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1 Introduction

Let X be a smooth projective variety defined over a number field F and let

X̄ = X ×F Q̄.

For a prime number l, let H i
et(X, Q̄l) be the l-adic cohomology of X . If K is

a number field, we denote ΓK := Gal(Q̄/K). The Galois group ΓF acts on
H i

et(X, Q̄l) by a representation ρi,l. For any j ∈ Z, let H i
et(X, Q̄l)(j) denote the

representation of ΓF on H i
et(X, Q̄l) defined by ρi,l ⊗ ξj

l , where ξl is the l-adic
cyclotomic character.

Let Ui(X) denote the Q-linear space of the algebraic subvarieties of X of
codimension i. We have the l-adic cycle map

di,l : Ui(X) ⊗ Q̄l → H2i
et (X, Q̄l)(i).

The cohomology classes in the image of this map are said to be algebraic.
The action of ΓF on X̄ gives a continuous l-adic representation

ρi,l : ΓF → AutQ̄l
(H i

et(X, Q̄l)).

For each finite extension E of F , we denote by Ui(X,E) the subspace of
di,l(U

i(X) ⊗ Q̄l) left fixed by ΓE . The first part of the Tate’s conjecture states
that

Ui(X,E) = (H2i
et (X, Q̄l)(i))

ΓE .

The elements of V i(X,E) := (H2i
et (X, Q̄l)(i))

ΓE are called Tate classes. We de-
note by ρss

i,l the semisimplification of ρi,l and define the space of semisimple Tate

classes Vi(X,E)
′

replacing the action of ρi,l in the definition of Vi(X,E) by
ρss

i,l.
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The L-function Li(s,X/F ) attached to the representation ρi,l converges for
Re(s) > 1 + i/2. The second part of the Tate’s conjecture states that the
L-function L2i(s,X/E) has a pole at s = i+ 1 of order equal to

dimQ̄l
Ui(X,E).

In their work [HLR], Harder, Langlands and Rapoport had proved the first
part of the Tate’s conjecture for Hilbert modular surfaces for non-CM sub-
motives. In [K] and [MR] it was proved the first part of the Tate’s conjecture
for Hilbert modular surfaces for CM sub-motives and thus using the two results,
one gets the full first part of the Tate’s conjecture asserting the algebraicity of
all the Tate classes of Hilbert modular surfaces over an arbitrary number field.

The second part of the Tate’s conjecture for Hilbert modular surfaces was
proved in [HLR], [K] and [MR] only for solvable number fields.

In this paper we consider a totally real field F and a quaternion algebra
D over F , which is unramified at exactly 2 infinite places of F . Let G be
the algebraic group over F defined by the multiplicative group D× of D and
let Ḡ = ResF/Q(G). We consider a prime ideal ℘ of OF , such that G(F℘)
is isomorphic to GL2(F℘). Let SḠ,Γ̂(℘) = SΓ̂(℘) be the canonical model of
the quaternionic Shimura surface associated to the adelic principal congruence
subgroup Γ̂(℘) of Ḡ(Af ) of level ℘, where Af is the finite adeles ring of Q. Then
SΓ̂(℘) is a quasi-projective surface defined over a finite extension E/Q called the
canonical field of definition.

The surface SΓ̂(℘) has a natural action of GL2(O/℘). Consider a continuous

Galois representation ϕ : ΓE → GL2(O/℘) and let S
′

Γ̂(℘)
be the surface defined

over E obtained from SΓ̂(℘) via twisting by ϕ composed with the natural action

of GL2(O/℘) on SΓ̂(℘) (see §2 for details).
The Shimura surface SΓ̂(℘) is not smooth and in this article we use the étale

cohomology of the smooth toroidal compactification of SΓ̂(℘) and to simplify the
notations, we denote this compactification also by SΓ̂(℘).

The surfaces SΓ̂(℘) and S
′

Γ̂(℘)
become isomorphic over Q̄ and by descend we

deduce that the first part of the Tate’s conjecture for the surface SΓ̂(℘) over a
given field K is true if and only if the first part of the Tate’s conjecture for the
surface S

′

Γ̂(℘)
over the field K is true. As we mentioned above the first part of

the Tate’s conjecture is known for Hilbert modular surfaces [HLR], [K], [MR].
Also the first part of the Tate’s conjecture is known in the non-CM case for the
Shimura surfaces treated in [L], corresponding to a quadratic real field F and to
a quaternion algebraD = B⊗QF , where B is a quaternion algebra over Q, such
that D splits at the real places and F splits over the places where B ramifies.

In this article we want to generalize the results in [HLR], [K] and [MR] and
prove that if the field L := Q̄ker(ϕ) is a solvable extension of a totally real field,
then the L-function L2(s, S

′

Γ̂(℘)/k
) has a pole at s = 2 of order equal to

dimQ̄l
V 1(S

′

Γ̂(℘)
, k)

′

,
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if k is a solvable extension of a totally real field which contains the field of
definition E.

Since in the case of quaterninic Shimura varieties, the representations ρi,l

defined above are conjectured to be semisimple, this result should imply the
equality between the order of the pole of L2(s, S

′

Γ̂(℘)/k
) at s = 2 and

dimQ̄l
V 1(S

′

Γ̂(℘)
, k),

if k is a solvable extension of a totally real field which contains E (see section
6.4 for details).

2 Twisted quaternionic Shimura surfaces

Let F be a totally real field of degree d over Q and O := OF be its the ring
of integers. Let AQ = R ×Af be the adeles ring of Q and AF the adeles ring of
F . We denote by IQ and IF the ideles ring of Q and F , respectively.

We consider a quaternion algebra D over F which is unramified at exactly
2 infinite places of F . We denote by S∞ the set of infinite places of F and we
identify S∞ as a ΓQ-set with ΓF \ ΓQ. Let S

′

∞ be the subset of S∞ at which D

is ramified. Thus the cardinal of S∞ − S
′

∞ is equal to 2.
Let G be the algebraic group over F defined by the multiplicative group D×.

By restricting the scalars, we obtain the algebraic group Ḡ = ResF/Q(G) over
Q defined by the propriety: Ḡ(A) = G(A⊗Q F ) for all Q-algebras A. It is easy

to see that Ḡ(R) is isomorphic to GL2(R)2 × H∗(d−2), where H is the algebra
of quaternions over R.

For v ∈ S∞ − S
′

∞, we fix an isomorphism of G(Fv) with GL2(R). We have
Ḡ(R) =

∏

v∈S∞

G(Fv). Let J = (Jv) ∈ Ḡ(R), where

Jv =

{

1 for v ∈ S
′

∞;

1/
√

2
(

1 1
−1 1

)

for v ∈ S∞ − S
′

∞.

Let K∞ be the centralizer of J in Ḡ(R). Set

X = Ḡ(R)/K∞.

It is well known that X is complex analitically isomorphic to (h±)2 where h± =
C − R. For each open compact subgroup K ⊆ Ḡ(Af ) set

SK(C) = Ḡ(Q) \X × Ḡ(Af )/K.

ForK sufficiently small, SK(C) is a complex manifold which is the set of complex
points of a quasi projective variety. The canonical field of definition of SK(C) is
by definition the subfield E of Q̄ such that ΓE is the stabilizer of S

′

∞ ⊆ ΓF \ΓQ.
It is known that SK(C) has a canonical model over E which is denoted by SK .
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Actually this model can be defined over OE [1/N ] for some integer N , where OE

is the ring of integers of E. The dimension of SK is equal to 2.

Let ℘ be a prime ideal of OF such that G(F℘) is isomorphic to GL2(F℘).

Consider Γ̂(℘) =: 1 + ℘OD ⊗Z Ẑ, where OD is the ring of integers of D. The
group GL2(O/℘) acts on

SΓ̂(℘)(C) = Ḡ(Q) \X × Ḡ(Af )/Γ̂(℘).

This action can be described in the following way : GL2(O℘) ↪→ Ḡ(AQ) by α 7→
(1, ..., α, 1, ..., 1), α at the ℘ component. Using the isomorphism GL2(O/℘) ∼=
GL2(O℘)/(Γ̂(℘))℘, the action of an element g ∈ GL2(O℘) is given by the left
multiplication at the ℘ component.

We fix a continuous representation

ϕ : ΓE → GL2(O/℘).

Let L be the finite Galois extension of Q defined by L := (Q)ker(ϕ).
Let

S
′

= SΓ̂(℘) ×Spec(E) Spec(L).

The group GL2(O/℘) acts on SΓ̂(℘). Since ϕ : Gal(L/E) ↪→ GL2(O/℘), the

group Gal(L/E) acts on SΓ̂(℘). We denote this action of Gal(L/E) on SΓ̂(℘) by

ϕ
′

. The Galois group Gal(L/E) has a natural action on Spec(L) and we can
descend via the quotient process S

′

to S
′

Γ̂(℘)
/Spec(E) using the diagonal action

Gal(L/E) 3 σ → ϕ
′

(σ) ⊗ σ

on S
′

. Thus, we obtain a quasi-projective variety S
′

Γ̂(℘)
/Spec(E). This is the

twisted quaternionic Shimura surface that we mentioned in the title.

3 Zeta functions of twisted quaternionic

Shimura surfaces

From now on, if π is an automorphic representation of Ḡ(AQ), we denote the
automorphic representation of GL2(AF ), obtained from π by Jacquet-Langlands
correspondence (usually denoted JL(π)) by the same symbol π.

If l is a prime number, we fix an isomorphism j : Ql → C, and from now on
we identify these two fields. If π is an cuspidal automorphic representation of
weight 2 of GL(2)/F , then there exists ([T]) a λ-adic representation for λ - n

(n is the level of π)

ρπ,λ : ΓF → GL2(Oλ) ↪→ GL2(Ql) ∼= GL2(C),
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which satisfies L(s − 1/2, π) = L(s, ρπ,λ) and is unramified outside the primes
dividing nl. Here O is the coefficients ring of π and λ is a prime ideal of O
above some prime number l. In order to simplify the notations we denote by ρπ

the representation ρπ,λ.
Assume that the local and the global Haar measures have been fixed on

Ḡ(Af ). We assume that K = Πv<∞Kv where Kv is open compact in G(Fv)
and Kv = GL2(Ov) for almost all v, where Ov is the ring of integers of Fv . For
g ∈ Ḡ(Af ), let

fg = char(KgK)/meas(K)

where char(KgK) is the characteristic function of KgK. Let HK be the Hecke
algebra generated by the fg under the convolution. If π = π∞ ⊗ πf is an auto-
morphic representation of Ḡ(AQ), we denote by πK

f the space of K invariants

of K in πf . The Hecke algebra HK acts on πK
f .

We have a Galois-equivariant decomposition

H2
et(SK , Q̄l) = IH2

et(SK , Q̄l) ⊕W,

where
IH2

et(SK , Q̄l) ∼= Im(H2
c (X, Q̄l) → H2

et(SK , Q̄l)),

is the intersection cohomology and H2
c (X, Q̄l) denotes the compactly supported

cohomology and

W = {x ∈ H2
et(SK , Q̄l)| x has support in S̃∞

K }.

The Galois module W has a decomposition

W ∼= ⊕s∈S̃∞

K
(Q̄l(−1))⊕m(s),

where m(s) denotes for each s the number of irreducible components of the
resolution S̃∞

K (s) of s.
We have an action of the Hecke algebra HK and an action of the Galois group

ΓE on the intersection cohomology IH2
et(SK , Q̄l) and these two actions com-

mute. We say that the representation π is cohomologycal if H2(g,K∞, π∞) 6= 0,
where g is the Lie algebra of K∞ (the cohomology is taken with respect to
(g,K∞)-module associated to π∞).

Proposition 3.1. The double representation of ΓE × HK on the intersection
cohomology IH2

et(SK , Q̄l) is isomorphic to

⊕πρ(π) ⊗ πK
f ,

where ρ(π) is a representation of the Galois group ΓE. The above sum is over
weight 2 cohomologycal automorphic representations π of Ḡ(AQ) and the HK-
representations πK

f are irreducible and mutually inequivalent, i.e. the decompo-
sition is isotypic with respect to the action of HK .
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The irreducible automorphic representations that appear in Proposition 3.1
are one-dimensional or cuspidal and infinite-dimensional. If π is one-dimensional
then ρ(π) has dimension two and if π is infinite-dimensional, then ρ(π) has
dimension four.

We fix an isomorphism j : Q̄l → C and define the L-function

L2(s, SΓ̂(℘)) :=
∏

q

det(1 −Nq−sj(ρ(π)(Frobq))|H2
et(SΓ̂(℘), Q̄l)

Iq )−1,

where Frobq is a geometric Frobenius element at a finite place q of E and Iq is
the inertia group at q.

We consider the injective limit:

V := lim−→KIH
2
et(SK , Q̄l) ∼= lim−→K ⊕π V (π∞) ⊗Q̄l

πK
f ,

where V (π∞) is the Q̄l-space that corresponds to ρ(π) (see Proposition 3.1 for
notations).

Using the strong multiplicity one for Ḡ, we get that the π-component V (π)
of V is isomorphic to ρ(π)⊗πf as ΓE×H-module. Taking the Γ̂(℘)-fixed vectors

we deduce that V (π)Γ̂(℘) is isomorphic to ρ(π) ⊗ π
Γ̂(℘)
f as ΓE × GL2(O/℘O)-

module. Since the varieties SΓ̂(℘) and S
′

Γ̂(℘)
become isomorphic over Q̄, we have

the isomorphism IH2
et(SΓ̂(℘), Q̄l) ∼= IH2

et(S
′

Γ̂(℘)
, Q̄l). The actions of ΓE on these

cohomologies which give the expression of the zeta functions of these varieties
are different. If we consider the component V

′

(π) that corresponds to π of
IH2

et(S
′

Γ̂(℘)
, Q̄l) (see the decomposition of Proposition 3.1), we get that V

′

(π)

is isomorphic to ρ(π) ⊗ (π
Γ̂(℘)
f ◦ ϕ) as ΓE-module. We denote also by W

′

the
Galois module obtained from W . Hence we conclude the following result (this
is a particular case of Theorem 1.1 from [V]):

Theorem 3.2. The L-function L
′2(s, S

′

Γ̂(℘)
) which comes from the intersection

cohomology part of H2
et(SΓ̂(℘), Q̄l) is given by the formula:

L
′2(s, S

′

Γ̂(℘)
) =

∏

π

L(s, ρ(π) ⊗ (π
Γ̂(℘)
f ◦ ϕ)),

where the product is taken over cohomologycal automorphic representations π of

Ḡ(AQ) of weight 2, such that π
Γ̂(℘)
f 6= 0.

For the part of the L-function of S
′

Γ̂(℘)
which comes from the Galois module

W
′

it is easy to prove the equality between the pole at s = 2 and the dimension
of the space of Tate classes since the Galois module W

′

is monomial (see section
6.3 for definition and details).
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4 Base change

We know the following result (Theorem 2.2 of [V]):

Theorem 4.1. If F is a totally real field, π is a cuspidal automorphic repre-
sentation of weight 2 of GL(2)/F and F1 is a solvable extension of a totally
real field containing F , then there exists a Galois extension F2 of Q containing
F1 and there exists a prime λ of the field coefficients of π, such that ρπ,λ|ΓF2

is
modular i.e. there exists a cuspidal automorphic representation π1 of GL(2)/F2

and a prime β of the field of coefficients of π1 such that ρπ,λ|ΓF2

∼= ρπ1,β.

In this section we fix an automorphic representation π as in Theorem 4.1

and we denote ω := π
Γ̂(℘)
f ◦ ϕ. We assume in the rest of the paper that the

field L := Q̄ker(ϕ) is a solvable extension of a totally real field. Thus the field
K := Q̄ker(ω) is a solvable extension of a totally real field.

Let k be a solvable extension of a totally real field which contains E. From
Theorem 4.1 we deduce that there exists a Galois extension F2 of Q containing
Kk, a prime λ of the field coefficients of π and a cuspidal automorphic repre-
sentation π1 of GL(2)/F2 and a prime β of the field of coefficients of π1 such
that ρπ,λ|ΓF2

∼= ρπ1,β .
By Brauer’s Theorem (see [SE], Theorems 16 and 19), we can find some

subfields Fi ⊂ F2 such that Gal(F2/Fi) are solvable, some characters χi :
Gal(F2/Fi) → Q̄× and some integers mi, such that the representation

ω|Γk
: Gal(F2/k) → Gal(Kk/k) → GLN (Q̄l),

can be written as ω|Γk
=

∑i=k
i=1 miIndΓk

ΓFi
χi (a virtual sum). Then

L(s, (ρ(π) ⊗ ω)|Γk
) =

i=k
∏

i=1

L(s, ρ(π)|Γk
⊗ IndΓk

ΓFi
χi)

mi =

i=k
∏

i=1

L(s, IndΓk

ΓFi
(ρ(π)|ΓFi

⊗ χi))
mi =

i=k
∏

i=1

L(s, ρ(π)|ΓFi
⊗ χi)

mi .

Since ρπ,λ|ΓF2
is modular and Gal(F2/Fi) is solvable, from Langlands base

change one can deduce that ρπ,λ|ΓFi
is modular. We give a short proof of this

fact. If the representation π is of CM type (see §5 for the definition), then the
existence of the base change of π to an arbitrary extension k/F is well known
and thus, in this case we are done. We assume now that π is non-CM. Then from
Proposition 5.1 below the representation π1 in non-CM. By induction we can
assume that Gal(F2/Fi) is cyclic of prime order. We denote by θ a generator of
Gal(F2/Fi). Then we know (see for example Proposition 2.3.1 [RA]) that π1 is
a base change of an automorphic representation π

′

of GL(2)/Fi iff π1
∼= π1 ◦ θ.

By strong multiplicity one for GL(2), this is equivalent to ρπ1

∼= ρθ
π1

, where
ρθ

π1
(γ) = ρπ1

(θγθ−1). Since ρπ,λ|ΓFi

∼= ρθ
π,λ|ΓFi

by restriction to ΓF2
, we obtain
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ρπ1

∼= ρθ
π1

. Hence π1 is a base change of an automorphic representation π
′

of
GL(2)/Fi. Since π1 is non-CM, from Proposition 5.1 below, we know that the
representation ρπ1

is irreducible. The restrictions of ρπ′ and ρπ,λ|ΓFi
to ΓF2

are
equal to the irreducible representation ρπ1

and since ΓF2
is a normal subgroup

of ΓFi
one could prove that ρπ,λ|ΓFi

∼= ρπ′ ⊗ χ ∼= ρπ′
⊗χ where χ is a Galois

character corresponding to F2/Fi. Therefore ρπ,λ|ΓFi
is modular.

5 Known results

It is known that (see for example [HLR] Proposition 4.5.4):

Proposition 5.1. If π is a cuspidal automorphic representation of GL(2)/F ,
where F is a totally real field. Then one of the following two statements holds:
(i) ρπ|ΓL

is irreducible for each finite extension L/F .
(ii) There exists a quadratic extension L/F and an algebraic Hecke character ψ
of L such that ρπ

∼= Ind(ψ).

We say that a representation ρ of a group G is dihedral if there exists a
normal subgroup N of index 2 in G and a character χ : N → C× such that
ρ = IndG

Nχ.
We say that an automorphic representation π of GL(2)/L for some number

field L is of CM type if there exists some quadratic Galois character η : IL/L
× →

Q̄×

l , with η 6= 1 such that π ∼= π ⊗ η. If π is an automorphic representation of
GL(2)/L, then π is of CM type if and only if ρπ is a dihedral representation.

We know the following result (Theorem 2.1 of [MP]):

Proposition 5.2. The tensor product of two 2 dimensional irreducible complex
representations of a group is reducible only if either both representations are
dihedral or they are the twist of each other by a character.

We know (Lemma 4.2 of [MP]):

Proposition 5.3. Let π1 and π2 be two cuspidal non-CM representations of
GL(2)/F , where F is a totally real field. Suppose that π1 and π2 are twist of
each other over an extension of F , then π1 and π2 are twist of each other over
F .

We know (Proposition 4.1 of [MP]):

Proposition 5.4. Suppose that π is a cuspidal, non-CM automorphic repre-
sentation of GL(2)/K for some finite extension K/Q. Suppose that K is a
quadratic extension of k and τ is the automorphism of K over k. If πτ ∼= π⊗χ
for a Hecke character χ of K, then χ is trivial when restricted to the ideles of
k.

We know (Corrolary 2.6 of [MP]):
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Proposition 5.5. Let ρ be a 2-dimensional irreducible representation of a group
G. Then Sym2(ρ) is reducible if and only if ρ is dihedral.

We know (see Theorem M and Theorem 2.2.7 of [RA]):

Proposition 5.6. Let π1 and π2 are cuspidal, non-CM automorphic represen-
tations of weight 2 of GL(2)/K for some finite extension K/Q. Then π1 ⊗ π2

is a cuspidal automorphic representation of GL(4)/K iff π1 is not isomorphic
to π̃2 ⊗ χ for some Hecke character χ, where π̃2 is the dual representation. If
π1 ⊗ π2 is cuspidal, then L(s, π1 ⊗ π2) is analytic and does not vanish at s = 1.
If π1

∼= π̃2, then L(s, π1 ⊗ π2) has an unique pole of order 1 at s = 1.

We know (see the Main Theorem of [JG]):

Proposition 5.7. Let π be a cuspidal, non-CM automorphic representations of
weight 2 of GL(2)/K for some finite extension K/Q. Then Sym2π is a cuspi-
dal automorphic representation of GL(3)/K and the L-function L(s, Sym2π) is
analytic and does not vanish at s = 1.

6 Tate’s conjecture for twisted quaternionic

Shimura surfaces

Assume that k be a solvable extension of a totally real field which con-
tains E and π is an automorphic representation of GL(2)/F that appears in
Theorem 3.2. The representation π is one-dimensional or cuspidal and infinite-

dimensional. Let V (π)
′

= V (π∞)⊗π
Γ̂(℘)
f the space considered in §3 just before

Theorem 3.2.
We recall that in §4 we denoted ω =: π

Γ̂(℘)
f ◦ϕ and we assumed that the field

L := Q̄kerϕ is a solvable extension of a totally real field.
We denote by ρ(π)ss the semisimplification of ρ(π) and define:

V(π, k) = {x ∈ V (π)
′ |(ρ(π) ⊗ ω)(a)x = ξ−1

l (a)x, for all a ∈ Γk}

and

V(π, k)
′

= {x ∈ V (π)
′ |(ρ(π)ss ⊗ ω)(a)x = ξ−1

l (a)x, for all a ∈ Γk},

where ξl is the l-adic cyclotomic character. The elements of V(π, k) are called
Tate classes and the elements of V(π, k)

′

are called simisimple Tate classes.
Since at all but a finite number of finite places of E, the representations

ρ(π)|ΓFi
and ρ(π)ss|ΓFi

yield the same local L-factors, the order of the pole at

s = 2 of L(s, (ρ(π) ⊗ ω)|Γk
) =

∏i=k
i=1 L(s, ρ(π)|ΓFi

⊗ χi)
mi . is equal to the order

of the pole at s = 2 of L(s, (ρ(π)ss ⊗ ω)|Γk
) =

∏i=k
i=1 L(s, ρ(π)ss|ΓFi

⊗ χi)
mi .

We will prove the following result:
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Theorem 6.1. If k is a solvable extension of a totally real field which contains
E, then the order of the pole of the L-function L(s, (ρ(π)ss ⊗ ω)|Γk

) at s = 2 is
equal to dimQ̄l

V(π, k)
′

.

We assume for simplicity that S∞ − S
′

∞ = {1, τ}, where 1 is the trivial
embedding of F in Q̄. We denote by the same symbol τ the extension of τ to
Q̄. Consider

S = ΓF ∪ ΓF τ.

The stabilizer of S is ΓE . It is easy to check that the stabilizer of S is equal to
(ΓF τ ∩ τ−1ΓF ) ∪ (ΓF ∩ τ−1ΓF τ). Thus we get

ΓE = (ΓF τ ∩ τ−1ΓF ) ∪ (ΓF ∩ τ−1ΓF τ).

We distinguish two cases:
i) ΓF τ ∩ τ−1ΓF = ø. Then, ΓE = ΓF ∩ τ−1ΓF τ . Thus,

F ⊂ E ⊂ F gal

where F gal is the Galois closure of F .
If π is infinite-dimensional cuspidal automorphic representation, we denote

for simplicity ρπ := ρπ,λ. Then we have (see for example [V] 2.3):

ρ(π)ss ∼= ρπ|ΓE
⊗ ρπ|τΓE

,

where
ρπ|τΓE

(γ) = ρπ|ΓE
(τγτ−1).

If π is one-dimensional, then π(g) = ρπ(N(g))|N(g)|1/2, where N is the
reduced norm map and | | denotes the ideles norm and ρπ is a Hecke character.
We denote also by ρπ the λ-adic representation associated to ρπ. Then

ρ(π)ss ∼= ρπ|ΓE
⊗ ρπ|τΓE

.

ii) ΓF τ ∩ τ−1ΓF 6= ø. Let ΓE1
= ΓF ∩ τ−1ΓF τ . Thus

F ⊂ E1 ⊂ F gal.

Since it is obvious now that ΓE1
⊂ ΓE , [ΓE : ΓE1

] = 2 and ΓE * ΓF , we get
[E1 : E] = 2 and F * E.

If π is infinite-dimensional cuspidal automorphic, then we know that (see for
example [V] 2.3) ρ(π)ss is a subrepresentation of

IndΓE

ΓE1

(ρπ|ΓE1
⊗ ρπ|τΓE1

),

which verifies
ρ(π)ss|ΓE1

= ρπ|ΓE1
⊗ ρπ|τΓE1

.

If π is one-dimensional, then π(g) = ρπ(N(g))|N(g)|1/2 and we have (see for
example [G], Proposition 2.7)

ρ(π)ss ∼= ρπ|ΓE1
|IE

⊕ ρπ|ΓE1
|IE

· ωE1/E ,

where ωE1/E is the quadratic character corresponding to E1/E.
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6.1 Non-CM semisimple Tate classes case i)

In this section we consider the case i) described above and assume that our
automorphic representation π of GL(2)/F is cuspidal non-CM. Thus F ⊂ E ⊂
F gal and

ρ(π)ss ∼= ρπ|ΓE
⊗ ρπ|τΓE

.

Let k be a solvable extension of a totally real field which contains E.
Assume that V(π, k)

′ 6= 0. Let x ∈ V(π, k)
′

, with x 6= 0. Recall that we
denoted K := Q̄ker(ω) and by our assumption K is a solvable extension of a
totally real field. Thus (ρπ ⊗ ρτ

π)(a)x = ξ−1
l (a)x for a ∈ ΓKk. Applying the

Propositions 5.1, 5.2 and 5.3, we get that πτ ∼= π ⊗ χ for some Hecke character
χ of F . Therefore:

ρ(π)ss ∼= ρπ|ΓE
⊗ ρπ|ΓE

⊗ χ ∼= Sym2(ρπ |ΓE
) · χ⊕ ∧2(ρπ |ΓE

) · χ.

Then
ρ(π)ss ⊗ ω ∼= (Sym2(ρπ |ΓE

) · χ⊗ ω) ⊕ ∧2(ρπ|ΓE
) · χ⊗ ω.

Since π is non-CM from Proposition 5.1, we know that the representation
ρπ|ΓkK

is irreducible and from Proposition 5.5, we deduce that Sym2ρπ|ΓkK
is

irreducible and thus the first factor of the above sum has no vector on which Γk

acts by ξ−1
l .

Since ω|Γk
=

∑i=k
i=1 miIndΓk

ΓFi
χi, we obtain the following result:

Proposition 6.2. If π is cuspidal non-CM, then in case i) the dimension of
V(π, k)

′

is equal to the multiplicity of ξ−1
l in

i=k
∑

i=1

mi(∧2(ρπ) · χχi)|ΓFi
(virtual sum).

In this proposition as in the rest of the paper by the multiplicity of ξ−1
l in

∑i=k
i=1 mi(∧2(ρπ) · χχi)|ΓFi

we understand the sum of the mi such that ξ−1
l |ΓFi

is isomorphic to (∧2(ρπ) · χχi)|ΓFi
.

From §4 we know that:

L(s, (ρ(π)ss ⊗ ω)|Γk
) =

i=k
∏

i=1

L(s, ρ(π)ss|ΓFi
⊗ χi)

mi .

Since from §4 we know that the representation ρπ|ΓFi
is automorphic, we

can find an automorphic representation πi of GL(2)/Fi such that ρπ|ΓFi

∼= ρπi
.

The representation π is non-CM and from Proposition 5.1, we get that the
representation πi is non-CM. Then

L(s, ρ(π)ss|ΓFi
⊗ χi) = L(s, ρπi

⊗ ρτ
πi

⊗ χi) = L(s− 1, πi ⊗ πτ
i ⊗ χi).
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Since the representations πi and πτ
i are cuspidal non-CM, from Proposition 5.6,

we know that the L-function L(s−1, πi⊗πτ
i ⊗χi) has a pole of exact order 1 at

s = 2 if and only if πτ
i ⊗ χi

∼= π̃i
∼= πi ⊗ ω−1

πi
, where ωi is the central character

of πi. Otherwise the L-function L(s− 1, πi ⊗ πτ
i ⊗ χi) is analytic and does not

vanish at s = 2.
We assume now that πτ

i ⊗ χi
∼= π̃i

∼= πi ⊗ ω−1
πi

. Then from Proposition 5.3
we deduce that π and πτ are twist of each other over F . Thus πτ ∼= π ⊗ χ for
some character χ.

Hence
ρ(π)ss ∼= Sym2(ρπ |ΓE

) · χ⊕ ∧2(ρπ|ΓE
) · χ.

and

L(s, (ρ(π)ss ⊗ ω)|Γk
) =

i=k
∏

i=1

L(s, ρ(π)ss|ΓFi
⊗ χi)

mi =

i=k
∏

i=1

L(s, Sym2ρπi
⊗ χχi)

mi

i=k
∏

i=1

L(s,∧2(ρπi
) · χχi)

mi .

Since for each i the representation πi is cuspidal non-CM, from Proposition
5.7, we know that the representation Sym2πi is cuspidal automorphic and the
L-function L(s, Sym2ρπi

⊗ χiχ) is analytic and does not vanish at s = 2.
We deduce that the pole of L-function

L(s, (ρ(π)ss ⊗ ω)|Γk
)

at s = 2 is equal to the pole of

i=k
∏

i=1

L(s,∧2(ρπi
) · χχi)

mi

at s = 2 which is clear equal to the multiplicity of ξ−1
l in

i=k
∑

i=1

mi(∧2(ρπ) · χχi)|ΓFi
.

From Proposition 6.2 we obtain that Theorem 6.1 is true in case i) and the
representation π is cuspidal non-CM.

6.2 Non-CM semisimple Tate classes case ii)

In this section we consider the case ii) described above and assume that the
representation π is cuspidal non-CM. Thus F ⊂ E1 ⊂ F gal, [E1 : E] = 2, F * E
and ρ(π)ss is a subrepresentation of

IndΓE

ΓE1

(ρπ|ΓE1
⊗ ρπ|τΓE1

),
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which verifies
ρ(π)ss|ΓE1

∼= ρπ|ΓE1
⊗ ρπ|τΓE1

.

Define F1 := F ∩ E. Then [F : F1] = 2 and τ is the identity embedding
when restricted to F1.

Let k be a solvable extension of a totally real field which contains E.
Assume that V(π, k)

′ 6= 0. Let x ∈ V(π, k)
′

, with x 6= 0. Thus (ρπ ⊗
ρτ

π)(a)x = ξ−1
l (a)x for a ∈ ΓKE1k. Applying the Propositions 5.1, 5.2 and 5.3,

we get that πτ ∼= π⊗α for some character α of IF . Hence, from Proposition 5.4
we know that α is a Hecke character of IF which is trivial on IF1

. Therefore α
can be written as α = χτ/χ for some character χ. Hence

(π ⊗ χ−1)τ ∼= π ⊗ χ−1.

So π ∼= π0/F ⊗ χ, where π0/F is the base change to F of some automorphic
representation π0 of GL(2)/F1.

Then from the proprieties of ρ(π)ss (see for example [MP]) we have:

ρ(π)ss ∼= (Sym2ρπ0
⊕ ωπ0

· ωF/F1
)|ΓE

⊗ χ|IF1
|ΓE

,

where ωπ0
is the central character of π0 and ωF/F1

is the quadratic character
that corresponds to F/F1.

Thus we get

ρ(π)ss ⊗ ω ∼= (Sym2ρπ0
⊗ χ|IF1

⊗ ω)|ΓE
⊕ (ωπ0

· ωF/F1
· χ|IF1

⊗ ω)|ΓE
.

Since π is non-CM, the representation π0/F is non-CM and from Proposition
5.1, we know that the representation ρπ0

|ΓkK
is irreducible and from Proposition

5.5, we deduce that Sym2ρπ0
|ΓkK

is irreducible and thus the first factor of the
above sum has no vector on which Γk acts by ξ−1

l .

Since ω|Γk
=

∑i=k
i=1 miIndΓk

ΓFi
χi, we obtain the following result:

Proposition 6.3. If π is cuspidal non-CM, then in case ii) the dimension of
V(π, k)

′

is equal to the multiplicity of ξ−1
l in

i=k
∑

i=1

mi(ωπ0
· ωF/F1

· χ|IF1
χi)|ΓFi

.

From §4 we know that:

L(s, (ρ(π)ss ⊗ ω)|Γk
) =

i=k
∏

i=1

L(s, ρ(π)ss|ΓFi
⊗ χi)

mi .

Let’s consider one field Fi that appear in the above product. We distinguish
two cases:
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a) F ⊆ Fi. Since the representation ρπ|ΓFi
is automorphic, we can find an

automorphic representation πi of GL(2)/Fi such that ρπ|ΓFi

∼= ρπi
. The repre-

sentation π is non-CM and from Proposition 5.1 we get that the representation
πi is non-CM. Then

L(s, ρ(π)ss|ΓFi
⊗ χi) = L(s, ρπi

⊗ ρτ
πi

⊗ χi) = L(s− 1, πi ⊗ πτ
i ⊗ χi).

Since the representations πi and πτ
i are cuspidal non-CM, from Proposition 5.6,

we know that the L-function L(s − 1, πi ⊗ πτ
i ⊗ χi) has a pole of exact order

1 at s = 2 if and only if πτ
i ⊗ χi

∼= π̃i
∼= πi ⊗ ω−1

πi
. Otherwise the L-function

L(s− 1, πi ⊗ πτ
i ⊗ χi) is analytic and does not vanish at s = 2.

We assume now that πτ
i ⊗ χi

∼= π̃i
∼= πi ⊗ ω−1

πi
. Then from Proposition 5.3

we know that π and πτ are twist of each other over F and as above, we have
that π ∼= π0/F ⊗ χ for some automorphic representation π0 of GL(2)/F1 and
some Hecke character χ. From the existence of πi, we deduce that there exists
an automorphic representation π0,i of GL(2)/Fi such that ρπ0

|ΓFi

∼= ρπ0,i
.

Hence
ρ(π)ss ∼= (Sym2ρπ0

⊕ ωπ0
· ωF/F1

)|ΓE
⊗ χ|IF1

|ΓE

and

L(s, (ρ(π)ss ⊗ ω)|Γk
) =

i=k
∏

i=1

L(s, ρ(π)ss|ΓFi
⊗ χi)

mi =

i=k
∏

i=1

L(s, Sym2ρπ0,i
⊗ χiχ|IF1

|ΓFi
)mi

i=k
∏

i=1

L(s, (ωπ0
· ωF/F1

· χ|IF1
· χi)|ΓFi

)mi .

Since representation π is non-CM, the representation π0 is non-CM and
from Proposition 5.1 we have that the representation π0,i is non-CM. Then,
from Proposition 5.7, we know that the representation Sym2π0,i is cuspidal
automorphic and the L-function L(s, Sym2ρπ0,i

⊗ χiχ|IF1
|ΓFi

) is analytic and
does not vanish at s = 2.

b) F * Fi. Since the representation ρπ|ΓF Fi
is automorphic, we can find

an automorphic representation π
′

i of GL(2)/FFi such that ρπ|ΓF Fi

∼= ρπ
′

i
and

because the representation π is non-CM, we get that the representation π
′

i is
non-CM. Then

L(s, ρ(π)ss|ΓFi
⊗ χi)L(s, ρ(π)ss|ΓFi

⊗ χi · ωFFi/Fi
) =

L(s− 1, π
′

i ⊗ π
′

i

τ ⊗ χ
′

i) = L(s, ρπ
′

i
⊗ ρτ

π
′

i

⊗ χ
′

i),

where ωFFi/Fi
is the quadratic character of FFi/Fi and χ

′

i = χi|ΓF Fi
.

Since the representations π
′

i and π
′

i

τ
are cuspidal non-CM the L-function

L(s− 1, π
′

i ⊗ π
′

i

τ ⊗ χ
′

i) has a pole of order 1 at s = 2 if and only if π
′

i

τ ⊗ χ
′

i
∼=

π̃
′

i
∼= π

′

i ⊗ ω−1

π
′

i

. Otherwise the L-function L(s − 1, πi ⊗ πτ
i ⊗ χi) is analytic

and does not vanish at s = 2. Also the L-functions L(s, ρ(π)ss|ΓFi
⊗ χi) and
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L(s, ρ(π)ss|ΓFi
⊗ χi · ωFFi/Fi

) have a pole of order at most 1 at s = 2 and do
not vanish s = 2 (for details see [HLR] Propositions 3.11, 3.12 and 3.13).

We assume now that the L-function L(s−1, π
′

i⊗π
′

i

τ ⊗χ′

i) has a pole of order
1 at s = 2. Then, as in a) we have that π ∼= π0/F ⊗ χ for some automorphic
representation π0 of GL(2)/F1 and some character χ. From the existence of
π

′

i , we deduce that there exists an automorphic representation π0,i of GL(2)/Fi

such that ρπ0
|ΓFi

∼= ρπ0,i
.

Thus

L(s, (ρ(π)ss ⊗ ω)|Γk
) =

i=k
∏

i=1

L(s, ρ(π)|ΓFi
⊗ χi)

mi =

i=k
∏

i=1

L(s, Sym2ρπ0,i
⊗ χiχ|IF1

|ΓFi
)mi

i=k
∏

i=1

L(s, (ωπ0
· ωF/F1

· χ|IF1
· χi)|ΓFi

)mi .

Since for each i the representation π0,i is cuspidal non-CM, we know that
the representation Sym2π0,i is cuspidal automorphic and that the L-function
L(s, Sym2ρπ0,i

⊗ χiχ|IF1
|ΓFi

) is analytic and does not vanish at s = 2.

From the cases a) and b), we get that the pole of L-function

L(s, (ρ(π)ss ⊗ ω)|Γk
)

at s = 2 is equal to the pole of

i=k
∏

i=1

L(s, (ωπ0
· ωF/F1

· χ|IF1
· χi)|ΓFi

)mi

at s = 2 which is clear equal to the multiplicity of ξ−1
l in

i=k
∑

i=1

mi(ωπ0
· ωF/F1

· χ|IF1
· χi)|ΓFi

.

Now from Proposition 6.3 we obtain Theorem 6.1 in case ii) and π is cuspidal
non-CM.

6.3 CM and one dimensional semisimple Tate classes

We assume first that our representation π is cuspidal of CM type. Thus
there exists a quadratic extension M/F and an algebraic Hecke character Ω of
weight one of M such that ρπ = IndΓF

ΓM
Ω.

In the case i), from §6 we know that:

ρ(π)ss ∼= ρπ|ΓE
⊗ ρτ

π|ΓE
.
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In the case ii), from the proprieties of ρ(π)ss we have that (see for example
[MR] 6.3):

Λ2(Ind
ΓF1

ΓM
Ω)|ΓE

∼= ρ(π)ss ⊕ IndΓE

ΓE1

(ωπ|ΓE1
),

where ωπ is the central character of π.
From these identities we get that ρ(π)ss|Γk

is a virtual sum of monomial
representations of Γk. Here a monomial representation of Γk is a representation
which is induced from a one-dimensional representation of an open subgroup.

With the notation from §4 we have:

L(s, (ρ(π)ss ⊗ ω)|Γk
) =

i=k
∏

i=1

L(s, ρ(π)ss|ΓFi
⊗ χi)

mi .

Since ρ(π)ss|ΓFi
is sum of monomial representations, it is easy to see that

the pole of L(s, (ρ(π)ss ⊗ ω)|Γk
) at s = 2 is equal to the dimension of the space

of semisimple Tate classes V(π, k)
′

.
The same argument works when π is one-dimensional, since in this case,

we know from the beginning of §6 that ρ(π)ss|Γk
is a sum of one-dimensional

representations.
From this section and sections 6.1 and 6.2 where we treated the non-CM

case, we obtain Theorem 6.1. Actually Theorem 6.1 is true for an arbitrary
extension k of E and a general Artin representation ω if π is one-dimensional
or of CM type, because in these cases the base change of π to an arbitrary
extension k/F exists.

6.4 Tate classes

Using the notations from the begining of §6, we conjecture that:

Conjecture 6.4. If k is a solvable extension of a totally real field which contains
E, then the order of the pole of the L-function L(s, (ρ(π) ⊗ ω)|Γk

) at s = 2 is
equal to dimQ̄l

V(π, k).

As we remarked just before Theorem 6.1, the orders of the poles at s = 2 of
L(s, (ρ(π)ss ⊗ ω)|Γk

) and L(s, (ρ(π) ⊗ ω)|Γk
) are equal. From Theorem 6.1, we

get that in order to prove the Conjecture 6.4 one has to show that

dimQ̄l
V(π, k) = dimQ̄l

V(π, k)
′

.

Using Brauer’s induction as in sections 6.1, 6.2 and 6.3, we obtain that this
identity is a consequence of the following:

Conjecture 6.5. If k
′

/E is a finite Galois extension and χ is a finite order
Hecke character of k

′

, then

dimQ̄l
((ρ(π) ⊗ χ)(1))Γk

′ = dimQ̄l
((ρ(π)ss ⊗ χ)(1))Γk

′ .

16



It is conjectured that the representation ρ(π) is semisimple, and thus the
above results should be trivially true. If k

′

is as above, then representation
ρ(π)|Γ

k
′

is irreducible iff ρ(π)ss|Γ
k
′

is irreducible. Therefore, if ρ(π)ss|Γ
k
′

is
irreducible, the Conjecture 6.5 is true.

Remark 6.6. The results in this article remain true if we replace the prime ideal
℘ of OF by an arbitrary ideal n of OF such that each prime ℘|n is unramified
in D.
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