2017 年度前期 代数学 I/代数学概論 V 6 月 29 日分資料/レポート問題 *1

担当: 柳田伸太郎 (理学部 A 館 441 号室) yanagida [at] math.nagoya-u.ac.jp

有限鏡映群の Coxeter 数

	A_n	\mathbf{B}_n	D_n	E_6	E_7	E_8	F_4	G_2	H_3	${ m H}_4$	$I_2(m)$
W	(n+1)!	$2^n n!$	$2^{n-1}n!$	$2^7 3^4 5$	$2^{10}3^457$	$2^{14}3^{5}5^{2}7$	2^73^2	12	120	14400	2m
$ \Phi $	n(n+1)	$2n^2$	2n(n-1)	72	126	240	48	12	30	120	2m
h	n+1	2n	2(n-1)	12	18	30	12	6	10	30	\overline{m}

表 1 有限鏡映群の位数、ルートの数、Coxeter 数

Weyl 群の指数

type	m_1,\ldots,m_n
\mathbf{A}_n	$1, 2, \ldots, n$
\mathbf{B}_n	$1,3,5,\ldots,2n-1$
\mathbf{D}_n	$1, 3, 5, \ldots, 2n - 3, n - 1$
E_6	1, 4, 5, 7, 8, 11
E_{7}	1, 5, 7, 9, 11, 13, 17
E_8	1,7,11,13,17,19,23,29
F_4	1, 5, 7, 11
G_2	1,5

表 2 Weyl 群の指数

レポート問題

レポートの提出期限は (今学期中という自明な期限は除いて) 特に設けません。解けたら提出して下さい。 講義で分からなかった所、扱ってほしい話題などありましたらレポートに書いて下さい。 ここに挙げた問題以外でも、関連する話題についてレポートにしてくださっても構いません。

レポート問題 ${\bf 1}$ (5 点). §3.8 の命題の証明の中の"このように書ける正ルート α は α_j $(j=r+1,\ldots,n)$ しかない"を証明せよ。

レポート問題 ${\bf 2}$ (5 点). $\S 3.8$ の命題の証明の中の "h が偶数なら $O_L \sqcup O_M = O_{L,M}$ かつ $\#O_L = \#O_M = h/2$ であり、h が奇数なら $O_L = O_M = O_{L,M}$ " を証明せよ。

レポート問題 ${\bf 3}$ (5 点)。 $\S 3.9$ の命題の証明を補完せよ。特に (2) の証明の "Hilbert の零点定理より J は l_{α} で割り切れる" の部分を説明せよ。

以上です。

^{*1 2017/06/28} 版, ver. 0.2.