Spectral analysis of analytic functionals on certain polynomial hypergroups

Shigeru Yamagami

Nagoya University

2023/9/13, RIMS

 $G = \langle s_1, \cdots, s_l \rangle$: the free group of finite rank $l \ge 1$. $G_n = \{g \in G; |g| = n\}$: the set of words of length n. $G_1 = \{s_1^{\pm 1}, \cdots, s_l^{\pm 1}\}$ and $|G_n| = 2l(2l - 1)^{n-1}$ for $n \ge 1$. $\mathbb{C}G = \sum_{g \in G} \mathbb{C}g$: the algebraic group algebra of G $(g^* = g^{-1})$. $C^*(G)$: the full group C*-algebra of G.

au: the standard trace, $au(g) = 0 \ (g \neq e)$ and au(e) = 1. $au^{1/2}$: the GNS vector of au.

The regular representation of G on $\ell^2(G)$ is identified with the GNS representation of $\mathbb{C}G$ or $C^*(G)$ with respect to τ .

$$g au^{1/2}= au^{1/2}g, \hspace{1em} (g au^{1/2}|g' au^{1/2})= au(g^{-1}g')=\delta_{g,g'}.$$

$$C^*_{\mathsf{red}}(G) \subset \mathcal{B}(\ell^2(G))$$
: the reduced group C*-algebra.

 $(\mathbb{C}G)'' = C^*_{\mathsf{red}}(G)''$: the left von Nemann algebra of G.

A function $f: G \to \mathbb{C}$ can be viewed in several ways:

- $\sum_{g \in G} f(g)g \in \mathbb{C}G$ if f is finitely supported.
- $\sum_{g\in G} f(g)g\in C^*(G)$ if $f\in \ell^1(G)$.
- A linear functional $\mathbb{C}G
 ightarrow \mathbb{C}$ by

$$\sum_g x(g)g\mapsto \sum_{g\in G} f(g)x(g).$$

A function of $g \in G$ is **radial** if it is a function of the length |g|. Elementary radial functions $h_n = h_n^* \in \mathbb{C}G$ are defined to be

$$h_n = rac{1}{|G_n|} \sum_{g \in G_n} g ext{ for } n \geq 0,$$

which satisfy

$$h_1h_n = rac{1}{2l}h_{n-1} + rac{2l-1}{2l}h_{n+1} = h_nh_1$$

and give a linear basis of a commutative *-subalgebra \mathcal{A} of $\mathbb{C}G$ with $h_0 = e$ the unit element in $\mathbb{C}G$.

Here are some of known results:

- $||h_1|| = 1$ in $C^*(G)$.
- $\|h_1\|_{\mathsf{red}} = \sqrt{2l-1}/l \leq 1$ (J.M. Cohen).
- The spectral measure μ of h_1 relative to τ (the Plancherel measure of G) was worked out by P. Cartier (1972):

$$\mu(dt) = \frac{1}{\pi} \frac{\sqrt{2l - 1 - l^2 t^2}}{1 - t^2} \, dt,$$

which is supported by the interval

$$[-\sqrt{2l-1}/l, \sqrt{2l-1}/l] \subset [-1,1].$$

The measure appeared in a 1959 paper by H. Kesten and is referred to as the Kesten measure in the following.

A conditional expectation (unit-preserving \mathcal{A} -bilinear projection) $E: \mathbb{C}G \to \mathcal{A}$ is defined so that $\tau(E(x)) = \tau(x) \ (x \in \mathbb{C}G)$:

$$E(g)=h_{|g|} \quad (g\in G).$$

If e is a projection to the radial subspace $\overline{\mathcal{A} au^{1/2}}\subset \ell^2(G)$,

$$exe = E(x)e \quad (x \in \mathbb{C}G)$$

and the same formula gives rise to

$$E:(\mathbb{C}G)'' o \mathcal{A}'', \quad E(C^*_{\mathsf{red}}(G)) = A_{\mathsf{red}}.$$

Here $\mathcal{A}'' \subset (\mathbb{C}G)''$ is the von Neumann subalgebra generated by \mathcal{A} and A_{red} is the C*-closure of \mathcal{A} in $C^*_{\text{red}}(G)$.

The conditional expectation $E : \mathbb{C}G \to \mathcal{A}$ is norm-continuously extended to $C^*(G) \to A$ (U. Haagerup). Here A is the closure of \mathcal{A} in $C^*(G)$.

We have a commutative diagram of conditional expectations:

Positive definite functions of Haagerup (1979): For $\lambda > 1$,

$$arphi_\lambda(g) = \lambda^{-|g|} \quad (g \in G)$$

is positive definite, i.e., it gives a positive functional on $C^*(G)$.

The standard trace is the limit

$$au = \lim_{\lambda o \infty} arphi_{\lambda}$$

as positive linear functionals on $C^*(G)$.

Notice that $g \mapsto (-1)^{|g|}g$ induces a *-automorphism of $\mathbb{C}G$, whence φ_{λ} is positive definite even for $\lambda < -1$.

Problem: Describe the spectral measure of h_1 relative to φ_{λ} ; solve the moment problem

$$arphi_\lambda(h_1^n) = \int_{[-1,1]} t^n\,\mu(dt) \quad (n\geq 0).$$

Analytic Functionals

Polynomial Hypergroups

Given a real $1 \neq r \in \mathbb{R}$, let $\mathcal{A} = \sum_{n \geq 0} \mathbb{C}h_n$ be a *-algebra with h_0 the unit element and $h_n = h_n^*$ satisfying and

$$h_1h_n = rh_{n-1} + (1-r)h_{n+1} \quad (n \ge 1),$$

which is *-isomorphic to the polynomial algebra $\mathbb{C}[t]$ by the correspondence $h_n \leftrightarrow P_n(t)$.

Here $P_n(t)$ is a polynomial of degree n specified by the recurrence relation

$$tP_n(t) = rP_{n-1}(t) + (1-r)P_{n+1}(t)$$

with the initial condition $P_0(t) = 1$ and $P_1(t) = t$.

Generally a *-algebra with a distinguished basis $\{h_n = h_n^*\}_{n \ge 0}$ with h_0 the unit element is called a (hermitian) hypergroup if, in the expansion $h_j h_k = \sum_{n \ge 0} c_{j,k,n} h_n$, coefficients satisfy

$$c_{j,k,n} \geq 0, \hspace{1em} \sum\limits_{n} c_{j,k,n} = 1 \hspace{1em} ext{and} \hspace{1em} c_{j,k,0} > 0 \hspace{1em} \Longleftrightarrow \hspace{1em} j = k.$$

For the *-algebra \mathcal{A} , coefficients are easily computed to see that

$$\mathcal{A} = \sum_{n \geq 0} \mathbb{C} h_n$$
 is a hypergroup $\Longleftrightarrow 0 < r \leq rac{1}{2}.$

Note that $0 < r = 1/2l \leq 1/2$ for radial functions.

The hypergroup \mathcal{A} is completed to a Banach *-algebra with respect to the ℓ^1 -norm $\|\sum_{n\geq 0} \alpha_n h_n\|_1 = \sum_{n\geq 0} |\alpha_n|$.

Let A be the accompanied C*-algebra. In the case of radial functions, we see that $A \subset C^*(G)$.

By the correspondence between a linear functional $\phi : \mathcal{A} \to \mathbb{C}$ and a sequence $(\phi_n = \phi(h_n))$, we can easily check the following.

- **1** A linear functional ϕ is ℓ^1 -bounded $\iff (\phi_n)$ is bounded.
- **2** A multiplicative functional $\phi \iff c = \phi(h_1) \in \mathbb{C}$.
- 3 A *-homomorphism $\phi \iff c = \phi(h_1) \in \mathbb{R}$.
- 3 A bounded *-homomorphism $\phi \iff c = \phi(h_1) \in [-1, 1]$.

The spectrum $\sigma(h_1)$ of h_1 in A is therefore [-1,1] and

$$A = C^*(h_0, h_1) \cong C([-1, 1]).$$

Analytic Functionals

Analytic Functionals

Definition

A linear functional $\phi : \mathcal{A} \to \mathbb{C}$ is **analytic** if the generating function $\phi(z) = \sum_{n \ge 0} \phi_n z^n$ $(z \in \mathbb{C})$ is convergent at some $z \neq 0$.

A C*-bounded functional ϕ is analytic: $||a|| \leq ||a||_1$ $(a \in \mathcal{A})$, whence (ϕ_n) is bounded. Moreover, by C*-boundedness, ϕ is represented by a Radon measure μ in [-1, 1] in such a way that

$$\phi(h_n)=\int_{[-1,1]}P_n(t)\,\mu(dt).$$

Thus the problem is to find μ for a given sequence $(\phi(h_n))$.

Analytic Functionals

Thanks to the recurrence relation, the generating function

$$P(z,t) = \sum_{n \ge 0} z^n P_n(t)$$

is expressed by

$$P(z,t) = \frac{1-r-rzt}{1-r-zt+rz^2}$$

and we see that

$$\begin{split} \phi(z) &= \sum_{n \ge 0} \phi(h_n) z^n = \int_{[-1,1]} \frac{1 - r - rzt}{1 - r - zt + rz^2} \, \mu(dt) \\ &= r\phi_0 + \frac{r^2 z^2 - (1 - r)^2}{z} \int_{[-1,1]} \frac{1}{t - rz - (1 - r)/z} \, \mu(dt). \end{split}$$

Analytic Functionals

Introduce a new variable by $w = rz + (1-r)/z \Longleftrightarrow$

$$z=rac{w-\sqrt{w^2-4r(1-r)}}{2r}\simrac{1-r}{w}~(w
ightarrow\infty).$$

so that

$$\int_{[-1,1]} \frac{1}{t-w} \, \mu(dt) = \frac{z}{r^2 z^2 - (1-r)^2} (\phi(z) - r \phi_0).$$

Thus, finding μ is reduced to computing the inversion formula of Stieltjes transform.

Notice here that, given a finite Radon measure μ on [-1, 1], the left side is analytic in 1/w and vanishes at $w = \infty$, which in turn determines an analytic function $\phi(z)$ of z around z = 0 by equating it with the right hand side.

Recall that the Cauchy-Stieltjes transform

$$C(w)=\int_{[-1,1]}rac{1}{t-w}\,\mu(dt)\, .$$

of μ is holomorphic on $\overline{\mathbb{C}} \setminus [-1, 1]$ and vanishes at $w = \infty$. The Stieltjes inversion formula: In the weak* topology, we have

$$2\pi i \mu(dt) = \lim_{\epsilon o +0} \Bigl(C(t+i\epsilon) - C(t-i\epsilon) \Bigr) \, dt.$$

Example

When $0 < r \leq 1/2$ and $\phi(z) \equiv 1$, μ is the Kesten measure:

$$C(w) = rac{(2r-1)w + \sqrt{w^2 - 4r(1-r)}}{2r(1-w^2)} \ \iff \mu(dt) = rac{1}{2\pi r} rac{\sqrt{4r(1-r) - t^2}}{1-t^2} \, dt.$$

Analytic Functionals

Analytic functionals of geometric series

For
$$0 \neq \lambda \in \mathbb{C}$$
, let
 $\phi(z) = \frac{\lambda}{\lambda - z} = \sum_{n=0}^{\infty} \frac{z^n}{\lambda^n} \iff \phi_n = \phi(h_n) = \lambda^{-n} \ (n \ge 0).$

Example

Note that, if $\mathcal{A} \subset \mathbb{C}G$ consists of radial functions (r = 1/2l) and $\lambda > 1$ or $\lambda < -1$, ϕ is the restriction of the Haagerup functional φ_{λ} to $\mathcal{A} \subset \mathbb{C}G$.

Analytic Functionals

Let
$$c_r(\lambda) = r\lambda + (1-r)rac{1}{\lambda}$$
 be a Joukowsky transform of λ .

Theorem

Analytic functional ϕ of geometric series is C*-bounded if and only if λ falls into one of the following cases.

$$|\lambda| > \sqrt{(1-r)/r} \text{ or } \lambda = \pm \sqrt{(1-r)/r},$$

$$\mu_{\mathit{red}}(dt) = rac{\lambda-\lambda^{-1}}{2\pi}rac{\sqrt{4r(1-r)-t^2}}{(1-t^2)(c_r(\lambda)-t)}\,dt.$$

2
$$\lambda \in \mathbb{R}$$
 and $1 \leq |\lambda| < \sqrt{(1-r)/r}$
 $(c_r(\lambda) \in \mathbb{R}$ and $2\sqrt{r(1-r)} < |c_r(\lambda)| \leq 1$ then),

$$\mu(dt) = \mu_{\textit{red}}(dt) + rac{1-c_r(\lambda^2)}{1-c_r(\lambda)^2}\,\delta(t-c_r(\lambda)).$$

When ϕ is C*-bounded, it is positive if and only if $\pm \lambda \geq 1$.

Analytic Functionals

Comments:

(i) The Cauchy-Stieltjes transform of geometric series is

$$C(w) = rac{\lambda-\lambda^{-1}}{2}rac{N(w)}{(1-w^2)(r\lambda+(1-r)\lambda^{-1}-w)},$$
 $N(w) = 2(\lambda-\lambda^{-1})^{-1}(1-w^2)+(2r-1)w+\sqrt{w^2-4r(1-r)}.$

(ii) H. Yoshida observed that

$$C(w) = rac{1}{\lambda^{-1} - w + rac{-r(1-\lambda^{-2})}{-r\lambda^{-1} - w + rac{-r(1-r)}{-w + rac{-r(1-r)}{-w + rac{-r(1-r)}{-w + rac{-r}{\cdot}}}}.$$

Applications to free group C*-algebras

Our spectral formula is compatible with known results on representations of free groups.

Recall again that r = 1/2l for radial functions.

- The spectral measure μ of h_1 relative to τ ($\phi \equiv 1$) is supported by $[-2\sqrt{r(1-r)}, 2\sqrt{r(1-r)}]$, whence we have $\sigma_{\text{red}}(h_1) = [-2\sqrt{r(1-r)}, 2\sqrt{r(1-r)}]$.
- $\begin{array}{l} \textcircled{O} \quad A \subset C^*(G) \text{ and the conditional expectation } E: \mathbb{C}G \to \mathcal{A} \\ \text{ is extended to a contraction } C^*(G) \to A \\ \text{ because the measure support of } \varphi_\lambda \text{ for various} \\ \lambda \in \mathbb{R} \setminus (-1,1) \text{ covers } \sigma_A(h_1) = [-1,1]. \end{array}$
- φ_{λ} $(\pm \lambda > 1)$ splits through $C^*_{\text{red}}(G)$ if and only if $|\lambda| \ge \sqrt{(1-r)/r}$.

Analytic Functionals ○○○○○○○●

References

S. Yamagami, On a moment problem of analytic functionals of polynomial hypergroups, arXiv:1912.03895.

S. Yamagami and H. Yoshida, On shifting semicircular roots, arXiv:2209.04585.