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Abstract. Let R be a commutative noetherian ring. Denote by modR the category of finitely generated

R-modules. In the present paper, we introduce the notion of solid subcategories of modR and investigate

it. The main result of this paper not only recovers results of Schoutens, Krause and Stevenson, and
Takahashi on thick subcategories, but also unifies and extends them to solid subcategories. Moreover,

it provides some contributions to the study of the question asking when a thick subcategory is Serre.

1. Introduction

Let A be an abelian category. A thick subcategory of A is defined to be a full subcategory closed under
direct summands and satisfying the 2-out-of-3 property with respect to short exact sequences. Various
works on thick subcategories of abelian categories have been done so far; see [1, 6, 7, 9, 11] for instance.

Stanley and Wang [8] defined a narrow subcategory ofA to be a full subcategory closed under extensions
and cokernels. In the present paper, we shall define a solid subcategory of A as a full subcategory closed
under direct summands, extensions and cokernels of monomorphisms. By definition, the notion of a solid
subcategory is a common generalization of those of a thick subcategory and a narrow subcategory.

Now, let R be a commutative noetherian ring, and modR the category of finitely generated R-modules.
(It is shown in [8] that any narrow subcategory of modR is Serre, and in particular it is thick.) For each
collection S of objects of modR, we denote respectively by thickS and solidS the thick closure and the
solid closure of S, that is to say, the smallest thick and solid subcategories of the abelian category modR
containing S. Our main result is the following theorem that provides an equality of solid closures.

Theorem 1.1. Let R be a commutative noetherian ring. Let M be a finitely generated R-module. Then

solid{R/p,M | p ∈ SingR ∪NF(M)} = solid{R/p | p ∈ SingR ∪ SuppM}.

Here, SingR denotes the singular locus of the ring R, while NF(M) and SuppM respectively stand
for the nonfree locus and the support of the R-module M . The meaning of Theorem 1.1 becomes clearer
if we ignore the parts coming from the singular locus: if we put 〈S〉 = solid(S ∪ {R/p}p∈SingR) for each
collection S of modules, then Theorem 1.1 asserts that there is an equality

〈R/p,M | p ∈ NF(M)〉 = 〈R/p | p ∈ SuppM〉.
This equality means that, up to the singular locus of R, the support of M can be reconstructed from M
itself and the nonfree locus ofM , by taking direct summands, extensions and cokernels of monomorphisms.

Theorem 1.1 yields Corollary 1.2 below, which implies Corollary 1.3 below. The latter corollary is the
combination of a result of Schoutens [7] and Krause and Stevenson [6], and a result of Takahashi [11].
The only relationship between (1) and (2) of Corollary 1.3 that has been found out so far seems to be the
fact that (1) follows from (2) in the case where R is a local ring with an isolated singularity. Theorem
1.1 provides a common generalization of (1) and (2) of Corollary 1.3.

Corollary 1.2. Let R be a commutative noetherian ring. One then has an equality

modR = solid{R,R/p | p ∈ SingR}.
If R is an isolated singularity with residue field k and M is a nonzero finitely generated R-module which
is locally free on the punctured spectrum of R, then there is an equality

solid{k,M} = solid{R/p | p ∈ SuppM}.
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Corollary 1.3. Let R be a commutative noetherian ring. Then the following two statements hold true.

(1) (Schoutens, Krause–Stevenson) There is an equality modR = thick{R,R/p | p ∈ SingR}.
(2) (Takahashi) If R is an isolated singularity with residue field k and M 6= 0 is a finitely generated R-

module which is locally free on the punctured spectrum, then thick{k,M} = thick{R/p | p ∈ SuppM}.
This paper is organized as follows. In Section 2, we give the precise definitions of thick, narrow and

solid subcategories, and prove the above theorem and two corollaries. In Section 3, as further applications
of the above theorem, we give answers to the question asking when a solid subcategory is Serre.

We close the section by stating our convention.

Convention. Throughout the remainder of this paper, we assume that all rings are commutative and
noetherian, that all modules are finitely generated, and that all subcategories are nonempty and strictly
full. Let R be a (commutative noetherian) ring. Denote by modR the category of (finitely generated)
R-modules. Whenever we are concerned with R, we take modR as the ambient abelian category.

2. Our theorem and direct applications

In this section, we state and prove the main result of this paper, and provide immediate applications.
We first recall the definitions of thick and narrow subcategories, and give that of solid subcategories.

Definition 2.1. Let A be an abelian category, and let X be a subcategory of A.

(1) We say that X is thick if it satisfies the following two conditions.
(a) X is closed under direct summands, that is, all direct summands of objects in X are also in X .
(b) X satisfies the 2-out-of-3 property, that is, for any short exact sequence 0 → L → M → N → 0

in A, if two of the objects L, M and N belong to X , then so does the third.
(2) We say that X is narrow if it satisfies the following two conditions.

(a) X is closed under extensions, namely, for every short exact sequence 0 → L → M → N → 0 in
A, if L and N belong to X , then so does M .

(b) X is closed under cokernels, namely, for every exact sequence L → M → N → 0 in A, if L and
M belong to X , then so does N .

(3) We say that X is solid if it satisfies the two conditions below.
(a) X is closed under direct summands and extensions.
(b) X is closed under cokernels of monomorphisms, namely, for each short exact sequence 0 → L →

M → N → 0 in A, if L and M are in X , then so is N .
(4) By thickX and solidX respectively we denote the thick closure and the solid closure of X in A, i.e.,

the smallest thick and solid subcategories of A containing X .

Remark 2.2. (1) As properties of subcategories of an abelian category, the implications

thick =⇒ solid ⇐= narrow

hold. Indeed, the former implication is obvious, while the latter follows from the fact that closedness
under extensions and cokernels implies closedness under direct summands, which is shown by splicing
the exact sequences M ⊕N → N → 0 and 0 → N → M ⊕N → M → 0 in the abelian category.

(2) For each subcategory X of an abelian category, the equality

thick(solidX ) = thickX
holds. In fact, the inclusion X ⊆ solidX induces the inclusion thickX ⊆ thick(solidX ). The inclusion
solidX ⊆ thickX that comes from (1) induces the inclusion thick(solidX ) ⊆ thickX .

(3) Let M be an R-module. Then one has the inclusion

solid{M} ⊆ solid{R/p | p ∈ SuppM}.
In fact, there is a filtration 0 = M0 ⊊ · · · ⊊ Mn = M of submodules of M such that each subquotient
Mi/Mi−1 is isomorphic to R/pi for some pi ∈ SpecR. Then the pi are all in SuppM , while the exact
sequences 0 → Mi−1 → Mi → R/pi → 0 show that M belongs to the solid closure of {R/pi}1≤i≤n.

(4) (i) Let A be an abelian category with enough injective (resp. projective) objects. Recall that a
subcategory of A is said to be coresolving (resp. resolving) if it contains all the injective (resp.
projective) objects of A, and is closed under direct summands, extensions and cokernels of
monomorphisms (resp. kernels of epimorphisms). By definition, every coresolving subcategory
is solid.
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(ii) Set (−)∗ = HomR(−, R). Suppose that R is an artinian Gorenstein ring and X is a resolving
(resp. thick) subcategory of modR. Then the subcategory of modR consisting of modules of
the form X∗ with X ∈ X is coresolving (resp. thick). This follows from the fact that (−)∗ gives
a duality of modR.

(iii) A solid subcategory of an abelian category A is not necessarily thick even when A = modR.
Indeed, let R be an artinian Gorenstein local ring which does not satisfy the so-called uniform
Auslander condition (UAC); such a ring exists by [5, Theorem in §0]. Then by [3, Proposition
6.1] there exists a non-thick resolving subcategory of modR. It follows from the above (i) and
(ii) that there exists a non-thick solid subcategory of modR.

In order to prove our theorem, the following two lemmas are necessary. The first one is stated in [11,
Lemma 3.1], but its proof contains a gap in the induction step which can easily be corrected by experts.
As for the second one, the version where solidity is replaced with thickness is stated in [11, Lemma 2.3(5)]
without a proof. For the convenience of the general reader, we give proofs of those two lemmas.

Lemma 2.3. Let p be a prime ideal of R with height n such that the local ring Rp is regular. Then there
exists an exact sequence 0 → R/(x) → R/p ⊕ R/q → R/r → 0 of R-modules, where x = x1, . . . , xn is a
sequence of elements of R such that ht(x) = n, q is an ideal of R, and r is an ideal of R which strictly
contains p.

Proof. We claim that there is a sequence x = x1, . . . , xn of elements in p with ht(x) = n and xRp = pRp.
Indeed, if n = 0, then Rp is a field, and pRp = 0. Let n ≥ 1. As p has positive height, it is not contained
in any q ∈ MinR. Also, if p ⊆ p2Rp∩R, then pRp = p2Rp, which implies pRp = 0 by Nakayama’s lemma,
and we get a contradiction. Hence p ⊈ p2Rp ∩R. By prime avoidance, we can choose an element x1 ∈ p
with x1 /∈ (

∪
q∈MinR q) ∪ (p2Rp ∩ R). Krull’s height theorem implies ht(x1) = 1, and the image of x1 in

Rp is part of a minimal system of generators of pRp. As Rp is regular, so is Rp/x1Rp = (R/(x1))p/(x1),
and we have ht p/(x1) = dimRp/x1Rp = dimRp − 1 = n− 1. Let n ≥ 2. Applying the above argument
to p/(x1) yields an element x2 ∈ p which is outside any q ∈ MinR R/(x1) and whose image in Rp/x1Rp

is part of a minimal system of generators of pRp/x1Rp. We see that ht(x1, x2) = 2 and the image of the
sequence x1, x2 in Rp is part of a minimal system of generators of pRp. Iterating this procedure if n ≥ 3,
we finally choose a sequence x = x1, . . . , xn in p such that ht(x) = n and the image of x in Rp is part of
a minimal system of generators of pRp. Note that pRp is the maximal ideal of the n-dimensional regular
local ring Rp, whose minimal number of generators is n. We get xRp = pRp, and the claim follows.

Choose a sequence x as in the claim. Then xRp ∩ R = p and p ∈ MinR R/(x). Hence the p-primary
component of the ideal (x) of R coincides with p. Letting q be the intersection of the other primary
components, we see that there is an equality (x) = p ∩ q and that r := p + q strictly contains p. The
natural exact sequence 0 → R/p∩ q → R/p⊕R/q → R/p+ q → 0 completes the proof of the lemma. ■

Lemma 2.4. Let X be a solid subcategory of modR. Let X = (0 → Xn → Xn−1 → · · · → X1 → X0 → 0)
be a complex of R-modules in X . If Hi(X) belongs to X for all 1 ≤ i ≤ n, then so does H0(X).

Proof. For each integer i, there are exact sequences

0 → Bi → Zi → Hi → 0, 0 → Zi → Xi → Bi−1 → 0,

where Zi, Bi,Hi are respectively the ith cycle, the ith boundary and the ith homology of X. By assump-
tion, Xi is in X for all 0 ≤ i ≤ n and Hi is in X for all 1 ≤ i ≤ n. Note that Bn = 0 and Z0 = X0 belong
to X . As X is closed under extensions and cokernels of monomorphisms, we inductively get H0 ∈ X . ■

We denote by SingR the singular locus of R, that is, the set of prime ideals p of R such that the local
ring Rp is singular (i.e., nonregular). For an R-module M we denote by NF(M) the nonfree locus of M ,
which is by definition the set of prime ideals p of R such that the Rp-module Mp is nonfree. Now we can
prove the theorem below, which is the main result of this paper and the same as Theorem 1.1. The proof
of the theorem given here is obtained by making some modifications to that of [11, Theorem 3.3].

Theorem 2.5. For any R-module M one has the equality

solid{R/p,M | p ∈ SingR ∪NF(M)} = solid{R/p | p ∈ SingR ∪ SuppM}.
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Proof. It is immediately seen from Remark 2.2(3) that the inclusion (⊆) holds. In what follows, we prove
the opposite inclusion (⊇). It suffices to verify that R/q is in X := solid{R/p,M | p ∈ SingR∪NF(M)} for
all q ∈ SuppM . We show the stronger statement that R/I ∈ X for all ideals I of R with V(I) ⊆ SuppM .

Suppose that this statement does not hold true. Then the set I of ideals I of R with V(I) ⊆ SuppM
and R/I /∈ X is nonempty. Since R is noetherian, there exists a maximal element P of I with respect to
the inclusion relation. Here, let us verify that P is a prime ideal of R. Take a filtration 0 = L0 ⊊ · · · ⊊
Lm = R/P of submodules of the R-module R/P such that Li/Li−1

∼= R/pi with pi ∈ SpecR for each
1 ≤ i ≤ m. Then we have pi ∈ SuppR R/P = V(P ), so that P ⊆ pi and V(pi) ⊆ V(P ) ⊆ SuppM . If P is
not a prime ideal of R, then each pi strictly contains P , and the maximality of P shows R/pi ∈ X for all
1 ≤ i ≤ m, which and Remark 2.2(3) imply that R/P is in X , a contradiction. Thus P is a prime ideal.

Put n = htP . As R/P /∈ X , we must have P /∈ SingR. Thus the localization RP is a regular local ring.
Lemma 2.3 gives an exact sequence σ : 0 → R/(x) → R/P ⊕R/Q → R/J → 0, where x = x1, . . . , xn is a
sequence in R with ht(x) = n and J is an ideal of R which strictly contains P . We establish two claims.

Claim 1. If N is an R-module such that SuppN is contained in V(P ) \ {P}, then N belongs to X .

Proof of Claim 1. There is a filtration 0 = N0 ⊊ · · · ⊊ Nm = N of submodules of N such that Ni/Ni−1
∼=

R/pi with pi ∈ SpecR for each 1 ≤ i ≤ m. We then have pi ∈ SuppN ⊆ V(P ) \ {P}, so that P ⊊ pi and
V(pi) ⊆ V(P ) ⊆ SuppM . The maximality of P shows R/pi ∈ X . Remark 2.2(3) implies N ∈ X . □
Claim 2. For all i > 0, the support of the Koszul homology Hi(x,M) is contained in SingR ∪NF(M).

Proof of Claim 2. Suppose that SuppHi(x,M) is not contained in SingR ∪ NF(M) for some positive
integer i, and choose a prime ideal p ∈ SuppHi(x,M) with p /∈ SingR∪NF(M). Then Rp is a regular local

ring, Mp is isomorphic to R⊕ℓ
p for some ℓ ≥ 0, and we have 0 6= Hi(x,M)p ∼= Hi(x,Mp) ∼= Hi(x, Rp)

⊕ℓ.
In particular, ℓ > 0 and Hi(x, Rp) 6= 0. As the sequence x annihilates Hi(x,M), the set SuppHi(x,M)
is contained in V(x), and hence p contains x. It holds that n ≥ ht(xRp) ≥ ht(x) = n, where the first
inequality follows from Krull’s height theorem. Hence ht(xRp) = n. Since Rp is a regular local ring, x is
a regular sequence on Rp. This implies that Hi(x, Rp) = 0 as i > 0, which is a contradiction. □

Claim 2 and Remark 2.2(3) deduce that Hi(x,M) is in X for all i > 0. The Koszul complex K(x,M)
has the form (0 → M → M⊕n → · · · → M⊕n → M → 0), all of whose homogeneous components are in
X . Lemma 2.4 yields that M/xM = H0(x,M) is in X . The exact sequence σ induces an exact sequence

TorR1 (R/J,M)
f−→ M/xM

g−→ M/PM ⊕M/QM → M/JM → 0.

Let F and G be the images of the maps f and g, respectively. There are inclusions

SuppF ⊆ SuppTorR1 (R/J,M) ⊆ V(J) ⊇ SuppM/JM and V(J) ⊆ V(P ) \ {P},
which and Claim 1 show that F and M/JM are in X . From the exact sequences 0 → F → M/xM →
G → 0 and 0 → G → M/PM ⊕ M/QM → M/JM → 0, we see that M/PM ∈ X . Putting r =
rankR/P M/PM , we have (M/PM)P ∼= κ(P )⊕r. Since P ∈ V(P ) ⊆ SuppM , Nakayama’s lemma shows

(M/PM)P 6= 0, whence r > 0. There is an exact sequence 0 → K → M/PM
h−→ (R/P )⊕r → C → 0 of

R/P -modules such that the localized map hP is an isomorphism. Let H be the image of h. We see that
the supports of K,C are contained in V(P )\{P}, and Claim 1 shows K,C ∈ X . It follows from the exact
sequences 0 → K → M/PM → H → 0 and 0 → H → (R/P )⊕r → C → 0 that (R/P )⊕r is in X , and so
is its direct summand R/P . This is a contradiction, and the proof of the theorem is completed. ■

Let R be a local ring with maximal ideal m. We put Spec0 R = SpecR\{m}; this is called the punctured
spectrum of R. Recall that R is said to be an isolated singularity if it is locally regular on Spec0 R. We
denote by mod0 R the subcategory of modR consisting of modules that are locally free on Spec0 R. By
definition, every artinian local ring R is an isolated singularity and satisfies mod0 R = modR.

From now on to the end of this section, we provide a couple of direct applications of the above theorem.
We begin with the following corollary. In the situation of the first assertion of the corollary, the specialized
term NF(M) in the left-hand side of the equality of Theorem 2.5 disappears. In the situation of the second
assertion, the terms SingR in both sides of the equality of Theorem 2.5 are removed.

Corollary 2.6. (1) Assume either that M is a maximal Cohen–Macaulay R-module, or that R is singular
and M ∈ mod0 R. One then has solid{R/p,M | p ∈ SingR} = solid{R/p | p ∈ SingR ∪ SuppM}.
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(2) Suppose either that R is a regular ring, or that R is an isolated singularity and M is a nonfree
R-module. Then there is an equality solid{R/p,M | p ∈ NF(M)} = solid{R/p | p ∈ SuppM}.

Proof. One has NF(M) ⊆ SingR for (1) and SingR ⊆ NF(M) ⊆ SuppM for (2). Use Theorem 2.5. ■
Next we deduce the following result from Theorem 2.5.

Corollary 2.7. There is an equality modR = solid{R,R/p | p ∈ SingR}. If R is an isolated singularity
with residue field k and 0 6= M ∈ mod0 R, then the equality solid{k,M} = solid{R/p | p ∈ SuppM} holds.

Proof. We prove the first and second assertions of the corollary in (1) and (2) below, respectively.
(1) Let M = R in Theorem 2.5. Since NF(R) = ∅ and SuppR = SpecR, we have solid{R/p, R | p ∈

SingR} = solid{R/p | p ∈ SpecR}. By Remark 2.2(3) the right-hand side coincides with modR.
(2) The equality solid{R/p,M | p ∈ SingR ∪ NF(M)} = solid{R/p | p ∈ SingR ∪ SuppM} follows by

Theorem 2.5, while SingR∪NF(M) ⊆ {m} ⊆ SuppM by assumption. The right-hand side of the equality
is solid{R/p | p ∈ SuppM}. The left-hand side is solid{M} if SingR ∪ NF(M) = ∅, and is solid{k,M} if
SingR∪NF(M) = {m}. Let us consider the former case. Then R is regular and M is free. The R-module
k has finite projective dimension. As M is nonzero, k is in solid{M}. Hence solid{M} = solid{k,M}. ■

By Corollary 2.7 (and Remark 2.2(2)), we immediately recover the two results below due to Schoutens
[7, Theorem VI.8], Krause and Stevenson [6, Proposition 9], and Takahashi [11, Theorem 1.1(i)].

Corollary 2.8 (Schoutens, Krause–Stevenson). There is an equality modR = thick{R,R/p | p ∈ SingR}.

Corollary 2.9 (Takahashi). Let R be an isolated singularity with maximal ideal m and residue field k.
Let 0 6= M ∈ mod0 R. Then the equality thick{k,M} = thick{R/p | p ∈ SuppM} holds.

Following [2], we say that a module N over a local ring S is deep if depthN ≥ depthS holds. Using this
notion, we can define the nondeep locus ND(M) of each module M over a ring R as the set of prime ideals
p of R such that the module Mp over the local ring Rp is not deep. It is evident that ND(M) ⊆ NF(M),
so that SingR ∪ ND(M) ⊆ SingR ∪ NF(M). This gives rise to the first inclusion in the following, while
the second one is the obvious part of Theorem 2.5; see the first sentence in the proof of the theorem.

solid{R/p,M}p∈SingR∪ND(M) ⊆ solid{R/p,M}p∈SingR∪NF(M) ⊆ solid{R/p}p∈SingR∪SuppM .

The following corollary says that the above two inclusions are actually equalities. Thus, the corollary can
be regarded as a refinement of Theorem 2.5.

Corollary 2.10. Let M be an R-module. Then there is an equality solid{R/p,M | p ∈ SingR∪ND(M)} =
solid{R/p | p ∈ SingR ∪ SuppM}.

Proof. By the arguments discussed before the corollary and Theorem 2.5, it suffices to show that SingR∪
ND(M) contains SingR ∪ NF(M). Assume that there is a prime ideal p ∈ SingR ∪ NF(M) with p /∈
SingR∪ND(M). Then Rp is a regular local ring, and Mp is a nonfree deep Rp-module. The Auslander–
Buchsbaum formula implies that Mp is a free Rp-module, a contradiction. The proof is completed. ■

3. Applications to a basic question

In this section, we provide further applications of our Theorem 2.5. We begin with stating two lemmas
on the subcategory mod0 R of modR. The first one gives criteria for the equality mod0 R = modR.

Lemma 3.1. Let R be a local ring with maximal ideal m and residue field k. The following are equivalent.

(1) One has the equality mod0 R = modR.
(2) The local ring R is locally a field on the punctured spectrum Spec0 R.
(3) The local ring R is an isolated singularity of dimension at most one.

Proof. The implications (3) ⇒ (2) ⇒ (1) obviously hold. Assume that dimR ≥ 2. Then there exist prime
ideals p ⊊ q ⊊ m. If (R/q)q is Rq-free, then qRq = 0 and q ∈ MinR, which is a contradiction. Hence R/q
is not in mod0 R. Suppose mod0 R = modR. Then for each p ∈ Spec0 R, the Rp-module (R/p)p is free.
This implies pRp = 0, which means that Rp is a field. We have shown the implication (1) ⇒ (3). ■

For a subset Φ of SpecR, we denote by IPD−1 Φ the subcategory of modR consisting of modules that
are locally of finite projective dimension outside Φ. Note that IPD−1 Φ is a thick subcategory of modR.
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Lemma 3.2. Let R be a d-dimensional local ring with maximal ideal m and residue field k. Then:

(1) One has the equality IPD−1{m} = thick{k,R}.
(2) If d ≤ 1, then the equality mod0 R = thick{k,R} holds and in particular, mod0 R is a thick subcategory.

Proof. (1) Clearly, IPD−1{m} contains k and R, whence it contains thick{k,R}. Let M be an R-module
in IPD−1{m}. Then M locally has finite projective dimension on Spec0 R. By the Auslander–Buchsbaum
formula the dth syzygy N of M is locally free on Spec0 R, that is, N ∈ mod0 R. The first equality in [10,
Corollary 4.3(3)] shows that mod0 R is contained in thick{k,R}. Thus N is in thick{k,R}, and so is M .

(2) It is obvious that mod0 R is contained in IPD−1{m}, which coincides with thick{k,R} by (1). LetM
be an R-module which does not belong to mod0 R. ThenMp is not Rp-free for some p ∈ Spec0 R. We must
have that d = 1 and p ∈ MinR. Over the artinian local ring Rp, finite projective dimension is equivalent

to freeness. Thus M is not in IPD−1{m}, and we conclude that mod0 R = IPD−1{m} = thick{k,R}. ■

Next, we recall the definition of a Serre subcategory of modR.

Definition 3.3. A subcategory X of modR is said to be Serre provided that it is closed under subobjects,
quotients and extensions, that is to say, that for each short exact sequence 0 → L → M → N → 0 of
R-modules, one has M ∈ X if and only if L,N ∈ X .

For a subcategory X of modR, let SuppX denote the union of the supports of modules in X . For a
subset Φ of SpecR, denote by Supp−1 Φ the subcategory of modR consisting of modules whose supports
are contained in Φ. It is seen that SuppX is specialization-closed and Supp−1 Φ is Serre. A well-known
theorem of Gabriel [4] asserts that the assignments X 7→ SuppX and Φ 7→ Supp−1 Φ give a one-to-one
correspondence between the Serre subcategories of modR and the specialization-closed subsets of SpecR.

It is evident that a Serre subcategory of modR is thick. Thus it is natural to ask the following question.

Question 3.4. When is a thick subcategory of modR a Serre subcategory?

This natural question is studied in [11]. Although he knows no other direct reference for this question,
the author has learnt through oral communication that several people have the question in mind.

Theorem 2.5 gives an answer to the more general question asking when a solid subcategory is Serre.
For a subcategory X of modR, we denote the union of the nonfree loci of modules in X by NF(X ).

Corollary 3.5. A solid subcategory X of modR is Serre if R/p ∈ X for every p ∈ SingR ∪NF(X ).

Proof. It suffices to deduce X = Supp−1(SuppX ), whose inclusion (⊆) is clear. To show the opposite
inclusion (⊇), let M ∈ Supp−1(SuppX ). Take a filtration 0 = M0 ⊊ · · · ⊊ Mn = M of submodules of M
such that for each 1 ≤ i ≤ n the module Mi/Mi−1 is isomorphic to R/pi, where pi ∈ SpecR. We have
pi ∈ SuppM ⊆ SuppX , and find Xi ∈ X with pi ∈ SuppXi. It follow from Theorem 2.5, the assumption
of the corollary and the solidity of X that R/pi ∈ solid{R/p | p ∈ SingR ∪ SuppXi} = solid{R/p, Xi |
p ∈ SingR ∪NF(Xi)} ⊆ X . Remark 2.2(3) implies that M belongs to X . Thus we are done. ■

As a direct consequence of the above corollary, we get the following result.

Corollary 3.6. Let R be an isolated singularity with maximal ideal m and residue field k. Then, a solid
subcategory X of modR is Serre if X contains k and is contained in mod0 R.

Proof. The assumptions imply that SingR ∪NF(X ) ⊆ {m} and R/m = k ∈ X . Apply Corollary 3.5. ■

We denote by flR the subcategory of modR consisting of R-modules of finite length.

Remark 3.7. (1) The assumption in Corollary 3.6 that R is an isolated singularity cannot be removed.
In fact, let R be a 1-dimensional local ring which is not an isolated singularity, and let X = mod0 R.
Then X is a thick subcategory of modR with k ∈ X ⊆ mod0 R by Lemma 3.2. If X is Serre, then
X = modR as R ∈ X , and get a contradiction from Lemma 3.1. Therefore, X is not Serre.

(2) Corollary 3.6 should be compared with the following two results from [11, Theorem 1.2].
(a) Let R be an isolated singularity of dimension at most two. Then a thick subcategory of modR

is Serre if it contains the residue field of the local ring R.
(b) Let R be a regular local ring of positive characteristic. Let X be a nonzero thick subcategory of

modR contained in flR (hence, X is contained in mod0 R). Then X = flR (hence, X is Serre).
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From now on, we concentrate our attention on the condition imposed on the subcategory X in Corollary
3.6. First of all, we show that this condition forces the modules belonging to X to have low dimension.

Proposition 3.8. Suppose that R is a local ring with maximal ideal m and residue field k. Let X be a
solid subcategory of modR such that k ∈ X ⊆ mod0 R. Then one has dimX ≤ 1 for all modules X ∈ X .

Proof. Suppose that there exists a module X ∈ X such that dimX ≥ 2. Let M = Γm(X) be the m-torsion
submodule of X. The inclusion map M → X induces an exact sequence 0 → M → X → N → 0. The
module M has finite length, and belongs to X since X is closed under extensions and contains k. As X is
closed under cokernels of monomorphisms, N is in X . Note that dimN = dimX ≥ 2 and depthN ≥ 1.
Replacing X with N , we may assume that there exists an X-regular element x ∈ m. The exact sequence

0 → X
x−→ X → X/xX → 0 shows that L := X/xX belongs to X . Since dimL = dimX − 1 ≥ 1, there

exists a prime ideal p ∈ SuppL with p 6= m. As L is in X , the localization Lp is a nonzero free Rp-module,
that is, Lp

∼= R⊕n
p for some n > 0. Since L = X/xX is annihilated by x, so is Lp, so is Rp, and so is Xp.

The exact sequence 0 → Xp
x−→ Xp → Lp → 0 shows Xp = 0, which implies Lp = 0, a contradiction. ■

The following corollary is deduced from the above proposition, which says that a stronger conclusion
than Corollary 3.6 can be obtained, if we assume that the local ring R is equidimensional and dimR ≥ 2,
instead of assuming that R is an isolated singularity. Compare the corollary with Remark 3.7(2)(b).

Corollary 3.9. Let (R,m, k) be an equidimensional local ring of dimension at least two. Let X be a solid
subcategory of modR containing k and contained in mod0 R. Then one has X = flR.

Proof. Since X contains k and is closed under extensions, it contains flR. Proposition 3.8 implies dimX ≤
1 for all X ∈ X . If suffices to derive a contradiction by assuming that dimX = 1 for some X ∈ X . There
exists a prime ideal p ∈ MinX such that dimR/p = 1. If p is in MinR, then by equidimensionality we
get 1 = dimR/p = dimR ≥ 2, which is a contradiction. Hence there exists a prime ideal q of R which
is strictly contained in p. As X ∈ mod0 R and m 6= p ∈ SuppX, we have Xp

∼= R⊕n
p for some n > 0. It

follows that Xq
∼= R⊕n

q 6= 0, which says that q ∈ SuppX. This contradicts the fact that p ∈ MinX. ■

Remark 3.10. (1) We cannot remove the assumption in Corollary 3.9 that R is equidimensional, even
if we instead assume that R is an isolated singularity. Indeed, let R = k[[x, y, z]]/(xy, xz) with k a
field. Putting p = (x), q = (y, z) and m = (x, y, z), we have that (R,m, k) is an isolated singularity
with dimR = 2 and MinR = {p, q}. Let X = Supp−1 V(q). Then X is a Serre subcategory of modR,
whence it is solid, and contains k. The R-module R/q is not in flR but in X . Assume that there exist
X ∈ X and r ∈ Spec0 R such that Xr is not Rr-free. We then have m 6= r ∈ SuppX ⊆ V(q) = {q,m},
which implies r = q. As Rq is a field, we get a contradiction. Thus X is contained in mod0 R.

(2) We discuss the necessity of the assumption in Corollary 3.9 that R has dimension at least two.
(a) Suppose that dimR = 0. Let X be a subcategory of modR such that k ∈ X ⊆ mod0 R. Then

X = flR = mod0 R = modR, as R is artinian and X contains k and is closed under extensions.
(b) Suppose that dimR = 1, and assume further that R is an isolated singularity. Then there exists

an R-module M of infinite length, and one has mod0 R = modR by Lemma 3.1. It follows that
X = solid{k,M} is a solid subcategory of modR with k ∈ X ⊆ modR = mod0 R and X 6= flR.
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