UPPER COMPLETE INTERSECTION DIMENSION RELATIVE TO A LOCAL HOMOMORPHISM

RYO TAKAHASHI

Abstract. In this note, we introduce a homological invariant for finitely generated modules over commutative noetherian local rings by slightly modifying the definition of complete intersection dimension defined by Avramov, Gasharov, and Peeva [4], and observe it from a relative point of view.

1. Introduction

Throughout this note, we assume that all rings are commutative noetherian rings, and all modules are finitely generated.

Projective dimension and Gorenstein dimension (abbr. G-dimension) have played important roles in the classification of modules and rings. Recently, complete intersection dimension (abbr. CI-dimension) and Cohen-Macaulay dimension (abbr. CM-dimension) were introduced by Avramov, Gasharov, and Peeva [4] and Gerko [6], respectively. The former is defined by using projective dimension and the idea of quasi-deformation, and the latter is defined by using G-dimension and the idea of G-quasideformation.

These dimensions are homological invariants for modules, and share many properties with each other. For example, they satisfy the Auslander-Buchsbaum-type equalities. Every module over a regular (resp. complete intersection, Gorenstein, Cohen-Macaulay) local ring is of finite projective (resp. CI-, G-, CM-) dimension, and a local ring is a regular (resp. complete intersection, Gorenstein, Cohen-Macaulay) ring if the projective (resp. CI-, G-, CM-) dimension of its residue class field is finite. Moreover, among these dimensions, there are inequalities which yield the well-known implications for a local ring R: R is regular \Rightarrow R is complete intersection \Rightarrow R is Gorenstein \Rightarrow R is Cohen-Macaulay.

In this note, we are interested in CI-dimension. Gulliksen [7] showed that every module over a complete intersection has finite complexity, that is, the Betti numbers are eventually bounded by a polynomial. As a result extending this, Avramov, Gasharov, and Peeva [4] proved that any module of finite CI-dimension has finite complexity. Hence, free resolutions of modules of finite CI-dimension are eventually well-behaved. However, there are a lot of unsolved problems on CI-dimension. For instance, it is unknown whether a module of finite complexity is always of finite CI-dimension. Though we do not discuss these problems in this note, it is important to consider CI-dimension.

Here we recall the definition of the CI-dimension of a module over a local ring R. It is similar to that of virtual projective dimension introduced by Avramov [2]:

\textit{Key words and phrases:} complete intersection, CI-dimension.
\textit{2000 Mathematics Subject Classification:} 13D05, 13H10, 14M10.
(1) A local homomorphism \(\phi : S \rightarrow R \) of local rings is called a deformation if \(\phi \) is surjective and the kernel of \(\phi \) is generated by an \(S \)-regular sequence.

(2) A diagram \(S \xrightarrow{\phi} R' \xrightarrow{\alpha} R \) of local homomorphisms of local rings is called a quasi-deformation of \(R \) if \(\alpha \) is faithfully flat and \(\phi \) is a deformation.

(3) For an \(R \)-module \(M \), the complete intersection dimension of \(M \) is defined as follows:

\[
\text{CI-dim}_RM = \inf \left\{ \text{pd}_S(M \otimes_R R') \left| S \rightarrow R' \looparrowleft R \text{ is a quasi-deformation of } R \right. \right\}
\]

Now, slightly modifying the definition of CI-dimension, we define a homological invariant for a module over a local ring as follows.

Definition 1.1. (1) We call a diagram \(S \xrightarrow{\phi} R' \xrightarrow{\alpha} R \) of local homomorphisms of local rings an upper quasi-deformation of \(R \) if \(\alpha \) is faithfully flat, the closed fiber of \(\alpha \) is regular, and \(\phi \) is a deformation.

(2) For an \(R \)-module \(M \), we define the upper complete intersection dimension (abbr. CI*-dimension) of \(M \) as follows:

\[
\text{CI}^*\text{-dim}_RM = \inf \left\{ \text{pd}_S(M \otimes_R R') \left| S \rightarrow R' \looparrowleft R \text{ is an upper quasi-deformation of } R \right. \right\}
\]

Here we itemize several properties of CI*-dimension, which are analogous to those of CI-dimension. We omit their proofs because we can prove them in the same way as the proofs of the corresponding results of CI-dimension given in [4]. Let \(R \) be a local ring with residue field \(k \), \(M \neq 0 \) an \(R \)-module, and \(x = x_1, x_2, \ldots, x_n \) a sequence in \(R \). We denote by \(\Omega^n_RM \) the \(r \)th syzygy module of \(M \).

(1) The following conditions are equivalent.
 i) \(R \) is a complete intersection.
 ii) CI*-dim\(_R\)X < \infty for any \(R \)-module X.
 iii) CI*-dim\(_R\)k < \infty.

(2) If CI*-dim\(_R\)M < \infty, then CI*-dim\(_R\)M = depth \(R \) - depth\(_R\)M.

(3) CI*-dim\(_R\)\(\Omega^n_RM \) = sup\{CI*-dim\(_R\)M - r, 0\}.

(4) CI*-dim\(_R\)M/\(x \)M = CI*-dim\(_R\)M + n if \(x \) is \(M \)-regular.

(5) CI*-dim\(_R\)(/\(x \))M/\(x \)M \leq CI*-dim\(_R\)M if \(x \) is \(R \)-regular and \(M \)-regular.

The equality holds if CI*-dim\(_R\)M < \infty.

(6) CI*-dim\(_R\)(/\(x \))M \leq CI*-dim\(_R\)M - n if \(x \) is \(R \)-regular and \(x \)M = 0.

The equality holds if CI*-dim\(_R\)M < \infty.

(7) CI-dim\(_R\)M \leq CI*-dim\(_R\)M \leq \text{pd}_R\)M.

If any one of these dimensions is finite, then it is equal to those to its left.

Araya, Takahashi, and Yoshino [1], modifying the definition of CM-dimension, define a homological invariant for modules as a relative version of the modified CM-dimension. This invariant has a lot of properties similar to projective dimension, CI-dimension, G-dimension, and CM-dimension.

Let \(\phi : S \rightarrow R \) be a local homomorphism of local rings. The main purpose of this note is to define a new homological invariant for an \(R \)-module \(M \) as a relative version of CI*-dimension over \(R \), and to study its properties. We will call this the upper complete intersection dimension of \(M \) relative to \(\phi \), and denote it by CI*-dim\(_{\phi}\)M. We shall observe that this invariant has many properties similar to those of the invariant defined by Araya, Takahashi, and Yoshino. For example, we will prove the following. Let \(k \) denote the residue class field of \(R \).
Theorem 2.10. Let M be a non-zero R-module. If $\text{CI}^*\dim_\phi M < \infty$, then $\text{CI}^*\dim_\phi M = \text{depth} R - \text{depth}_R M$.

Theorem 2.14. Suppose that $S = R$ and ϕ is the identity map on R. Then $\text{CI}^*\dim_\phi M = \text{pd}_R M$ for every R-module M.

Theorem 2.15. The following conditions are equivalent.

i) R is a complete intersection and S is a regular ring.

ii) $\text{CI}^*\dim_\phi M < 1$ for any R-module M.

iii) $\text{CI}^*\dim_\phi k < 1$.

2. Relative CI^*-dimension

Throughout the section, $\phi : (S, n, l) \to (R, m, k)$ always denotes a local homomorphism of local rings.

In this section, we shall make the precise definition of the upper complete intersection dimension of an R-module relative to ϕ to observe CI^*-dimension from a relative point of view. To do this, we need the notion of P-factorization, instead of that of upper quasi-deformation used in the definition of (absolute) CI^*-dimension.

Definition 2.1. Let

$$
\begin{array}{ccc}
S' & \xrightarrow{\phi'} & R' \\
\beta & \uparrow & \\
S & \xrightarrow{\phi} & R,
\end{array}
$$

be a commutative diagram of local homomorphisms of local rings. We call this diagram a P-factorization of ϕ if α and β are faithfully flat, the closed fiber of α is regular, and ϕ' is a deformation.

Note that this is an imitation of a G-factorization defined in [1]. The existence of a P-factorization of ϕ transmits several properties of R to S:

Proposition 2.2. Suppose that there exists a P-factorization of ϕ. Then, if R is a regular (resp. complete intersection, Gorenstein, Cohen-Macaulay) ring, so is S.

Proof. Let $S \xrightarrow{\beta} S' \xrightarrow{\phi'} R' \xrightarrow{\alpha} R$ be a P-factorization of ϕ. Suppose that R is a regular (resp. complete intersection, Gorenstein, Cohen-Macaulay) ring. Since α is a faithfully flat homomorphism with regular closed fiber, R' is also a regular (resp. ...) ring. Since ϕ' is a deformation, we easily see that S' is also a regular (resp. ...) ring, and so is S by the flatness of β. \qed

From now on, we consider the existence of a P-factorization of ϕ. First of all, the above proposition yields the following example which says that ϕ may not have a P-factorization.

Example 2.3. Suppose that $R = l$ is the residue class field of S and ϕ is the natural surjection from S to l. Then ϕ has no P-factorization unless S is regular by Proposition 2.2.

Although there does not necessarily exist a P-factorization of ϕ in general, a P-factorization of ϕ seems to exist whenever the ring S is regular. We are able to show it if in addition we assume the condition that S contains a field:
Theorem 2.4. Suppose that S is a regular local ring containing a field. Then every local homomorphism $\phi : S \rightarrow R$ of local rings has a P-factorization.

This theorem is essentially proved in [1]. But we shall give here a whole proof of it for this note to be as self-contained as possible. We need the following two lemmas:

Lemma 2.5. [3, Theorem 1.1] Let $\phi : (S,n) \rightarrow (R,m)$ be a local homomorphism of local rings, and α be the natural embedding from R into its m-adic completion \widehat{R}. Then there exists a commutative diagram

$$
\begin{array}{ccc}
S' & \xrightarrow{\phi'} & \widehat{R} \\
\beta \downarrow & & \uparrow \alpha \\
S & \xrightarrow{\phi} & R
\end{array}
$$

of local homomorphisms of local rings such that β is faithfully flat, the closed fiber of β is regular, and ϕ' is surjective. (Such a diagram is called a Cohen factorization of ϕ.)

Lemma 2.6. Let $\phi : S \rightarrow R$ be a local homomorphism of complete local rings that admit the common coefficient field k. Put $S' = S \widehat{\otimes}_k R$. Let $\lambda : S \rightarrow S'$ be the injective homomorphism mapping $b \in S$ to $b \widehat{\otimes} 1 \in S'$, and $\varepsilon : S' \rightarrow R$ be the surjective homomorphism mapping $b \widehat{\otimes} a \in S'$ to $\phi(b)a \in R$. Suppose that S is regular. Then $S \xrightarrow{\lambda} S' \xrightarrow{\varepsilon} R \xrightarrow{\phi} R$ is a P-factorization of ϕ.

Proof. Let y_1, y_2, \cdots, y_s be a minimal system of generators of the unique maximal ideal of S. Put $J = \text{Ker} \varepsilon$ and $dy_i = y_i \widehat{\otimes} 1 - 1 \widehat{\otimes} \phi(y_i) \in S'$ for each $1 \leq i \leq s$.

Claim 1. The ideal J of S' is generated by dy_1, dy_2, \cdots, dy_s.

Indeed, put $J_0 = (dy_1, dy_2, \cdots, dy_s)S'$. Let $b = \sum b_{i_1 i_2 \cdots i_s} y_1^{i_1} y_2^{i_2} \cdots y_s^{i_s}$ be a power series expansion in y_1, y_2, \cdots, y_s with coefficients $b_{i_1 i_2 \cdots i_s} \in k$. Then we have $b \widehat{\otimes} 1 = \sum b_{i_1 i_2 \cdots i_s} (y_1 \widehat{\otimes} 1)^{i_1} (y_2 \widehat{\otimes} 1)^{i_2} \cdots (y_s \widehat{\otimes} 1)^{i_s} \equiv \sum b_{i_1 i_2 \cdots i_s} (1 \widehat{\otimes} \phi(y_1))^{i_1} (1 \widehat{\otimes} \phi(y_2))^{i_2} \cdots (1 \widehat{\otimes} \phi(y_s))^{i_s} = 1 \widehat{\otimes} \phi(b)$ modulo J_0. It follows that $z \equiv 1 \widehat{\otimes} \phi(b)a$ modulo J_0. Since $\phi(b)a = \varepsilon(b \widehat{\otimes} a) = 0$, we have $z \equiv 0$ modulo J_0, that is, the element $z \in J$ belongs to J_0. Thus, we see that $J = J_0$.

Claim 2. The sequence dy_1, dy_2, \cdots, dy_s is an S'-regular sequence.

Indeed, since S is regular, we may assume that $S = k[[Y_1, Y_2, \cdots, Y_s]]$ and $S' = R[[Y_1, Y_2, \cdots, Y_s]]$ are formal power series rings, and $dy_i = Y_i - \phi(Y_i) \in S'$ for each $1 \leq i \leq s$. Note that the endomorphism on S' which sends Y_i to dy_i is an automorphism. Since the sequence Y_1, Y_2, \cdots, Y_s is S'-regular, we see that dy_1, dy_2, \cdots, dy_s also form an S'-regular sequence.

These claims prove that the homomorphism ε is a deformation. On the other hand, it is easy to see that λ is faithfully flat. Thus, the lemma is proved.

Proof of Theorem 2.4. We may assume that R (resp. S) is complete in its m-adic (resp. n-adic) topology. Hence Lemma 2.5 implies that ϕ has a Cohen factorization.
where β is a faithfully flat homomorphism with regular closed fiber, and ϕ' is a surjective homomorphism. Hence S' is also a regular local ring containing a field. Therefore, replacing S with S', we may assume that ϕ is a surjection. In particular R and S have the common coefficient field, hence Lemma 2.6 implies that ϕ has a P-factorization, as desired. □

Conjecture 2.7. Whenever S is regular, the local homomorphism $\phi : S \rightarrow R$ would have a P-factorization.

Now, by using the idea of P-factorization, we define the CI$^\bullet$-dimension of a module in a relative sense.

Definition 2.8. For an R-module M, we put

$$\text{CI}^\bullet_{\phi} M = \inf \left\{ \text{pd}_{S'}(M \otimes_R R') - \text{pd}_S R' \right\}$$

is a P-factorization of ϕ

and call it the *upper complete intersection dimension* of M relative to ϕ.

By definition, $\text{CI}^\bullet_{\phi} M = \infty$ for an R-module M if ϕ has no P-factorization. Suppose that ϕ has at least one P-factorization $S \rightarrow S' \leftarrow R'$. Then we have $\text{pd}_S(F \otimes_R R') = \text{pd}_{S'} R'$ ($< \infty$) for any free R-module F. Therefore the above theorem on the existence of a P-factorization yields the following result:

Proposition 2.9. If S is a regular local ring that contains a field, then

$$\text{CI}^\bullet_{\phi} F = 0 \ (< \infty)$$

for any free R-module F.

In the rest of this section, we observe the properties of relative CI$^\bullet$-dimension CI^\bullet_{ϕ}. We begin by proving that relative CI$^\bullet$-dimension also satisfies the Auslander-Buchsbaum-type equality:

Theorem 2.10. Let M be a non-zero R-module. If $\text{CI}^\bullet_{\phi} M < \infty$, then

$$\text{CI}^\bullet_{\phi} M = \text{depth } R - \text{depth}_R M.$$

Proof. Since $\text{CI}^\bullet_{\phi} M < \infty$, there exists a P-factorization $S \xrightarrow{\beta} S' \xrightarrow{\phi'} R' \leftarrow R$ of ϕ such that $\text{CI}^\bullet_{\phi} M = \text{pd}_{S'}(M \otimes_R R') - \text{pd}_S R' < \infty$. Hence we see that

$$\text{CI}^\bullet_{\phi} M = \text{pd}_{S'}(M \otimes_R R') - \text{pd}_S R' = (\text{depth } S' - \text{depth}_{S'}(M \otimes_R R')) - (\text{depth } S' - \text{depth}_{S'} R').$$

Note that ϕ' is surjective. Since α and β are faithfully flat, we obtain

$$\begin{cases}
\text{depth}_{S'} R' = \text{depth } R + \text{depth } R'/mR', \\
\text{depth}_{S'}(M \otimes_R R') = \text{depth}_R M + \text{depth } R'/mR'.
\end{cases}$$

It follows that $\text{CI}^\bullet_{\phi} M = \text{depth } R - \text{depth}_R M$. □
In view of this theorem, we notice that the value of the relative CI*-dimension of an R-module is given independently of the ring S if it is finite.

Proposition 2.11. Let M be an R-module. Then

1. $\text{CI}^*_\phi M \geq \text{CI}^*_\phi R M$.
 The equality holds if $\text{CI}^*_\phi M < \infty$.
2. $\text{CI}^*_\phi M \leq \text{pd}_R M$ if ϕ is faithfully flat.
 The equality holds if in addition $\text{pd}_R M < \infty$.

Proof. (1) Since the inequality holds if $\text{CI}^*_\phi M = \infty$, assume that $\text{CI}^*_\phi M < \infty$. Let $S \xrightarrow{\beta} S' \xrightarrow{\phi'} R' \xleftarrow{\alpha} R$ be a P-factorization of ϕ such that $\text{pd}_{S'} (M \oplus_R R') - \text{pd}_S R' < \infty$. Then by definition $S' \xrightarrow{\phi'} R' \xleftarrow{\alpha} R$ is a quasi-deformation of R, which shows that $\text{CI}^*_\phi M < \infty$. Hence the assertion follows from Theorem 2.10 and the Auslander-Buchsbaum-type equality for CI*-dimension.

(2) Suppose that ϕ is faithfully flat. Since the inequality holds if $\text{pd}_R M = \infty$, assume that $\text{pd}_R M < \infty$. We easily see that the diagram $S \xrightarrow{\phi} R \xleftarrow{\alpha} R \xrightarrow{\beta} \phi R$ is a P-factorization of ϕ. Therefore we have $\text{CI}^*_\phi M < \infty$. Hence the assertion follows from Theorem 2.10 and the Auslander-Buchsbaum formula for projective dimension. \qed

The inequality in the second assertion of the above proposition may not hold without the faithful flatness of ϕ; see Remark 2.17 below.

Now, recall that

$$\text{CI}^*_\phi R M \leq \text{pd}_R M$$

for any R-module M. Hence the above proposition says that relative CI*-dimension is inserted between absolute CI*-dimension and projective dimension if ϕ is faithfully flat.

It is natural to ask when relative CI*-dimension CI^*_ϕ coincides with absolute one CI^*_ϕ as an invariant for R-modules. It seems to happen if S is the prime field of R.

Let us consider the case that the characteristic $\text{char } k$ of k is zero. Then we easily see that $\text{char } R = 0$. It follows that R has the prime field \mathbb{Q}. Let $S' \xrightarrow{\phi'} R' \xleftarrow{\alpha} R$ be a quasi-deformation of R. Since α is injective and ϕ' is surjective, the residue class field of R' is of characteristic zero, and so is that of S'. Hence we see that $\text{char } S' = 0$, and there exists a commutative diagram

$$
\begin{array}{ccc}
S' & \xrightarrow{\phi'} & R' \\
\beta \uparrow & & \uparrow \alpha \\
\mathbb{Q} & \xrightarrow{\phi} & R,
\end{array}
$$

where ϕ and β denote the natural embeddings. Note that β is faithfully flat because \mathbb{Q} is a field. Therefore this diagram is a P-factorization of ϕ. Thus, Proposition 2.11(1) yields the following:

Proposition 2.12. Suppose that k is of characteristic zero. If S is the prime field of R, then

$$\text{CI}^*_\phi M = \text{CI}^*_\phi R M$$

for any R-module M.
Conjecture 2.13. If S is the prime field of R, then it would always hold that $\text{CI}^*\dim \phi M = \text{CI}^*\dim M$ for any R-module M.

As we have observed in Proposition 2.11, the relative CI*-dimension CI$^*\dim \phi M$ of an R-module M is always smaller or equal to its projective dimension $\text{pd}_R M$, as long as ϕ is faithfully flat. The next theorem gives a sufficient condition for these dimensions to coincide with each other as invariants for R-modules.

Theorem 2.14. Suppose that $S = R$ and ϕ is the identity map on R. Then $\text{CI}^*\dim \phi M = \text{pd}_R M$ for every R-module M.

Proof. The assumption in the theorem in particular implies that ϕ is faithfully flat. Hence Proposition 2.11(2) yields one inequality relation in the theorem. Thus we have only to prove the other inequality relation $\text{CI}^*\dim \phi M \geq \text{pd}_R M$. There is nothing to show if $\text{CI}^*\dim \phi M = \infty$. Hence assume that $\text{CI}^*\dim \phi M < \infty$. Then the identity map ϕ on R has a P-factorization $R \xrightarrow{\beta} S' \xrightarrow{\phi'} R' \xrightarrow{\alpha} R$ such that $\text{pd}_{S'}(M \otimes_R R') < \infty$. Let l' denote the residue class field of S'. Taking an S'-sequence $x = x_1, x_2, \ldots, x_r$ generating the kernel of ϕ', we have $R\text{Hom}_{S'}(R', l') \cong \text{Hom}_{S'}(K_\bullet(x), l') \cong \bigoplus_{i=0}^r l'^{(i)}[-i]$, where $K_\bullet(x)$ is the Koszul complex of x over S'. Noting that both α and β are faithfully flat, we see that

$$R\text{Hom}_{S'}(M \otimes_R R', l') \cong R\text{Hom}_{S'}((M \otimes_R S') \otimes_{S'} R', l')$$

$$\cong R\text{Hom}_{S'}(M \otimes_R S', R\text{Hom}_{S'}(R', l'))$$

$$\cong R\text{Hom}_{S'}(M \otimes_R S', \bigoplus_{i=0}^r l'^{(i)}[-i])$$

$$\cong \bigoplus_{i=0}^r R\text{Hom}_{S'}(M \otimes_R S', l'^{(i)}[-i]).$$

It follows from this that

$$\text{Ext}_{S'}^j((M \otimes_R R', l')) \cong H^j(R\text{Hom}_{S'}(M \otimes_R R', l'))$$

$$\cong H^j(\bigoplus_{i=0}^r R\text{Hom}_{S'}(M \otimes_R S', l'^{(i)}[-i]))$$

$$\cong \bigoplus_{i=0}^r \text{Ext}_{S'}^{j-1}(M \otimes_R S', l'^{(i)}).$$

Note that $\text{Ext}_{S'}^j(M \otimes_R R', l') = 0$ for any $j \gg 0$ because $\text{pd}_{S'}(M \otimes_R R') < \infty$. Hence we obtain $\text{Ext}_{S'}^j(M \otimes_R S', l') = 0$ for any $j \gg 0$, which implies that $\text{pd}_{S'}(M \otimes_R S') < \infty$. Thus we get $\text{pd}_R M < \infty$. Then the Auslander-Buchsbaum-type equalities for projective dimension and CI*-dimension yield that $\text{CI}^*\dim \phi M = \text{pd}_R M = \text{depth } R - \text{depth}_R M$. \square

We know that $\text{CI}^*\dim \phi M < \infty$ for any R-module M if R is a complete intersection and that R is a complete intersection if $\text{CI}^*\dim \phi k < \infty$. We can prove the following result similar to this:

Theorem 2.15. The following conditions are equivalent.

i) R is a complete intersection and S is a regular ring.

ii) $\text{CI}^*\dim \phi M < \infty$ for any R-module M.

iii) $\text{CI}^*\dim \phi k < \infty$.

Proof. i) \Rightarrow ii): It follows from Lemma 2.5 that there is a Cohen factorization $S \xrightarrow{\beta} S' \xrightarrow{\phi'} \tilde{R} \xrightarrow{\alpha} R$ of ϕ. Since both the ring S and the closed fiber of β are regular, so is S' by the faithful flatness of β. On the other hand, since R is a
complete intersection, so is its m-adic completion $\widehat R$. Hence the homomorphism ϕ is a deformation. (A surjective homomorphism from a regular local ring to a local complete intersection must be a deformation; see [5, Theorem 2.3.3].) Thus, we see that the factorization $S \sim S' \xrightarrow{\phi'} \widehat R \xrightarrow{\alpha} R$ is a P-factorization of ϕ. The regularity of the ring S' implies that every S'-module is of finite projective dimension over S', from which the condition ii) follows.

ii) \Rightarrow iii): This is trivial.

iii) \Rightarrow i): The condition iii) says that ϕ has a P-factorization $S \sim S' \xrightarrow{\phi'} \widehat R \xrightarrow{\alpha} R$ such that $\text{pd}_{S'}(k \otimes_R R') < \infty$. Put $A = k \otimes_R R'$. Note that A is a regular local ring because it is the closed fiber of α. Let $a = a_1, a_2, \ldots, a_t$ be a regular system of parameters of A. Since a is an A-regular sequence, we have $\text{pd}_{S'}A/(a) = \text{pd}_{S'}A + t < \infty$. Since ϕ' is surjective, we see that the quotient ring $A/(a)$ is isomorphic to the residue class field l' of S'. Hence we obtain $\text{pd}_{S'}l' < \infty$, which implies that S' is regular, and so is S. On the other hand, it follows from Theorem 2.11(1) that R is a complete intersection. \square

Suppose that R is regular. Then, by Proposition 2.2, S is also regular if ϕ has at least one P-factorization. Thus the above theorem implies the following corollary:

Corollary 2.16. Suppose that R is regular. If $\text{CI}^*-\dim_{S'}N < \infty$ for some R-module N, then $\text{CI}^*-\dim_{S}M < \infty$ for every R-module M.

Remark 2.17. Relating to the second assertion of Proposition 2.11, there is no inequality relation between relative CI*-dimension and projective dimension in a general setting. In fact, the following results immediately follow from Theorem 2.15:

1. $\text{CI}^*-\dim_{S'}k < \text{pd}_{S'}k$ if R is a complete intersection which is not regular and S is a regular ring.
2. $\text{CI}^*-\dim_{S'}k > \text{pd}_{S'}k$ if R is regular and S is not regular.

We can calculate the relative CI*-dimension of each of the syzygy modules of an R-module M by using the relative CI*-dimension of M:

Proposition 2.18. For an R-module M and an integer $n \geq 0$,

$$\text{CI}^*-\dim_{S'}\Omega^n_R M = \sup\{\text{CI}^*-\dim_{S}M - n, 0\}.$$

Proof. We claim that $\text{CI}^*-\dim_{S'}M < \infty$ if and only if $\text{CI}^*-\dim_{S_0}\Omega^n_R M < \infty$. Indeed, let $S \sim S' \xrightarrow{\phi'} \widehat R \xrightarrow{\alpha} R$ be a P-factorization of ϕ. There is a short exact sequence

$$0 \to \Omega^n_R M \to R^n \to M \to 0$$

with some integer m. Since R' is flat over R, we obtain

$$0 \to \Omega^n_R M \otimes_R R' \to R'^n \to M \otimes_R R' \to 0.$$

Note that $\text{pd}_{S'}R' < \infty$. Hence we see that $\text{pd}_{S}(M \otimes_R R') < \infty$ if and only if $\text{pd}_{S'}(\Omega^n_R M \otimes_R R') < \infty$. This implies the claim.

It follows from the claim that $\text{CI}^*-\dim_{S'}M < \infty$ if and only if $\text{CI}^*-\dim_{S_0}\Omega^n_R M < \infty$. Thus, in order to prove the proposition, we may assume that $\text{CI}^*-\dim_{S'}M < \infty$ and $\text{CI}^*-\dim_{S_0}\Omega^n_R M < \infty$. In particular, we have $\text{CI}^*-\dim_R M < \infty$ by Proposition 2.11(1), hence we also have $\text{CI}-\dim_R M < \infty$. Therefore [4, (1.9)] gives us the equality

$$\text{depth}_RM = \min\{\text{depth}_RM + n, \text{depth} R\}.$$
Consequently we obtain
\[
\text{CI}^\ast \cdot \dim_\phi \Omega_R^M = \text{depth } R - \text{depth}_R \Omega_R^M
\]
\[
= \max\{\text{depth } R - \text{depth}_R M - n, 0\}
\]
\[
= \max\{\text{CI}^\ast \cdot \dim_\phi M - n, 0\},
\]
as desired. \(\Box\)

As the last result of this note, we state the relationship between relative \text{CI}^\ast-

Proposition 2.19. Let \(x = x_1, x_2, \ldots, x_m\) (resp. \(y = y_1, y_2, \ldots, y_n\)) be a se-
quence in \(R\) (resp. \(S\)). Denote by \(\overline{\phi} \) (resp. \(\overline{\phi} \)) the local homomorphism \(S/(y) \to R/yR\) (resp. \(S \to R/(x)\)) induced by \(\phi\). Then

(1) \(\text{CI}^\ast \cdot \dim_\phi M/xM = \text{CI}^\ast \cdot \dim_\phi M + m\) if \(x\) is \(M\)-regular.

(2) \(\text{CI}^\ast \cdot \dim_\phi S/yM \leq \text{CI}^\ast \cdot \dim_\phi M\) if \(y\) is \(S\)-regular, \(R\)-regular, and \(M\)-regular.

The equality holds if \(\text{CI}^\ast \cdot \dim_\phi M < \infty\).

(3) \(\text{CI}^\ast \cdot \dim_\phi M \leq \text{CI}^\ast \cdot \dim_\phi M - m\) if \(x\) is \(R\)-regular and \(R\)-regular and \(xM = 0\).

The equality holds if \(\text{CI}^\ast \cdot \dim_\phi M < \infty\).

Proof. (1) By Theorem 2.10 we have only to show that \(\text{CI}^\ast \cdot \dim_\phi M/xM < \infty\) if and only if \(\text{CI}^\ast \cdot \dim_\phi M < \infty\). Let \(S \to S' \to R' \leftarrow R\) be a P-factorization of \(\phi\). Since \(R'\) is \(R\)-flat, the sequence \(x\) is also \((M \otimes_R R')\)-regular. Hence we obtain \(pd_S(M \otimes_R R')/x(M \otimes_R R') = pd_S(M \otimes_R R') + m\). Note that \((M \otimes_R R')/x(M \otimes_R R') \cong (M/xM) \otimes_R R'\). Therefore we see that \(pd_S(M/xM) \otimes_R R' < \infty\) if and only if \(pd_S(M \otimes_R R') < \infty\). Thus the desired result is proved.

(2) We may assume that \(\text{CI}^\ast \cdot \dim_\phi M < \infty\) because the assertion immediately follows if \(\text{CI}^\ast \cdot \dim_\phi M = \infty\). It suffices to prove that the left side of the inequality is also finite, because the equality is implied by Theorem 2.10. There exists a P-factorization \(S \to S' \to R' \leftarrow R\) of \(\phi\) such that \(pd_{S'}(M \otimes_R R') < \infty\). Since \(y\) is both \(S\)-regular and \(R\)-regular, it is easy to see that the induced diagram \(S/(y) \to S'/yS' \to R'/yR' \leftarrow R/yR\) is a P-factorization of \(\overline{\phi}\). As \(y\) is \(M\)-regular, it is also \((M \otimes_R R')\)-regular, and we have \(pd_{S'/yS'}(M/yM) \otimes_R R' = pd_{S'/yS'}(M \otimes_R R')/y(M \otimes_R R') = pd_{S'}(M \otimes_R R') < \infty\). Hence we have \(\text{CI}^\ast \cdot \dim_\phi S/yM < \infty\).

(3) Suppose that \(\text{CI}^\ast \cdot \dim_\phi M < \infty\). It is enough to prove that \(\text{CI}^\ast \cdot \dim_\phi M < \infty\) by Theorem 2.10. Let \(S \to S' \to R' \leftarrow R\) of \(\phi\) be a P-factorization of \(\phi\) with \(pd_{S'}(M \otimes_R R') < \infty\). Then we easily see that the induced diagram \(S \to S' \to R'/xR' \leftarrow R/(x)\) is a P-factorization of \(\overline{\phi}\). Since \(M \otimes_R (xR) \cong M \otimes_R R'\) has finite projective dimension over \(S'\), we have \(\text{CI}^\ast \cdot \dim_\phi M < \infty\), as desired. \(\Box\)

Acknowledgments. The author wishes to express his hearty thanks to his super-

References

Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan

E-mail address: takahasi@math.okayama-u.ac.jp