
FREE PRODUCT FACTORS AND BICENTRALIZER PROBLEM
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Abstract. We confirmed that any type III1 free product factor has the trivial asymptotic
bicentralizer. This is not intended to be a published paper.

1. Introduction

In the late 70s Connes asked whether or not the so-called asymptotic bicentralizer of any type
III1 factor is trivial, and proved that its affirmative solution in the injective case implies the
uniqueness of injective type III1 factor. A couple of years later than Connes’s effort, Haagerup
made a real tour de force [4], where he succeeded in, among others, solving in the affirmative
the problem in the injective case; hence he put the final piece in the classification of injective
(or hyperfinite) factors. See [4, §1] for this amazing story. However, the original problem still
remains open. In fact, we have known that the problem is positive only for a few classes of type
III1 factors; injective factors as mentioned above, full factors with almost periodic states [2,
Theorem 4.7, Lemma 4.8], and free Araki–Woods factors [5]. Moreover, any counterexample is
not known up to now. The purpose of this note is to comfirm that the problem is still positive
for the class of type III1 ‘free product factors’, which includes all the type III1 free Araki–Woods
factors (see e.g. [6, Remark 9]).

Let M1,M2 be two non-trivial (i.e., ̸= C) von Neumann algebras with separable preduals,
and ϕ1, ϕ2 be faithful normal states on them, respectively. Then their free product (M,ϕ) =
(M1, ϕ1) ⋆ (M2, ϕ2) (see e.g. [8, §§2.1] for its formulation etc.) always admits the following
structure: M = Md⊕Mc with finite dimensional Md and diffuse Mc such that Md can explicitly
be calculated with possibly M = Mc, and moreover, such that if (dim(M1), dim(M2)) ̸= (2, 2),
then Mc must be a full factor of type II1 or IIIλ (λ ̸= 0); otherwise Mc = L∞[0, 1] ⊗̄ M2(C).
Also, the modular actions σϕi are not both trivial and also have no common period if and only
if Mc is a type III1 factor. See [8, Theorem 4.1] for these facts. With the notation above, we
will prove the following:

Theorem 1. If Mc is of type III1, then the asymptotic bicentralizer of any faithful normal state
on Mc is trivial.

The theorem together with [4, Theorem 3.1] shows that any type III1 free product factor
has a norm-dense set of faithful normal states whose centralizers are irreducible (type II1)
subfactors. Here we should remind the reader that any finite von Neumann algebra (even any
finite dimensional algebra like M2(C)⊕M3(C)) can be the centralizer of a certain free product
state (see [9, Proposition 2.1]). The main features of the theorem are that the conclusion holds
regardless of whether or not the problem is positive for the given Mi as well as that its proof
is very short and uses only two previous results: the Connes–Størmer transitivity [3, Theorem
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4, Corollary 8] and the central decomposition result [8, Corollary 3.2, Theorem 4.1]. However,
some part of our original intuition came from [1, Theorem 4.20] due to Ando and Haagerup.

We use the same standard notation as in [8],[9] (especially, see the glossary at the end of
the introduction of the former paper). We need the notation on the bicentralizer problem, for
which we basically follow [4].

2. Proof

Thanks to [4, Corollary 1.5] it suffices to prove that there exists a faithful normal state χ on
Mc such that the asymptotic bicentralizer Bχ is trivial, i.e., Bχ = C1Mc , where x ∈ Bχ if and
only if ynx−xyn −→ 0 σ-strongly as n → ∞ for every norm-bounded sequence (yn) in Mc with
limn→∞ ∥ynχ − χyn∥ = 0. We remark that the inclusion relation Bχ ⊆ ((Mc)χ)′ ∩ Mc trivially
holds for every faithful normal state χ on Mc.

The first part of the proof is reduction to two special cases, where the key is [8, Theorem
4.1]. Assume first that both Mi are atomic, that is, of type I with atomic centers. Then both
ϕi must be almost periodic, and hence by [9, Theorem 2.1] the resulting ϕc := ϕ ¹Mc

satisfies(
(Mc)ϕc

)′ ∩ Mc = C1Mc so that Bχ = C1Mc with χ := ϕc(1Mc)
−1 ϕc; hence we are done.

Therefore, by the trick explained in [10, §§2.1] (based on [8, Theorem 4.1]), we may and do
assume that at least M1 is diffuse. By the same trick, we may and do further assume that M1

is either (a) a type III1 factor or (b) diffuse with no type III1 factor direct summand. In each
case, M = Mc holds due to [8, Theorem 3.4] (weaker than Theorem 4.1 there). We will treat
cases (a) and (b) separately.

Let us prove the desired assertion in case (a). Take a faithful normal state ψ1 on M1 such
that (M1)ψ1 is diffuse. The existence of such a state is guaranteed by a (not so immediate)
consequence of the Connes–Størmer transitivity, see [3, Corollary 8]. Set ψ := ψ1 ◦ E1, where
E1 : M → M1 is the ϕ-preserving conditional expectation (see e.g. [8, Lemma 2.1]). Since
(M1)ψ1 is diffuse, [8, Corollary 3.2] shows that

Bψ ⊆ ((M1)ψ1)
′ ∩ M = ((M1)ψ1)

′ ∩ M1 ⊆ M1. (1)

This observation is the starting point of this proof.
Thanks to the Connes–Størmer transitivity [3, Theorem 4] we can choose a sequence of

unitaries vn in M1 in such a way that limn→∞ ∥vnϕ1v
∗
n − ψ1∥ = 0. Since ϕ = ϕ1 ◦E1, we have

|(vnϕv∗n −ψ)(x)| = |(vnϕ1v
∗
n −ψ1)(E1(x))| ≤ ∥vnϕ1v

∗
n −ψ1∥ ∥E1(x)∥∞ ≤ ∥vnϕ1v

∗
n −ψ1∥ ∥x∥∞

for every x ∈ M ; hence ∥vnϕv∗
n − ψ∥ = ∥vnϕ1v

∗
n − ψ1∥. Therefore, we get

lim
n→∞

∥vnϕv∗n − ψ∥ = 0. (2)

Here is a lemma.

Lemma 2. There exist a norm-bounded sequence wn = w∗
n in M2 and a constant ε > 0 such

that
(2.1) limn→∞ ∥wnϕ2 − ϕ2wn∥ = 0,
(2.2) limn→∞ ϕ2(wn) = 0, and
(2.3) w2

n ≥ ε1 for all n.

Proof. If (M2)ϕ2 ̸= C1, then the desired wn can easily be chosen as wn = ϕ2(e2)e1 − ϕ2(e1)e2

for all n, where e1, e2 are non-zero projections in (M2)ϕ2 with e1 + e2 = 1. (The ε > 0
can be chosen to be min{ϕ2(e1)2, ϕ2(e2)2} in the case.) Hence we may and do assume that
(M2)ϕ2 = C1; hence M2 must be a type III1 factor (see e.g. [1, Lemma 5.3] again). It is not
difficult to find a faithful normal state ψ2 on M2 so that (M2)ψ2 contains a unitary a = a∗
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with ψ2(a) = 0. (In fact, one can do by using a ∗-isomorphism M2
∼= M2 ⊗̄ M2(C).) Then,

by the Connes–Størmer transitivity [3, Theorem 4] again we can choose a sequence of unitaries
bn in M2 so that limn→∞ ∥bnϕ2b

∗
n − ψ2∥ = 0. The desired wn is given by wn := b∗nabn ∈ Mu

2 ,
the unitary group of M2. In fact, since aψ2 = ψ2a, we have ∥wnϕ2 − ϕ2wn∥ ≤ ∥b∗na(bnϕ2 −
ψ2bn)∥ + ∥(b∗nψ2 − ϕ2b

∗
n)abn∥ = ∥bnϕ2b

∗
n − ψ2∥ + ∥ψ2 − bnϕ2b

∗
n∥ −→ 0 as n → ∞; implying

(2.1). Moreover, |ϕ2(wn)| = |(bnϕ2b
∗
n)(a) − ψ2(a)| ≤ ∥bnϕ2b

∗
n − ψ2∥ −→ 0 as n → ∞; implying

(2.2). Finally, the last requirement (2.3) is obvious with ε = 1 since w2
n = 1 for all n. ¤

Since ϕ = ϕ2 ◦ E2 with the ϕ-preserving conditional expectation E2 : M → M2 as before,
one has

lim
n→ω

∥wnϕ − ϕwn∥ = lim
n→ω

∥wnϕ2 − ϕ2wn∥ = 0. (3)

Hence
∥vnwnv∗nψ − ψvnwnv∗n∥

≤ ∥vnwn(v∗nψ − ϕv∗
n)∥ + ∥vn(wnϕ − ϕwn)v∗n∥ + ∥(vnϕ − ψvn)wnv∗n∥

≤ 2 sup
n

∥wn∥∞ ∥ψ − vnϕv∗n∥ + ∥wnϕ − ϕwn∥ −→ 0
(4)

as n → ∞.
Let x ∈ Bψ be chosen arbitrary, and set y := x − ψ(x)1 ∈ Bψ. By (1) y falls in M1. We

consider x inside the ultraproduct Mω. (The necessary materials on Mω are briefly summarized
in [8, §§2.2]. The recent treatise [1] seems useful to understand it well.) We claim that the
sequences vn and wn define elements v, w ∈ Mω, respectively. This immediately follows, by
definition, from the following consideration: For any norm-bounded sequence zn in M with
limn→ω zn = 0 in the σ-strong topology, we have, by (2), (3),

∥znv±
n ∥2

ϕ ≤ ∥vnϕv∗n − ψ∥
(
sup

n
∥zn∥∞

)2 + ∥zn∥2
ψ −→ 0,

∥znwn∥2
ϕ ≤ ∥wnϕ − ϕwn∥ sup

n
∥wn∥∞

(
sup

n
∥zn∥∞

)2 + |ϕ(w2
nz∗nzn)|,

≤ ∥wnϕ − ϕwn∥ sup
n

∥wn∥∞
(
sup

n
∥zn∥∞

)2 + ∥zn∥ϕ sup
n

∥zn∥∞
(
sup

n
∥wn∥∞

)2

−→ 0

as n → ω. Clearly, v is a unitary in Mω
1 and w = w∗ ∈ Mω

2 . (Note that Mω
1 and Mω

2 can
naturally be regarded as von Neumann subalgebras of Mω thanks to the existence of faithful
normal conditional expectations.) Here is an easy claim.

Lemma 3. We have:
(3.1) vϕωv∗ = ψω.
(3.2) ϕω(w) = 0.
(3.3) w2 ≥ ε1 with ε > 0 in Lemma 2.

Proof. For every z ∈ Mω with a representing sequence (zn) we have, by (2), |(ϕ(v∗
nznvn) −

ψ(zn)| = |(vnϕv∗
n − ψ)(zn)| ≤ ∥vnϕv∗n − ψ∥ supn ∥zn∥∞ −→ 0 as n → ∞. In particular,

vϕωv∗(z) = ϕω(v∗zv) = lim
n→ω

ϕ(v∗
nznvn) = lim

n→ω
ψ(zn) = ψω(z).

Hence we have confirmed (3.1). (3.2) and (3.3) immediately follow from (2.2) and (2.3) in
Lemma 2, respectively. ¤

Let us complete the proof in case (a). By (3.1) above, we have

ψω((vwv∗y)∗(yvwv∗)) = (v∗ψωv)((v∗y∗v)w(v∗yv)w) = ϕω((v∗yv)∗w(v∗yv)w).
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By (3.1) again we see that ϕω(v∗yv) = (vϕωv∗)(y) = ψω(y) = ψ(y) = 0. These together with
(3.2) above imply that

(yvwv∗ | vwv∗y)ψω = ψω((vwv∗y)∗(yvwv∗)) = ϕω((v∗yv)∗w(v∗yv)w) = 0, (5)

since v∗yv ∈ Mω
1 and w ∈ Mω

2 are ∗-freely independent with respect to ϕω (see [7, Proposition
4]). So far, we have used only (1), i.e., the fact that y ∈ M1 rather than y ∈ Bψ. Now, we
are using our original assumption that y ∈ Bψ. By (4) the sequence vnwnv∗n asymptotically
commutes with ψ so that vnwnv∗ny − yvnwnv∗n −→ 0 σ-strongly as n → ∞. Consequently, we
get

∥vwv∗y∥ψω ≤ ∥vwv∗y − yvwv∗∥ψω = lim
n→ω

∥vnwnv∗
ny − yvnwnv∗

n∥ψ = 0,

where the first inequality follows from (5). Thus vwv∗y = 0 (due to the faithfulness of ψω), and
then y = v∗w−1v∗(vwv∗y) = 0 since v is a unitary and w is invertible thanks to (3.3) above.
Consequently, x = ψ(x)1 ∈ C1. Hence we have proved Bψ = C1 in case (a).

We then consider case (b), which is easier than case (a). In fact, (M1)ϕ1 itself must be diffuse
in the case; see the proof of [8, Theorem 3.4]. Thus the ψ in case (a) should be replaced with
the original ϕ so that we do not need the sequence vn there. Then the proof goes along the
exactly same line as in case (a) without the vn, and the conclusion is Bϕ = C1. Hence we have
completed the proof of Theorem 1.

Comment added in Dec. 7, 2014

Soon after the initial version of this note was circulated to some people, Cyril Houdayer found
a more sophisticated and nicer proof of the present result, where he uses his new observation
together with the essentially same technical ingredients.
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