambda, \mu} \in \mathbb{Z}
$$

Here we used the dominance ordering ${ }^{* 28} \mu \leq \lambda$ ，which is defined by

$$
\begin{equation*}
\mu \leq \lambda \Longleftrightarrow|\mu|=|\lambda| \text { and } \mu_{1}+\cdots+\mu_{k} \leq \lambda_{1}+\cdots+\lambda_{k} \forall k=1,2, \ldots \tag{1.5}
\end{equation*}
$$

Actually the dominance ordering is a total order ${ }^{* 29}$ on \mathcal{P}^{d} with $d \leq 5$ ．We have

$$
\begin{aligned}
& (2)>(1,1) \\
& (3)>(2,1)>(1,1,1) \\
& (4)>(3,1)>(2,2)>(2,1,1)>(1,1,1,1), \\
& (5)>(4,1)>(3,2)>\left(3,1^{2}\right)>\left(2^{2}, 1\right)>\left(2,1^{3}\right)>\left(1^{5}\right) .
\end{aligned}
$$

However，on \mathcal{P}^{d} with $n \geq 6$ the dominance ordering is a partial order ${ }^{* 30}$ ．

$$
\begin{aligned}
(6)>(5,1)>(4,2)>\left(4,1^{2}\right)> \\
>\left(3^{2}\right)>
\end{aligned} \begin{gathered}
>, 2,1) \\
>\left(3,1^{3}\right)> \\
>\left(2^{3}\right)>
\end{gathered}\left(2^{2}, 1^{2}\right)>\left(2,1^{4}\right)>\left(1^{6}\right)
$$

For $d=7,8$ ，it looks as in Figure 2.
Exercise $1.3(* *)$ ．Give a proof of Theorem 1.9 （see［O06，定理 9．2］for example）．
As a corollary of Theorem 1．9，we have
Corollary 1．10．Then $\left\{e_{\lambda} \mid \lambda \in \mathcal{P}_{n}^{d}\right\}$ is a basis of Λ_{n}^{d} ．Thus

$$
\Lambda_{n}^{d}=\bigoplus_{\lambda \in \mathcal{P}_{n}^{d}} \mathbb{Z} e_{\lambda}
$$

In particular，Theorem 1.3 holds．

[^5]

Figure 2 The Hasse diagram of dominance ordering on partitions of $d=7,8$

Proof．By Theorem 1．9，if we express $e^{t} \lambda=\sum_{\mu} a_{\lambda, \mu} m_{\mu}$ ，then we have $a_{\lambda, \mu}=0$ if $\mu \not \leq \lambda$ ，and $a_{\lambda, \lambda}=0$ ．
Now consider the matrix $A=\left(a_{\lambda, \mu}\right)_{\lambda, \mu \in \mathcal{P}_{n}^{d}}$ ，where columns and rows are ordered by the inverse lexicographic ordering＊${ }^{* 31}$ ．Since this ordering is a total ordering and respects the dominance ordering， A is an upper triangular matrix ${ }^{* 32}$ with integer coefficients and 1 ＇s on the diagonal．In particular A^{-1} exists and is also an upper triangular matrix with integer coefficients and 1＇s on the diagonal．
Then the vectors $e:=\left(e^{t} \lambda\right)_{\lambda \in \mathcal{P}_{n}^{d}}$ and $m:=\left(m_{\lambda}\right)_{\lambda \in \mathcal{P}_{n}^{d}}$ are related by $e=A m$ ．So $m=A^{-1} e$ and

$$
m_{\lambda}=e_{t \lambda}+\sum_{\mu<\lambda} b_{\lambda, \mu} m_{t}, \quad b_{\lambda, \mu} \in \mathbb{Z}
$$

Since $\left\{m_{\lambda}\right\}$ is a basis of Λ_{n}^{d} ，we find that $\left\{e_{\lambda}\right\}$ is also a basis of Λ_{n}^{d} ．

[^6]Exercise 1．4（＊＊）．The r－th completely homogeneous symmetric polynomial ${ }^{* 33} h_{r} \in \Lambda_{n}^{r}$ is defined to be

$$
h_{r}(x):=\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{r} \leq n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}} .
$$

For $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathcal{P}_{n}^{d}$ ，we set

$$
h_{\lambda}:=h_{\lambda_{1}} \cdots h_{\lambda_{n}} \in \Lambda_{n}^{d}
$$

（1）Check the equality $h_{d}(x)=\sum_{\lambda \in \mathcal{P}^{d}} m_{\lambda}(x)$ ．
（2）Show that $\left\{h_{\lambda} \mid \lambda \in \mathcal{P}_{n}^{d}\right\}$ is a basis of Λ_{n}^{d} ．

1．4 Schur polynomials

Definition 1．11．（1）For $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right) \in \mathbb{Z}^{n}$ ，we define an alternate function ${ }^{* 34} a_{\mu}(x)$ by

$$
a_{\mu}(x):=\left|\begin{array}{cccc}
x_{1}^{\mu_{1}} & x_{1}^{\mu_{2}} & \cdots & x_{1}^{\mu_{n}} \\
x_{2}^{\mu_{1}} & x_{2}^{\mu_{2}} & \cdots & x_{2}^{\mu_{n}} \\
\vdots & & \ddots & \vdots \\
x_{n}^{\mu_{1}} & x_{n}^{\mu_{2}} & \cdots & x_{n}^{\mu_{n}}
\end{array}\right|
$$

（2）For $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \mathcal{P}_{n}$ ，we define the Schur symmetric polynomial to be

$$
s_{\lambda}(x):=\frac{a_{\delta+\lambda}(x)}{a_{\delta}(x)}, \quad \delta+\lambda:=\left(\lambda_{1}+n-1, \lambda_{2}+n-2, \ldots, \lambda_{n}\right), \delta:=(n-1, n-2, \ldots, 0)
$$

Example 1．12．For $n=|\lambda| \leq 3$ ，Schur symmetric polynomials look as follows．

$$
\begin{aligned}
& s_{(1)}=x_{1}, \\
& s_{(2)}=\left|\begin{array}{ll}
x_{1}^{3} & 1 \\
x_{2}^{3} & 1
\end{array}\right| /\left|\begin{array}{ll}
x_{1} & 1 \\
x_{2} & 1
\end{array}\right|=x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}=h_{2}, \quad s_{\left(1^{2}\right)}=\left|\begin{array}{ll}
x_{1}^{2} & x_{1}^{1} \\
x_{2}^{2} & x_{1}^{1}
\end{array}\right| /\left|\begin{array}{ll}
x_{1} & 1 \\
x_{2} & 1
\end{array}\right|=x_{1} x_{2}=e_{2}, \\
& s_{(3)}=\left|\begin{array}{lll}
x_{1}^{5} & x_{1} & 1 \\
x_{2}^{5} & x_{2} & 1 \\
x_{3}^{5} & x_{3} & 1
\end{array}\right| /\left|\begin{array}{lll}
x_{1}^{2} & x_{1} & 1 \\
x_{2}^{2} & x_{2} & 1 \\
x_{3}^{2} & x_{3} & 1
\end{array}\right|=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2}=h_{3}, \\
& s_{(2,1)}=\left|\begin{array}{lll}
x_{1}^{4} & x_{1}^{2} & 1 \\
x_{2}^{4} & x_{2}^{2} & 1 \\
x_{3}^{4} & x_{3}^{2} & 1
\end{array}\right| /\left|\begin{array}{lll}
x_{1}^{2} & x_{1} & 1 \\
x_{2}^{2} & x_{2} & 1 \\
x_{3}^{2} & x_{3} & 1
\end{array}\right|=\left(x_{1}+x_{2}\right)\left(x_{2}+x_{3}\right)\left(x_{3}+x_{1}\right), \\
& s_{\left(1^{3}\right)}=\left|\begin{array}{ccc}
x_{1}^{3} & x_{1}^{2} & x_{1} \\
x_{2}^{3} & x_{2}^{2} & x_{1} \\
x_{3}^{3} & x_{3}^{2} & x_{3}
\end{array}\right| /\left|\begin{array}{lll}
x_{1}^{2} & x_{1} & 1 \\
x_{2}^{2} & x_{2} & 1 \\
x_{3}^{2} & x_{3} & 1
\end{array}\right|=x_{1} x_{2} x_{3}=e_{3} .
\end{aligned}
$$

In the above calculation we used e_{r}（see Definition 1．2）and h_{r}（see Exercise 1．4）．
Exercise 1．5（＊）．Check that $s_{\left(1^{n}\right)}=e_{n}$ and $s_{(n)}=h_{n}$ in $\mathbb{K}[x]^{S_{n}}$.
Proposition 1．13．The Schur symmetric polynomial s_{λ} given in Definition 1.11 is a symmetric poly－ nomial for each $\lambda \in \mathcal{P}_{n}$ ．

[^7]Exercise 1．6（＊＊）．Give a proof of Proposition 1．13．More precisely，show that for any $\lambda \in \mathcal{P}_{n}$
（1）$s_{\lambda}(x) \in \mathbb{Z}[x]$ ，
（2）$s_{\lambda}(x) \in \Lambda_{n}=\mathbb{Z}[x]^{S_{n}}$.

By Proposition 1．7，one can expand s_{λ} in terms of m_{μ} ．
Theorem 1．14．For any $\lambda \in \mathcal{P}_{n}$ we have

$$
s_{\lambda}=m_{\lambda}+\sum_{\mu<\lambda} K_{\lambda, \mu} m_{\mu}, \quad K_{\lambda, \mu} \in \mathbb{N}
$$

Here $\mu<\lambda$ means the dominance ordering（1．5）．The number $K_{\lambda, \mu}$ is called the Kostka number．
Example．For $|\lambda| \leq 4$ we have

$$
\begin{aligned}
& s_{(1)}=m_{(1)}, \\
& s_{(2)}=m_{(2)}+m_{\left(1^{2}\right)}, \quad s_{\left(1^{2}\right)}=m_{\left(1^{2}\right)}, \\
& s_{(3)}=m_{(3)}+m_{(2,1)}+m_{\left(1^{3}\right)}, \quad s_{(2,1)}=m_{(2,1)}+2 m_{\left(1^{3}\right)}, \quad s_{\left(1^{3}\right)}=m_{\left(1^{3}\right)}, \\
& s_{(4)}=m_{(4)}+m_{(3,1)}+m_{(2,2)}+m_{\left(2,1^{2}\right)}+m_{\left(1^{4}\right)}, \quad s_{(3,1)}=m_{(3,1)}+m_{\left(2^{2}\right)}+2 m_{\left(2,1^{2}\right)}+3 m_{\left(1^{4}\right)}, \\
& s_{\left(2^{2}\right)}=m_{\left(2^{2}\right)}+m_{\left(2,1^{2}\right)}+2 m_{\left(1^{4}\right)}, \quad s_{\left(2,1^{2}\right)}=m_{\left(2,1^{2}\right)}+3 m_{\left(1^{4}\right)}, \quad s_{\left(1^{4}\right)}=m_{\left(1^{4}\right)} .
\end{aligned}
$$

We will not give a proof of Theorem 1．14．See［M95，p．73，Chap．I $\S 6$（6．5）］or［O06，p．160，$\S 9.6$ 系 9．35，問 9．13］for example．The proofs of these references use the tableau formula（Theorem 1．16）．

Corollary 1．15．$\left\{s_{\lambda} \mid \lambda \in \mathcal{P}_{n}\right\}$ is a basis of the \mathbb{Z}－module Λ_{n} ．
Exercise $1.7(*)$ ．Give a proof of Corollary 1.15 using Theorem 1．14．
There is an explicit formula of Schur polynomials．
Theorem 1．16．For any $\lambda \in \mathcal{P}_{n}$ we have

$$
s_{\lambda}(x):=\sum_{T \in \operatorname{SSTab}(\lambda ; n)} x^{T} .
$$

This theorem is called the tableau formula for Schur polynomial．
Some explanations are in order． $\operatorname{SSTab}(\lambda ; n)$ denotes the set of semi－standard tableaux ${ }^{* 35}$ of shape λ ．A semi－standard tableau $T \in \operatorname{SSTab}(\lambda ; n)$ is a Young diagram of λ whose boxes are numbered by $1,2, \ldots, n$ such that in each column numbers appear increasingly，and in each row numbers appear non－decreasingly．For example， $\operatorname{SSTab}(\lambda ; 3)$ looks as in Figure 3．For each $T \in \operatorname{SSTab}(\lambda ; n)$ ，we set

$$
x^{T}:=x_{1}^{m_{1}(T)} x_{2}^{m_{2}(T)} \cdots x_{n}^{m_{n}(T)}
$$

where $m_{i}(T)$ denotes the times of the number i appearing in the tableau T ．
Example．Let us check Theorem 1.16 in the case $|\lambda|=3$ ．We can use Figure 3 and Example 1．12 The result is

$$
\sum_{T \in \mathrm{SSTab}((3), 3)} x^{T}=x_{1}^{3}+x_{1}^{2} x_{2}+x_{1} x_{2} x_{3}+x_{2}^{3}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}+x_{3}^{2}=s_{(3)}
$$

[^8]\[

$$
\begin{aligned}
& \sum_{T \in \operatorname{SSTab}((2,1), 3)} x^{T}=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+2 x_{1} x_{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}=s_{(2,1)}, \\
& \sum_{T \in \operatorname{SSTab}\left(\left(1^{3}\right), 3\right)} x^{T}=x_{1} x_{2} x_{3}=s_{\left(1^{3}\right)} .
\end{aligned}
$$
\]

Figure 3 Semi－standard tableaux of shape λ with $|\lambda|=3$ ．
We will not give a proof of Theorem 1．16．See［M95，p．73，Chap．I §5（5．12）］or［O06，p．159，§9．6 定理 9．33］for example．But let us mention the following key identity．

Theorem 1.17 （The Cauchy formula）．For $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ we have

$$
\sum_{\lambda \in \mathcal{P}_{n}} s_{\lambda}(x) s_{\lambda}(y)=\prod_{i, j=1}^{n} \frac{1}{1-x_{i} y_{j}}
$$

The right hand side term $\prod_{i, j=1}^{n} \frac{1}{1-x_{i} y_{j}}$ is called the Cauchy kernel（function）＊36．
Exercise $1.8(* *)$ ．Give a proof of Theorem 1．17．

References

［M95］I．G．Macdonald，Symmetric functions and Hall polynomials，2nd ed．，Oxford University Press， 1995.
［M95］I．G．Macdonald，Symmetric functions and orthogonal polynomials，University Lecture Series，12， American Mathematical Society，1998．
［N97］野海正俊述，長谷川浩司記，「アフィン Hecke 環と多変数直交多項式— Macdonald－Cherednik 理論—」東北大学集中講義講義録，1997；
available at https：／／www．math．nagoya－u．ac．jp／～yanagida／others－j．html
［O06］岡田聡一，古典群の表現論と組み合わせ論 下，培風館， 2006 ．

[^9]
[^0]: ＊1 2018／10／02，ver． 0.3 ．
 ＊2 断らない限り
 ＊3 標数 0 の体
 ＊4 n 次対称群
 ＊5 置換
 ＊6 合成
 ＊7（群の）単位元
 ＊8 恒等置換
 ＊9 互換
 ＊10単純鏡映

[^1]: ＊11 多項式環
 ＊12（群が）作用する
 ＊13変数 $x=\left(x_{1}, \ldots, x_{n}\right)$ を置換する（ことで）
 ＊14 対称多項式
 ＊15 対称多項式環
 ＊16 基本対称多項式
 ＊17 modified in ver．0．3．
 ＊18 母函数

[^2]: ＊19 分割
 ＊20 分割数
 ＊21 Young 図形
 ＊22 There is another way of drawing Young diagram called French style．

[^3]: *23 The number of *'s denotes the difficulty of the exercise.
 *24 転置

[^4]: ＊25 軌道分解
 ＊26 単項対称多項式，またはモノミアル対称多項式

[^5]: ＊27 modified in ver．0．3．
 ＊28 支配順序またはドミナンス順序
 ＊29 全順序
 ＊30 半順序

[^6]: ＊31 逆辞書式順序
 ＊32 上三角行列

[^7]: ＊33 完全対称多項式
 ＊34 交代式

[^8]: ＊35 半標準盤

[^9]: ＊36 Cauchy 核（関数）

