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Abstract. Let A be a Noetherian local ring with canonical module KA. We characterize A when
KA is a torsionless, reflexive, or q-torsionfree module for an integer q ≥ 3. If A is a Cohen-Macaulay
ring, H.-B. Foxby proved in 1974 that the A-module KA is q-torsionfree if and only if the ring A
is q-Gorenstein. With mild assumptions, we provide a generalization of Foxby’s result to arbitrary
Noetherian local rings admitting the canonical module. In particular, since the reflexivity of the
canonical module is closely related to the ring being Gorenstein in low codimension, we also explore
quasi-normal rings, introduced by W. V. Vasconcelos. We provide several examples as well.

1. Introduction

This paper investigates the question of the structure of a Noetherian local ring A if its canonical

module KA is a torsionless, reflexive, or more generally, q-torsionfree A-module for an integer q ≥ 3.

The notion of q-torsionfree modules was one of the central contributions of the famous research

of M. Auslander and M. Bridger [1]. It turned out to be an important property in H.-B. Foxby’s

study of q-Gorenstein rings [11]. Among many interesting results, Foxby settled the above question

in the case where A is a Cohen-Macaulay ring. More precisely, the A-module KA is q-torsionfree

if and only if the ring A is q-Gorenstein, i.e., Ap is a Gorenstein ring for every p ∈ SpecA with

depthAp < q (see [10, Proposition 3.2]). It remains unclear what happens if we do not assume the

ring A is Cohen-Macaulay. The theory of canonical modules nowadays has been developed mainly

over Cohen-Macaulay rings in connection with the Gorenstein property; see e.g., [6, 13, 14, 15, 19].

However, over Noetherian local (not necessarily Cohen-Macaulay) rings, there are also remarkable

preceding researches on canonical modules, including the study of their endomorphism algebras;

see [2, 3, 5]. Therefore, behaviors of canonical modules, even for non-Cohen-Macaulay rings, are

interesting and the q-torsionfree property is well worth studying. The motivation for the present
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research started with this question that arose while the second and fourth authors were writing the

last paper with Vasconcelos concerning (torsionless) canonical modules [4].

To explain our results more precisely, let us start from definitions which we will use throughout

this paper. For a Noetherian local ring A of dimension d with maximal ideal m, a canonical module

K of A is a finitely generated A-module satisfying

Â⊗A K ∼= HomÂ(Hd
m̂(Â), Ê)

where Hd
m̂(Â) denotes the dth local cohomology module of the m-adic completion Â of A with respect

to its maximal ideal m̂ and Ê is the injective hull of the Â-module Â/m̂ ([14, Definition 5.6]).

Equivalently, a finitely generated A-module K is a canonical module of A if HomA(K,E) ∼= Hd
m(A),

where Hd
m(A) is the dth local cohomology module of A with respect to m and E is the injective hull

of A/m ([5, Definition 12.1.2, Remarks 12.1.3]). The canonical module KA is uniquely determined

up to isomorphisms ([2, (1.5)], see also [14, Lemma 5.8]) if it exists. Although the existence is

not guaranteed even for Cohen-Macaulay local domains, provided A is Cohen-Macaulay, the ring

A admits the canonical module if and only if A is a homomorphic image of a Gorenstein ring

([16, 18]). The fundamental theory of canonical modules over Cohen-Macaulay rings was developed

in the monumental book [14] of J. Herzog and E. Kunz. We shall in this paper freely refer to [14]

for basic results on canonical modules (see [6, Chapter 3] also).

We now continue to state our setup. Let R be a Noetherian (not necessarily local) ring. For an

R-module M , we have a canonical homomorphism

ϕ : M →M∗∗

defined by
[
ϕ(x)

]
(f) = f(x) for each f ∈M∗ and x ∈ M , where (−)∗ = HomR(−, R) denotes the

R-dual functor. We say that M is torsionless (resp. reflexive) if ϕ is injective (resp. bijective).

Torsionless modules are torsionfree, i.e., there is no nonzero torsion elements, and the converse holds

if the total ring of fractions Q(R) of R is Gorenstein ([21, Theorem (A.1)]). Moreover, the R-module

M is torsionless (resp. reflexive) if and only if ExtiR(D(M), R) = (0) for i = 1 (resp. i = 1, 2),

where D(M) denotes the Auslander transpose of M ([1]). From this point of view, Auslander and

Bridger introduced a q-torsionfree module M to be ExtiR(D(M), R) = (0) for all i = 1, 2, . . . , q. In

addition, for an integer n, we say that

• M satisfies (Sn) if depthMp ≥ min {n, dimRp} for every p ∈ SpecR,

• M satisfies (S̃n) if depthMp ≥ min {n, depthRp} for every p ∈ SpecR,

• R satisfies (Gn) if Rp is Gorenstein for every p ∈ SpecR with dimRp ≤ n,

• R satisfies (G̃n) if Rp is Gorenstein for every p ∈ SpecR with depthRp ≤ n.

The condition (Sn) is known as Serre’s condition. A Noetherian ring satisfying (G̃n) coincides with

(n + 1)-Gorenstein ring in earlier publications such as [1, 11]. The condition (G̃n) is equivalent to

saying that the ring satisfies both (Sn+1) and (Gn).

Let us now state our results, explaining how this paper is organized. In Section 2, after recalling

the necessary definitions and preliminaries, we give a criterion for a Noetherian local ring A to

have the torsionless canonical module. We show that the A-module KA is torsionless if and only

if Ap is Gorenstein for every p ∈ AsshA, where AsshA = {p ∈ SpecA | dimA/p = dimA} =
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AssA KA (Proposition 2.3). Section 3 is devoted to the characterizations of local rings A with

reflexive canonical modules. When dimA = 1, this is exactly the case where A is a Gorenstein

ring (Proposition 3.3). We elaborate on the one-dimensional case in Section 5. For the higher

dimensional case, the reflexivity of KA is characterized by the local ring Ap being Gorenstein for

every p ∈ SuppAKA with dimAp ≤ 1 and AssA ∩ V (U) = AsshA, where U denotes the unmixed

component of (0) in A and V (U) is the set of all prime ideals in A containing U (Theorem 3.6).

This lead us to obtain Corollary 3.8, which claims that KA is reflexive if and only if A satisfies (G1),

provided AsshA = AssA. This indicates that the reflexivity of canonical modules is deeply related

to the ring being Gorenstein in low codimension. Thus Section 4 is dedicated to quasi-normal rings,

i.e., rings with (S2) and (G1), which were introduced by Vasconcelos. In Section 6, we generalize

Foxby’s result on q-torsionfree canonical modules to arbitrary Noetherian local rings A admitting

a canonical module. Our results of Sections 2 and 3 provide a complete generalization in case

q = 1, 2. When q ≥ 3, Theorem 6.6 states that the A-module KA is q-torsionfree if and only if the

ring A satisfies (Gq−1) and (Sq−1) on SuppA KA, provided that KA satisfies (Sq). In the final section

we provide concrete examples of Cohen-Macaulay and q-Gorenstein rings in order to illustrate our

theorems.

2. Torsionless canonical modules

Throughout the section, let (A,m) be a Noetherian local ring of dimension d. We begin with

some preliminaries. Let (0) =
⋂

p∈AssA

Q(p) denote a primary decomposition of (0) in A. We set

AsshA = {p ∈ SpecA | dimA/p = d} and U =
⋂

p∈AsshA

Q(p)

where U is called the unmixed component of (0) in A. Let V (U) denote the set of all prime ideals

of A containing U .

Lemma 2.1. There is an embedding 0→ A/U → A of A-modules.

Proof. We may assume that U 6= (0). Then AsshA ( AssA. Let

L =
⋂

p∈AssA\AsshA

Q(p).

We then have L 6⊆
⋃

p∈AsshA

p. Choose an element a ∈ L but a 6∈
⋃

p∈AsshA

p. Since a is a non-zerodivisor

on A/U and aU ⊆ L∩U = (0), we obtain ((0) :A a) = U . Then U is the kernel of the homomorphism

ϕ : A→ A given by ϕ(1) = a. Thus, A/U ∼= Im(ϕ) ↪→ A. �

In the rest of this section, we assume the ring A admits the canonical module KA. We recall

several known facts about KA which we will use throughout this article; see [2, (1.6), (1.7), (1.8),

(1.9), (1.10), Theorem 3.2] and [14, Korollar 6.3] (also [5, Chapter 12]) for the proofs.

Proposition 2.2. The following assertions hold true.

(1) The annihilator of KA is U . In particular, dimA KA = d and AssA KA = AsshA.
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(2) If a ∈ m is A-regular, then a is KA-regular.

(3) V (U) = SuppA KA = {p ∈ SpecA | dimA = dimA/p + htA p}.
(4) Both KA and HomA(KA,KA) satisfy (S2).

(5) KAp =
[
KA

]
p

for every p ∈ SuppA KA.

(6) SuppA KA = SpecA if and only if MinA = AsshA.

(7) AssA = AsshA if and only if KA is a faithful A-module.

(8) Suppose A is Cohen-Macaulay. If a ∈ m is A-regular, then KA/(a) exists and KA/(a)
∼= KA/aKA.

(9) Suppose that KA/U exists. Then KA/U , as an A-module, is the canonical module of A.

By Proposition 2.2-(2), the canonical module KA is torsionfree as an A-module. In general,

torsionless modules are torsionfree, and the converse holds if and only if Ap is a Gorenstein local

ring for every p ∈ AssA ([21, Theorem (A.1)]). Therefore, if the total ring of fractions Q(A) of A is

Gorenstein, then KA is torsionless. The following proposition shows the case where KA is torsionless

without assuming Q(A) is Gorenstein. It is also a generalization of [4, Proposition 3.2].

Proposition 2.3. The following conditions are equivalent :

(1) KA is a torsionless A-module ;

(2) Ap is a Gorenstein ring for every p ∈ AsshA ;

(3) KA
∼= I for some ideal I of A.

Proof. (1)⇒ (2) Since KA is torsionless, there exists an exact sequence 0→ KA → F of A-modules,

where F is a finitely generated free A-module. Let p ∈ AsshA ⊆ SuppA KA. Then Ap is Artinian

and
[
KA

]
p

is the canonical module of Ap. Therefore, we may assume that
[
KA

]
p

is the injective hull

of Ap/pAp. The splitting monomorphism 0→
[
KA

]
p
→ Fp induces that

[
KA

]
p

is a direct summand

of the free Ap-module Fp. Since Ap is Artinian, by the Matlis duality, we have
[
KA

]
p
∼= Ap. Hence

Ap is a Gorenstein ring.

(2) ⇒ (3) Let W = A \
⋃

p∈AsshA p. By assumption,
[
KA

]
p
∼= Ap for every p ∈ AsshA. Thus,

W−1KA
∼= W−1A. Moreover, we have W−1A ∼= W−1(A/U) because W−1U = (0) by the proof of

Lemma 2.1. Since every element of W is a non-zerodivisor on both KA and A/U , the isomorphism

W−1KA
∼= W−1(A/U) induces the embedding KA ↪→ A/U . By Lemma 2.1, there is an embedding

KA ↪→ A.

(3) ⇒ (1) is clear. �

If A is reduced, which means there are no nonzero nilpotents, then the local ring Ap is a field for

every p ∈ AssA. Hence we obtain the following.

Corollary 2.4. If A is a reduced ring, then KA
∼= I for some ideal I of A.

We recall that if A is Cohen-Macaulay, the canonical module KA has rank one if and only if the

ring A is generically Gorenstein, i.e., Ap is a Gorenstein local ring for every p ∈ MinA. When

one of the equivalent conditions of [6, Proposition 3.3.18] is satisfied, the canonical module can be

identified with an ideal of A (see also [14, Satz 6.21]). The example below shows that the assumption

p ∈ AsshA is necessary for Proposition 2.3.
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Example 2.5. Let S = k[[X, Y, Z]] be the formal power series ring over a field k and set A =

S/[(X) ∩ (Y, Z)2]. Let x, y, z denote the images of X, Y, Z in A, respectively. Then we have

U = (x) and KA
∼= A/(x) ∼= y2A.

By Proposition 2.3, KA is torsionless. However, A is not generically Gorenstein. In fact, Aq is not

a Gorenstein ring for q = (y, z) ∈ MinA.

3. Reflexive canonical modules

Let (A,m) be a Noetherian local ring of dimension d admitting the canonical module KA. We

denote by U the unmixed component of (0) in A. In this section we will show how the reflexivity

of the canonical module is related to the Gorensteinness of the ring. We begin with the following

simple but effective lemma.

Lemma 3.1. Suppose that KA is reflexive. Then AssA ∩ V (U) = AsshA. In particular, if KA is

reflexive and depthA = 0, then dimA = 0.

Proof. The assertion follows from

V (U) ∩ AssA = SuppA K∗A ∩ AssA = AssA HomA(K∗A, A) = AssA K∗∗A = AssA KA = AsshA. �

The example below shows that the reflexivity of KA may require a rather strong restriction on A.

Example 3.2. Let S = k[[X, Y ]] be the formal power series ring over a field k and set A =

S/[(X) ∩ (X2, Y )]. Let x, y denote the images of X, Y in A, respectively. Let m = (x, y) be the

maximal ideal of A. Then we have AsshA = {(x)}, U = (x), and KA = A/U .

(1) Let p = (x). Since Ap is a field, by Proposition 2.3, KA is torsionless.

(2) Since depthA = 0 and dimA = 1, by Lemma 3.1, KA is not reflexive.

Proposition 3.3. Suppose d = 1. Then KA is a reflexive A-module if and only if A is a Gorenstein

ring.

Proof. Suppose that KA is reflexive. By Lemma 3.1, A is Cohen-Macaulay. Since KA is reflexive,

there exists an exact sequence 0→ KA → F1 → F0, where F0, F1 are finite free A-modules [11,

Proposition 2.1]. Let a ∈ m be an A-regular element. Since A is Cohen-Macaulay, KA/aKA is the

canonical module of A/aA. Moreover, the embedding 0→ KA/aKA → F1/aF1 proves that KA/aA

is torsionless. Therefore, by Proposition 2.3, A/aA is a Gorenstein ring. Thus, A is a Gorenstein

ring. The converse is clear. �

Remark 3.4. There exist non-Cohen-Macaulay local rings with reflexive canonical module. Exam-

ple 6.2 shows a two-dimensional non-Cohen-Macaulay local ring A with KA reflexive. The example

also shows that, even if KA is reflexive, the equality AssA = AsshA does not hold true in general.

Recall that a finitely generated A-module M is reflexive, i.e., the canonical map ϕ : M →M∗∗ is

an isomorphism, if and only if there is at least one isomorphism M ∼= M∗∗ of A-modules.
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Lemma 3.5. Suppose that there is an exact sequence

0→ KA → K∗∗A → C → 0

of A-modules. If C 6= (0), then Ap is a Cohen-Macaulay ring with dimAp = 1 for every p ∈ AssAC

with depthAp ≥ 1. In particular, p ∈ V (U) and Up = (0).

Proof. Let p ∈ AssAC such that depthAp ≥ 1. Then p ∈ SuppA KA = V (U). Since
[
KA

]
p
∼= KAp ,

by passing to the ring Ap, we may assume depthA > 0 and depthAC = 0. Since AssA K∗∗A ⊆ AssA,

we have depthA K∗∗A ≥ 1. From the exact sequence 0→ KA → K∗∗A → C → 0, we obtain

0 = depthAC ≥ min{depthA KA − 1, depthA K∗∗A }.

Thus, depthA KA = 1. Since KA satisfies (S2), we have

1 = depthA KA ≥ min{2, dimA}.

Therefore, A is a Cohen-Macaulay ring of dimension 1. In particular, U = (0). �

Now we aim to generalize Proposition 3.3.

Theorem 3.6. The following conditions are equivalent :

(1) KA is a reflexive A-module ;

(2) AssA ∩ V (U) = AsshA, and Ap is Gorenstein for every p ∈ SuppA KA with htA p ≤ 1.

Proof. (1)⇒ (2) By Lemma 3.1, we have AssA∩V (U) = AsshA. Let p ∈ SuppA KA with htA p ≤ 1.

If p ∈ AsshA, then Ap is Gorenstein by Proposition 2.3. Otherwise, we have dimAp = 1. Since

KAp is a reflexive Ap-module, the ring Ap is Gorenstein by Proposition 3.3.

(2)⇒ (1) Since Ap is Gorenstein for every p ∈ AsshA, by Proposition 2.3, KA is torsionless. Hence

we have the exact sequence

0→ KA
ϕ−→ K∗∗A → C → 0

of A-modules, where ϕ is the canonical homomorphism. Suppose that C 6= (0). Let p ∈ AssAC.

Note that p ∈ SuppA KA and
[
KA

]
p
∼= KAp . If htA p ≤ 1, then by assumption Ap is Gorenstein.

Then Cp = (0), which is a contradiction. Thus, htA p ≥ 2. Since AssA ∩ V (U) = AsshA, we have

depthAp ≥ 1. This shows, by Lemma 3.5, that Ap is a Cohen-Macaulay ring with dimAp = 1,

which is a contradiction. Therefore C = (0) and KA is a reflexive A-module. �

We summarize some consequences of Theorem 3.6. Note that A satisfies (S1) if and only if

AssA = MinA, and the latter condition implies AssA ∩ V (U) = AsshA.

Corollary 3.7. If A satisfies (S1) and (G1), then KA is a reflexive A-module.

Recall that if AsshA = AssA, then SpecA = SuppA KA. Thus, we obtain the following as another

direct consequence of Theorem 3.6.

Corollary 3.8. Suppose that AsshA = AssA. Then KA is a reflexive A-module if and only if A

satisfies (G1).
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If A is a Cohen-Macaulay ring, the above corollary recovers [14, Korollar 7.29]. Recall that A is a

generalized Cohen-Macaulay ring, if the ith local cohomology module Hi
m(A) is a finitely generated

A-module for every i 6= d.

Corollary 3.9. Suppose that A is a generalized Cohen-Macaulay ring and d > 0. Then KA is a

reflexive A-module if and only if depthA > 0 and A satisfies (G1).

Proof. By assumption, we have AssA \ {m} ⊆ AsshA. If KA is reflexive, then by Lemma 3.1 we see

that depthA > 0. Without loss of generality, we may assume depthA > 0. Hence AssA = AsshA.

The assertion follows from Corollary 3.8. �

It seems natural to ask for the relation between the reflexivity of the A-module KA and that of

the A/U -module KA/U . As for this question, we have the following.

Theorem 3.10. The following conditions are equivalent :

(1) KA is a reflexive A-module ;

(2) KA/U is a reflexive A/U-module and AssA ∩ V (U) = AsshA.

Proof. Let B = A/U . Then KA = KB ([2, 1.8]). Also note that AssB = AsshB.

(1) ⇒ (2) By Lemma 3.1, we have AssA ∩ V (U) = AsshA. By Corollary 3.8, it suffices to show

that B satisfies (G1). Let P ∈ SpecB be a prime with htB P ≤ 1. We write P = p/U for some

p ∈ V (U). Then htA p = htB P ≤ 1. Moreover, KAp is a reflexive Ap-module. By Propositions

2.3 and 3.3, Ap is Gorenstein. Since Up = (0) :Ap KAp = (0), we obtain BP = Ap. Thus, BP is a

Gorenstein ring.

(2) ⇒ (1) Let p ∈ SuppA KA with htA p ≤ 1. By Theorem 3.6, it is enough to show that Ap is

Gorenstein. Let P = p/U . Then by Corollary 3.8, BP is a Gorenstein ring. Since AssA ∩ V (U) =

AsshA, the ring Ap is Cohen-Macaulay. In particular, Up = (0) and Ap = BP. Therefore Ap is

Gorenstein. �

Corollary 3.11. Suppose that A/U is a Gorenstein ring. Then the following assertions hold true.

(1) KA is a reflexive A-module if and only if AssA ∩ V (U) = AsshA.

(2) If A satisfies (S1), then KA is reflexive.

Proof. Note that (1) follows directly from Theorem 3.10. To prove (2), it is enough to show that

AssA ∩ V (U) ⊆ AsshA. Let p ∈ AssA ∩ V (U). Since A satisfies (S1), we have htA p = 0. Since

p ∈ V (U), we have dimA = dimA/p + htA p = dimA/p. Therefore p ∈ AsshA. �

Closing this section, we provide the examples of (not necessarily Cohen-Macaulay) local rings

admitting reflexive canonical modules.

Example 3.12. Let S = k[[X, Y1, Y2, . . . , Yn]] (n ≥ 2) be the formal power series ring over a field k

and let A = S/[(Xm)∩ J ] where m ≥ 1 and J is a (Y1, Y2, . . . , Yn)-primary ideal of S. Let x denote

the image of X in A. Then U = (xm), AsshA = {(x)}, and A/U is a Gorenstein ring. By Corollary

3.11, the A-module KA is reflexive.
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Example 3.13. Let k be a field and R = k[∆] be the Stanley-Reisner ring of a simplicial complex

∆. Since R is reduced, the graded canonical module KR (see [13, 20]) is torsionless. Moreover, if

#(AsshR) = 1, the ring R/U is Gorenstein, so that KR is reflexive as an R-module, where U stands

for the unmixed component of (0) in R and AsshR = {p ∈ SpecR | dimR/p = dimR}.

4. Quasi-normal rings

Quasi-normal rings were introduced by Vasconcelos ([21, Definition 1.2]) and they are exactly

2-Gorenstein rings.

Definition 4.1. A Noetherian ring R is said to be quasi-normal if R satisfies (S2) and (G1).

The following is a direct consequence of [11, Proposition 2.3] (for a local ring case, see also [8,

Theorem 3.8]). Here we include our alternative proof specifically for quasi-normal rings.

Proposition 4.2. Let R be a quasi-normal ring and let M be a finitely generated R-module. If

depthRp
Mp ≥ min{2, dimRp} for every p ∈ SpecR, then M is reflexive.

Proof. Consider the exact sequence of R-modules

0→ X →M
ϕ−→M∗∗ → C → 0,

where ϕ denotes the canonical homomorphism. Suppose X 6= (0) and choose p ∈ AssRX. By

assumption, we have dimRp = 0. Since R satisfies (G1), the local ring Rp is Gorenstein, whence Mp

is reflexive. Hence Xp = (0), which is a contradiction. So X = (0), and we have the exact sequence

0→M →M∗∗ → C → 0.

Suppose C 6= (0). Let p ∈ AssR C. If dimRp = 0, then Mp is reflexive, so Cp = (0). This is a

contradiction. Thus dimRp ≥ 1. As R satisfies (S2), we have depthRp ≥ min{2, dimRp}. Hence

depthRp ≥ 1. Since depthRp
M∗∗

p ≥ min{2, depthRp}, we then have depthRp
M∗∗

p ≥ 1. The exact

sequence

0→Mp →M∗∗
p → Cp → 0

gives that

0 = depthRp
Cp ≥ min{depthRp

Mp − 1, depthRp
M∗∗

p }.
Hence depthRp

Mp ≤ 1. By assumption, we have

1 ≥ depthRp
Mp ≥ min{2, dimRp}.

Therefore dimRp = 1 and depthRp
Mp = 1. Since R satisfies (G1), the ring Rp is Gorenstein. By

[21, Corollary 2.3], we see that Mp is reflexive. Hence Cp = (0), which is a contradiction. �

A finitely generated R-module ωR is a canonical module of R, if (ωR)m is the canonical module of

Rm for all maximal ideals m of R. In contrast to the local case, the canonical module is in general

not unique up to isomorphisms; see e.g., [6, Remark 3.3.17].

Corollary 4.3. Let R be a Noetherian ring with d = dimR > 0. Suppose that there exists a

canonical module ωR and AssRm = AsshRm for every maximal ideal m. Then R is quasi-normal if

and only if R satisfies (S2) and ωR is reflexive.
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Proof. Suppose R is quasi-normal. Since ωR satisfies (S2) and dimRp [ωR]p = dimRp for every p ∈
SpecR, by Proposition 4.2, we conclude that ωR is reflexive. For the converse, it remains to show

that R satisfies (G1). Let A = Rm, where m is a maximal ideal of R. Then KA = (ωR)m is reflexive.

Therefore we have AssA = AsshA. By Corollary 3.8, A satisfies (G1). Thus R satisfies (G1). �

We summarize some examples. First, we note examples of quasi-normal rings which are not

normal. The simplest ones are non-normal Gorenstein rings.

Example 4.4. Suppose that R is a Cohen-Macaulay ring with canonical module ωR. We set

T = RnωR to be the idealization of ωR over R. Then T is a Gorenstein ring ([16]), but not normal

because it is never a reduced ring.

For a commutative ring R, we denote by R the integral closure of R in Q(R). We refer to [6, p.

178] for background on numerical semigroups.

Example 4.5. Let H = 〈a1, a2, . . . , a`〉 be a symmetric numerical semigroup. We consider R =

k[s, ta1 , ta2 , . . . , ta` ], where s, t are indeterminates and k is a field. Then R is a two-dimensional

Gorenstein ring with R = k[s, t], so that R is not normal if 1 6∈ H. As a special case, the ring

R = k[s, t2, t3] is quasi-normal, but not normal.

Next, we note examples of quasi-normal but non-normal Cohen-Macaulay rings which are more-

over not Gorenstein.

Example 4.6. Let k be a field and k[X, Y ] the polynomial ring over k. Let H = 〈a1, a2, . . . , a`〉
be a symmetric numerical semigroup such that 1 6∈ H and let k[H] = k[ta1 , ta2 , . . . , ta` ] denote the

semigroup ring of H over k, where t is an indeterminate. Let T = k[Xn, Xn−1Y, . . . , XY n−1, Y n],

where n ≥ 3 is an integer. We set R = T ⊗k k[H]. Then R is a quasi-normal Cohen-Macaulay

ring with dimR = 3, which is neither Gorenstein nor normal. Indeed, because R = T ⊗k k[t]

and k[H] 6= k[t], the ring R is not normal. As T is normal, we see that R is a quasi-normal ring

(see Proposition 7.3 (2)). Moreover, R is not a Gorenstein ring because T is not Gorenstein. The

simplest example in this class is R = k[X3, X2Y,XY 2, Y 3]⊗k k[t2, t3].

Example 4.7. Let T = k[X, Y, Z, V ] be the polynomial ring over a field k. We denote by I2(N) the

ideal of T generated by all the 2×2 minors of a matrix N. Let I = I2(M) where M =
(
Xa Y b+V Zc

Y b′ Zc′ Xa′

)
for some integers a, b, c, a′, b′, c′ ≥ 1. We set R = T/I. Then R is a Cohen-Macaulay ring of

dimension 2. Let x, y, z, v denote the images of X, Y, Z, V in R, respectively. We first check the

isomorphism ωR ∼= (xa, yb
′
)R. In fact, by setting

f = Zc+c′ −Xa′(Y b + V ), g = Xa+a′ − Y b′Zc, and h = −XaZc′ + Y b′(Y b + V ),

we can consider the exact sequence

0 // T 2
tM // T 3

(f g h)
// T // R // 0



10 N. ENDO, L. GHEZZI, S. GOTO, J. HONG, S.-I. IAI, T. KOBAYASHI, N. MATSUOKA, AND R. TAKAHASHI

of T -modules. By taking the T -dual, we get the presentation of ωR of the form T 3 M→ T 2 → ωR → 0.

Therefore, the complex of R-modules

R3 M // R2
(Y b′ −Xa )

// (xa, yb
′
)R // 0

induces a natural epimorphism

ϕ : ωR � (xa, yb
′
)R

of R-modules. Moreover, ϕ is an isomorphism because ωR is a torsionfree R-module of rank one

and xa is a non-zerodivisor on R. Hence ωR ∼= (xa, yb
′
)R, as claimed. We similarly have

ωR ∼= (yb + v, zc
′
)R ∼= (zc, xa

′
)R.

We also note that the isomorphisms can be obtained by using the procedure of [22, Section 6.1.2].

In particular, R is not a Gorenstein ring, since the type of R is two.

Next, we show that R is a quasi-normal ring. Let p ∈ SpecR with htR p ≤ 1. If x 6∈ p, then

[ωR]p ∼= (xa, yb
′
)Rp = Rp, so that Rp is a Gorenstein ring. Assume that x ∈ p. Similarly, we may

assume that y, z ∈ p. Then, v /∈ p, since htR p ≤ 1. Therefore, [ωR]p ∼= (yb + v, zc
′
)Rp = Rp, so that

Rp is a Gorenstein ring. Hence R is a quasi-normal ring.

Finally, we prove that R is a normal ring if and only if a′ = b′ = c = 1. Assume a′ = b′ = c = 1

and consider the ideal

J = I2


Zc′ (a+ 1)Xa Y b + V

−(b+ 1)Y b + V −Z bXY b−1

c′XaZc′−1 −Y −(c′ + 1)Zc′

−Y 0 X

 .

Then J + I/I is the Jacobian ideal of R over k. A direct computation shows that
√
J + I =

(X, Y, Z, V ) and hence, by the Jacobian criterion, the local ring Rp is regular for every p ∈ SpecR \
{(x, y, z, v)}. Hence R is a normal ring. Conversely, we assume a′ ≥ 2, or b′ ≥ 2, or c ≥ 2. By

taking

P =

{
(X, Y b + V, Z) (if c ≥ 2)

(X, Y, Z) (if c = 1),

we then have J ⊆ P . We set p = PR. Then htR p = 1, but Rp is not a DVR. Indeed, because

ε = Y or ε′ = Y b + V is invertible in TP , we see that

JTP =


(
Zc+c′ −Xa′(Y b + V ),

Xa+a′

εb′
− Zc,−X

aZc′

ε
+ (Y b + V )

)
⊆ (Y b + V ) + (X,Z)2 (if c ≥ 2)(

Zc+c′

ε′
−Xa′ , Xa+a′ − Y b′Zc,−X

aZc′

ε′
+ Y b′

)
⊆ (Y ) + (X,Z)2 (if c = 1)

in TP . Thus Rp = TP/JTP cannot be a DVR. Hence R is not a normal ring. As a special case,

R = k[X, Y, Z, V ]/I2
(
X Y+V Z
Y Z X2

)
is a quasi-normal ring, but not normal.
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5. Reflexive canonical modules in dimension one

Let (A,m) be a Cohen-Macaulay local ring with dimA = 1 admitting the canonical module KA.

In this section, we explore the question of when A has a reflexive canonical module. We denote

by Q(A) the total ring of fractions of A. Throughout this section, we assume that there exists an

A-submodule K of Q(A) such that A ⊆ K ⊆ A and K ∼= KA as an A-module, where A denotes

the integral closure of A in Q(A). Note that the assumption is automatically satisfied if Q(A) is

Gorenstein and the residue class field A/m is infinite; see [12, Corollaries 2.8, 2.9]. For A-submodules

X and Y of Q(A), let X : Y = {a ∈ Q(A) | aY ⊆ X}. If we consider ideals I, J of A, we set

I :A J = {a ∈ A | aJ ⊆ I}; hence I :A J = (I : J) ∩ A.

Proposition 5.1. The following conditions are equivalent :

(1) A is a Gorenstein ring ;

(2) K2 : K = K ;

(3) KA is a reflexive A-module.

Proof. (1) ⇔ (3) See Proposition 3.3.

(3) ⇔ (2) Since A : K = [K : K] : K = K : K2 ([14, Bemerkung 2.5]), we have

A : (A : K) = (K : K) : (K : K2) = [K : (K : K2)] : K = K2 : K.

Therefore, K2 : K = K if and only if A : (A : K) = K, that is KA is a reflexive A-module. �

Recall that an ideal I of A is called a canonical ideal of A, if I 6= A and I ∼= KA as an A-module.

By [12, Corollary 2.8], there exists a canonical ideal I of A. We then have the following.

Theorem 5.2. Let I be a canonical ideal of A. Then the following conditions are equivalent :

(1) A is a Gorenstein ring ;

(2) I2 :A I = I ;

(3) I/I2 is a free A/I-module ;

(4) I is a reflexive A-module.

Proof. By Proposition 5.1, it suffices to show (2)⇒ (1). Enlarging the residue class field A/m of A

if necessary, we may assume that A/m is infinite. Let I = (x1, x2, . . . , xn) (n > 0) so that each (xi)

is a reduction of I. We set Ki = x−1i I and choose a non-zerodivisor b of A so that bK2
i ⊆ A for all

1 ≤ i ≤ n. Let J = bI and yi = bxi for 1 ≤ i ≤ n. Then (yi) is a reduction of J . Notice that A/I

and A/J are both Gorenstein rings, since I, J ∼= KA as A-modules.

Claim 1. J2 :A J = J .

Proof of Claim 1. Suppose that J2 :A J ) J . Then, J :A m ⊆ J2 :A J . Since A/J is a Gorenstein

ring, we have J :A m = J + Aϕ for some ϕ ∈ (J :A m) \ J . Hence, ϕ
b
∈ Q(A) and m·ϕ

b
⊆ I, so that

ϕ
b
∈ I : m. Because I ( I :A m ⊆ I : m and `A ((I : m)/I) = 1 (since A/I is a Gorenstein ring),

we get ϕ
b
∈ I :A m, so that ϕ

b
∈ A. On the other hand, ϕ

b
·I ⊆ I2, since ϕ·bI = ϕJ ⊆ J2 = b2I2.

Consequently, ϕ
b
∈ I2 :A I = I, whence ϕ ∈ bI = J , which is impossible. Thus J2 :A J = J . �
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Let yi denote the image of yi in J/J2. We then have J/J2 =
∑n

i=1(A/J)·yi, and therefore,

(0) :A/J yi = (0) for some i, since A/J is a Gorenstein ring and (0) :A/J J/J
2 = (0) by Claim 1.

Without loss of generality, assume i = 1. Then, J2 :A y1 = J . On the other hand, since bK2
1 ⊆ A

and K1 = y−11 J , we get b·(y−11 J)2 ⊆ A , whence bJ2 ⊆ (bx1)
2. Therefore, J2 ⊆ (bx21) ⊆ (bx1) = (y1).

Hence, J2 = y1·(J2 :A y1) = y1J . Thus A is a Gorenstein ring (see [12, Theorem 3.7]). �

6. q-torsionfree canonical modules

The purpose of this section is to give a generalization of Proposition 2.3 and Theorem 3.6, which

characterize local rings with q-torsionfree canonical modules for q = 1, 2.

Let R be a Noetherian (not necessarily local) ring and q an integer. Let M be a finitely generated

R-module with a finite projective presentation P1
σ→ P0 →M → 0. By applying the R-dual functor

(−)∗ = HomR(−, R), we obtain the exact sequence

0 −→M∗ −→ P ∗0
σ∗−→ P ∗1 −→ Dσ(M) −→ 0

of R-modules. We set D(M) = Dσ(M) and call it the Auslander transpose of M . Note that D(M)

is uniquely determined up to projective equivalence.

Definition 6.1 ([1, Definition 2.15]). A finitely generated R-module M is said to be q-torsionfree

if ExtiR(D(M), R) = 0 for all i = 1, 2, . . . , q.

By [1, Proposition 2.6], there exists an exact sequence

0 −→ Ext1R(D(M), R) −→M
ϕ−→M∗∗ −→ Ext2R(D(M), R)→ 0

of R-modules, where ϕ is the canonical homomorphism, and furthermore, we have

Exti+2
R (D(M), R) ∼= ExtiR(M∗, R) for all i > 0.

This shows M is torsionless (resp. reflexive) if and only if M is 1-torsionfree (2-torsionfree). When

q ≥ 3, the R-module M is q-torsionfree if and only if M is reflexive and ExtiR(M∗, R) = (0) for all

i = 1, 2, . . . , q − 2.

Example 6.2. Let S = k[[X, Y, Z]] be the formal power series ring over a field k and set A =

S/[(X) ∩ (Y, Z)]. Let x, y, z denote the images of X, Y, Z in A, respectively. Then we have

AsshA = {(x)}, U = (x), and KA = A/U , where U denotes the unmixed component of (0) in A.

By dualizing the exact sequence

A
·x−→ A→ A/(x) = KA → 0,

we obtain

0→ K∗A → A
·x−→ A→ A/(x)→ 0.

Thus, D(KA) = KA. Consider the free resolution of D(KA) = D:

A5 τ4−→ A3 τ3−→ A2 τ2−→ A
·x−→ A −→ D −→ 0,
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where τ2 = [y z], τ3 =

[
x 0 z
0 x −y

]
, and τ4 =

 y z 0 0 0
0 0 y z 0
0 0 0 0 x

 . Dualize this free resolution to

obtain

0 −→ D∗ −→ A
·x−→ A

σ2−→ A2 σ3−→ A3 σ4−→ A5,

where σ2, σ3, σ4 are the transposes of τ2, τ3, τ4, respectively. Let a ∈ Kerσ2. Then

a ∈
[
(0) :A y

]
∩
[
(0) :A z

]
= (x) ∩ (x) = (x) = Im(·x).

Thus, Ext1A(D,A) = (0). Let ( a1a2 ) ∈ Kerσ3. Then a1, a2 ∈ (0) :A x = (y, z) and a1z − a2y = 0.

Hence ( −a2a1 ) ∈ Ker τ2 = Im(τ3). Let −a2 = c1x− c3z, and a1 = c2x+ c3y for some c1, c2, c3 ∈ A.

Then c1x = −a2 + c3z ∈ (y, z). Thus, c1 = 0 and a2 = c3z. Similarly, a1 = c3y. We obtain

( a1a2 ) ∈ Imσ2. Then Ext2A(D,A) = (0). Hence KA is 2-torsionfree. Note that Kerσ4 is generated by(
x
0
0

)
,
(

0
x
0

)
,
(

0
0
y

)
,
(

0
0
z

)
. Then Ext3A(D,A) 6= (0). Thus, KA is not 3-torsionfree.

Definition 6.3 ([1, Definition 2.15]). A finitely generated R-module M is called q-syzygy, if there

exist finite free R-modules F1, F2, . . . , Fq and an exact sequence 0→M → F1 → F2 → · · · → Fq of

R-modules.

Note that (a) M is torsionless if and only if M is 1-syzygy, (b) every q-torsionfree R-module is

q-syzygy, and (c) if M is q-syzygy and x is an R-regular element, then M/xM is (q − 1)-syzygy as

an R/xR-module.

Although the following theorem has been proved by Foxby in a more general setting involving

Gorenstein modules, we restate it and give its proof in our context for the sake of completeness.

Recall that R is q-Gorenstein if Rp is Gorenstein for every prime p with depthRp < q.

Theorem 6.4 ([10, Proposition 3.2]). Let A be a Cohen-Macaulay local ring admitting the canonical

module KA. Then the following conditions are equivalent :

(1) A is q-Gorenstein ;

(2) KA is q-torsionfree ;

(3) KA is q-syzygy.

Proof. Since A is Cohen-Macaulay, we have SpecA = SuppA KA and [KA]p = KAp for every p ∈
SpecA. Notice that KAp is maximal Cohen-Macaulay as an Ap-module.

(1)⇒ (2) Since every A-regular sequence is KA-regular, the A-module KA is q-torsionfree by [11,

Proposition 2.3].

(2)⇒ (3) This follows from [11, Proposition 2.1].

(3) ⇒ (1) Let p ∈ SpecA with depthAp < q. Set n = dimAp. When n = 0, the ring Ap

is Gorenstein. Assume n > 0 and choose a system f1, f2, . . . , fn of parameters of Ap. Then

it is an Ap-regular sequence, so that KAp/(f1, f2, . . . , fn)KAp is 1-syzygy because n < q. Since

KAp/(f1, f2, . . . , fn)KAp
∼= KAp/(f1,f2,...,fn)Ap , we conclude that Ap/(f1, f2, . . . , fn)Ap is Gorenstein by

Proposition 2.3, whence so is the ring Ap. This completes the proof. �

As a direct consequence of Theorem 6.4, we have the following.
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Corollary 6.5. Let A be a Cohen-Macaulay local ring with d = dimA admitting the canonical

module KA. Then A is a Gorenstein ring if and only if KA is (d+ 1)-torsionfree.

Theorem 6.4 and Corollary 6.5 lead us to the question of the structure of a local ring A with

q-torsionfree canonical module without the assumption that A is Cohen-Macaulay.

For a subset Φ of prime ideals in a Noetherian ring R, we say that

• R satisfies (Sn) on Φ if depthRp ≥ min {n, dimRp} for every p ∈ Φ,

• R satisfies (Gn) on Φ if Rp is Gorenstein for every p ∈ Φ with dimRp ≤ n.

The main result of this section gives an answer to the above question.

Theorem 6.6. Let A be a Noetherian local ring admitting the canonical module KA. Suppose that

KA satisfies (Sq). Then the following conditions are equivalent :

(1) A satisfies both (Gq−1) and (Sq−1) on SuppA KA ;

(2) KA is q-torsionfree ;

(3) KA is q-syzygy.

To show this, we need some auxiliaries. The following plays an important role in our argument.

Lemma 6.7 ([7, Lemma 4.9]). Let A be a Noetherian local ring and M a nonzero finitely generated

A-module. Assume that q ≥ depthA+ 2 and M is q-syzygy. Then depthAM = depthA.

We apply Lemma 6.7 to get the following.

Theorem 6.8. Let R be a Noetherian ring and M a finitely generated R-module. If M is (q + 1)-

syzygy, then one has

depthRp ≥ min{q, depthRp
Mp} for all p ∈ SuppRM.

In particular, if M satisfies (Sq), then R satisfies (Sq) on SuppRM .

Proof. By localizing at p ∈ SuppRM , it suffices to show depthR ≥ min{q, depthRM}. If depthR ≥
q, the assertion is obvious. Otherwise, if depthR < q, the assertion follows from Lemma 6.7. �

As consequences of Theorems 6.4, 6.8, we get the following.

Corollary 6.9. Let A be a Noetherian local ring with d = dimA admitting the canonical module

KA. Then the following conditions are equivalent :

(1) A is Gorenstein ;

(2) KA is a (d+ 1)-torsionfree maximal Cohen-Macaulay A-module ;

(3) KA is a (d+ 1)-syzygy maximal Cohen-Macaulay A-module.

Proof. We only need to show (3) ⇒ (1). By Theorem 6.8 we have that depthA = d, so that A is

Cohen-Macaulay. Hence the assertion follows from Theorem 6.4. �

Corollary 6.10. Let (A,m) be a Noetherian local ring with d = dimA admitting the canonical

module KA. Furthermore, we assume one of the following conditions (i) and (ii).

(i) Hi
m(A) = (0) for every integer i 6= 0, 1, d.
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(ii) d ≤ 2.

Then the following conditions are equivalent :

(1) A is Gorenstein ;

(2) KA is (d+ 1)-torsionfree ;

(3) KA is (d+ 1)-syzygy.

Proof. (i) By passing to the m-adic completion, we may assume A is m-adically complete. In view

of [17, (2.3) Satz], it follows that KA is maximal Cohen-Macaulay. Therefore the assertion follows

from Corollary 6.9.

(ii) Since KA satisfies (S2), the assertion follows from Corollary 6.9. �

Remark 6.11. Let A be a Noetherian local ring admitting the canonical module KA. We say

that A is quasi-Gorenstein if KA
∼= A as an A-module. When d ≥ 3, there exist non-Gorenstein

quasi-Gorenstein local rings of dimension d (see e.g., [2, Theorem 2.11]). Notice that, in such a ring

A, KA is q-torsionfree for all q ≥ 1. So, Corollary 6.10 fails without the condition (i) or (ii).

Based on the above observation, it is natural to raise the following question.

Question 6.12. Let A be a Noetherian local ring with d = dimA ≥ 3 admitting the canonical

module KA. When are the following conditions equivalent?

(i) A is a quasi-Gorenstein ring, i.e., KA
∼= A.

(ii) KA is a (d+ 1)-torsionfree A-module.

In what follows, let R be a Noetherian ring and M a finitely generated R-module. The equivalence

of (1) and (2) in the next theorem was essentially proved by Auslander and Bridger [1]. Notice that

this is a qth version of [6, Proposition 1.4.1].

Theorem 6.13. The following conditions are equivalent :

(1) M is q-torsionfree ;

(2) M satisfies the conditions below :

(i) Mp is q-torsionfree for every p ∈ SuppRM with depthRp < q ;

(ii) M satisfies (S̃q) ;

(3) M satisfies the conditions below :

(i) Mp is q-torsionfree for every p ∈ SuppRM with depthRp
Mp < q ;

(ii) depthRp
Mp = depthRp for every p ∈ SuppRM with depthRp < q − 1.

Proof. Without loss of generality, we may assume q ≥ 1.

(1)⇒ (2) This follows from [11, Proposition 2.1].

(2)⇒ (3) (i) Let p ∈ SuppRM with depthRp
Mp < q. SinceM satisfies (S̃q), we have depthRp

Mp ≥
depthRp. This implies depthRp < q, and hence Mp is q-torsionfree. (ii) Let p ∈ SuppRM with

depthRp < q − 1. Then Mp is q-torsionfree, so that depthRp
Mp = depthRp by Lemma 6.7.

(3) ⇒ (1) For each i ∈ {1, 2, . . . , q}, we set Ei = ExtiR(D(M), R). Suppose Eq 6= 0 and seek a

contradiction. Take p ∈ AssRE
q. Since p ∈ SuppRM , by (i) we have depthRp

Mp ≥ q. Then by
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(ii), depthRp ≥ q − 1. By passing to the localization Rp at p, we may assume R is a local ring,

depthR ≥ q − 1, depthRM ≥ q, and depthRE
q = 0.

We proceed by induction on q. First, assume that q = 1. Since E1 is isomorphic to a submodule

of M , it follows that depthRM = 0, a contradiction. Thus E1 = (0). Next, we assume q = 2.

Applying the depth lemma to the exact sequence 0→ M → M∗∗ → E2 → 0 of R-modules, we get

depthRM = 1, as depthRM
∗∗ ≥ 1. This is impossible, whence E2 = (0). Suppose q ≥ 3 and the

assertion holds for q − 1, i.e., M is (q − 1)-torsionfree. Hence E1 = · · · = Eq−1 = (0). Consider a

free resolution (Fi, ∂i) of M∗. Applying the R-dual functor (−)∗, we get the exact sequence

0→M∗∗ → F ∗0
∂∗1−→ F ∗1 → · · · → F ∗q−3

∂∗q−2−−→ F ∗q−2

of R-modules because E3 = · · · = Eq−1 = (0). Let C be the cokernel of ∂∗q−2. Since M is reflexive

as an R-module, we obtain the exact sequence of the form

0→M → F ∗0 → · · · → F ∗q−2 → C → 0.

Since Eq = Extq−2R (M∗, R) may be regarded as a submodule of C, we see that depthR C = 0. Hence

depthRM = q − 1. This gives a contradiction. Hence we conclude that Eq = (0), which shows M

is q-torsionfree. �

Corollary 6.14. Suppose that the following conditions are satisfied :

(a) Mp is q-torsionfree for every p ∈ SuppRM with dimRp < q ;

(b) M satisfies (Sq) ;

(c) depthRp ≥ min{q − 1, dimRp − 1} for every p ∈ SuppRM .

Then M is q-torsionfree.

Proof. We will check condition (3) in Theorem 6.13. Let p ∈ SuppRM . (i) Assume that depthRp
Mp <

q. By (b), depthRp
Mp = dimRp, so that dimRp < q. Therefore Mp is q-torsionfree by (a). (ii)

Assume that depthRp < q − 1. By (c), depthRp ≥ dimRp − 1, so that dimRp < q. Therefore Mp

is q-torsionfree by (a), whence depthRp
Mp = depthRp by Lemma 6.7. �

Corollary 6.15. Suppose that the following conditions are satisfied :

(a) M satisfies (Sq) ;

(b) R satisfies both (Gq−1) and (Sq−1) on SuppRM .

Then M is q-torsionfree.

Proof. By Corollary 6.14, it suffices to show that Mp is q-torsionfree on {p ∈ SuppRM | dimRp <

q}. Let p ∈ SuppRM with dimRp < q. Then by (b), Rp is Gorenstein. As M satisfies (Sq),

depthRp
Mp ≥ dimRp. Hence Mp is maximal Cohen-Macaulay as an Rp-module. In particular, Mp

is q-torsionfree. �

We are now ready to prove Theorem 6.6.

Proof of Theorem 6.6. (1)⇒ (2) This follows from Corollary 6.15.

(2)⇒ (3) This follows from [11, Proposition 2.1].
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(3) ⇒ (1) By Theorem 6.8, the ring A satisfies (Sq−1) on SuppA KA. Let p ∈ SuppA KA with

dimAp ≤ q − 1. Then Ap is a Cohen-Macaulay ring of dimension at most q − 1. Hence Theorem

6.4 implies that Ap is a Gorenstein ring. �

As consequences of Theorem 6.6, we get the following corollaries.

Corollary 6.16. Let A be a Noetherian local ring admitting the canonical module KA. Suppose

that q ≥ 2 and KA satisfies (Sq). Consider the following conditions :

(1) KA is (q + 1)-torsionfree ;

(2) KA is (q + 1)-syzygy ;

(3) A satisfies both (Sq) and (Gq−1) on SuppA KA ;

(4) A satisfies both (Sq) and (Gq−1), that is, A is q-Gorenstein ;

(5) A satisfies (Sq) and KA is q-torsionfree ;

(6) A satisfies (Sq) and KA is q-syzygy.

Then the implications (1)⇔(2)⇒(3)⇔(4)⇔(5)⇔(6) hold true.

Proof. The implications (1) ⇒ (2) and (4) ⇒ (3) are clear. The equivalence of (3), (5), and

(6) immediately follows from Theorem 6.6. Thus it suffices to check the implications (2) ⇒ (3),

(3)⇒ (4), and (2)⇒ (1).

(2) ⇒ (3) Theorem 6.6 shows the ring A satisfies (Gq−1) on SuppA KA. On the other hand, by

Theorem 6.8, we deduce that A satisfies (Sq) on SuppA KA.

(3)⇒ (4) Since q ≥ 2, by [3, Lemma 1.1] we have SuppA KA = SpecA.

(2)⇒ (1) The implication (2)⇒ (4) guarantees that A is q-Gorenstein. Hence KA is q-torsionfree

by [1, Proposition 4.21]. �

Since KA satisfies (S2), from Corollary 6.16 we have the following.

Corollary 6.17. Let A be a Noetherian local ring admitting the canonical module KA. Consider

the following conditions :

(1) KA is 3-torsionfree ;

(2) KA is 3-syzygy ;

(3) A satisfies both (S2) and (G1), that is, A is quasi-normal ;

(4) A satisfies (S2) and KA is 2-torsionfree ;

(5) A satisfies (S2) and KA is 2-syzygy.

Then the implications (1)⇔(2)⇒(3)⇔(4)⇔(5) hold true.

Corollary 6.18. Let A be a Noetherian local ring admitting the canonical module KA. Suppose

that q ≥ 2 and KA satisfies (Sq+1). Then the following conditions are equivalent :

(1) KA is (q + 1)-torsionfree ;

(2) KA is (q + 1)-syzygy ;

(3) A satisfies both (Sq) and (Gq) on SuppA KA ;

(4) A satisfies both (Sq) and (Gq).

Proof. This follows from Theorem 6.6 and the fact that SuppA KA = SpecA ([3, Lemma 1.1]). �
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Corollary 6.19. Let A be a Noetherian local ring with d = dimA which is a homomorphic image

of a Gorenstein ring. Suppose that q ≥ d
2

+ 1 and KA is (q+ 1)-syzygy satisfying (Sq). Then A is a

Cohen-Macaulay ring.

Proof. By Theorem 6.8, we see that A satisfies (Sq). We may assume d > 0. Then q ≥ 2, so that A

is equidimensional by [3, Lemma 1.1]. Furthermore, either A is Cohen-Macaulay or depthA ≥ q.

We assume depthA ≥ q. Since KA satisfies (Sq), every A-regular sequence of length at most q

is KA-regular ([11, Proposition 2.1]). The assertion follows from [9, Corollary (2.6)] (see also [10,

Proposition 4.2]). �

7. Examples of q-Gorenstein rings

Closing this paper, in order to illustrate our theorems, we provide additional examples of Cohen-

Macaulay and q-Gorenstein rings, i.e., rings with (Sq) and (Gq−1) conditions, or equivalently, rings

with (G̃q−1) condition.

Theorem 7.1. Let A be a Gorenstein local ring with d = dimA ≥ 3 and let a1, a2, . . . , ad be a

system of parameters of A. Let a = (a1, a2, . . . , a`) (3 ≤ ` ≤ d) and let

R = A[a1t, a2t, . . . , a`t] ⊆ A[t]

be the Rees algebra of a, where t denotes an indeterminate. Then, R is not a Gorenstein ring, but

it is a Cohen-Macaulay (`+ 1)-Gorenstein ring of dimension d+ 1.

Proof. Recall that R is a Cohen-Macaulay ring of dimension d + 1. Let S = A[X1, X2, . . . , X`] be

the polynomial ring over A and let ϕ : S → R denote the surjective homomorphism of A-algebras

defined by ϕ(Xi) = ait for each 1 ≤ i ≤ `. The homomorphism ϕ preserves the grading and

Ker(ϕ) = I2
(
X1 X2 ... X`
a1 a2 ... a`

)
is the perfect ideal of S of grade ` − 1 generated by the 2 × 2 minors of

the matrix
(
X1 X2 ... X`
a1 a2 ... a`

)
. We set I = Ker(ϕ). We then have the following.

Claim 2. Let P ∈ SpecS such that I ⊆ P but (X1, X2, . . . , X`) + (a1, a2, . . . , a`) 6⊆ P . Then,

SP/ISP is a Gorenstein ring.

Proof of Claim 2. We may assume that X1 6∈ P . Let S̃ = S[ 1
X1

], Ã = A[X1,
1
X1

], and Yi = Xi

X1

for 2 ≤ i ≤ `. Then, S̃ = Ã[Y2, Y3, . . . , Y`] and IS̃ = (ai − a1Yi | 2 ≤ i ≤ `)S̃. Because

a1S̃ + (ai − a1Yi | 2 ≤ i ≤ `)S̃ = (ai | 1 ≤ i ≤ `)S̃ and a1, a2, . . . , a` is an S̃-regular sequence, the

sequence a2− a1Y2, a3− a1Y3, . . . , a`− a1Y` is S̃P -regular, so that SP/ISP is a Gorenstein ring. �

Let P ∈ SpecS and suppose that I ⊆ P . We set p = ϕ(P ) ∈ SpecR. Then, (X1, X2, . . . , X`) +

(a1, a2, . . . , a`) 6⊆ P if htS P < 2`, while

htR p = htS/I P/I = htS P − (`− 1).

Therefore, if htR p < `+1, then htS P−(`−1) < `+1, that is htS P < 2`, so that (X1, X2, . . . , X`)+

(a1, a2, . . . , a`) 6⊆ P , whence Rp = SP/ISP is a Gorenstein ring by Claim 2. Thus, R is an (`+ 1)-

Gorenstein ring. �

Since the proofs of the following assertions are standard, we left them to the interested readers.
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Lemma 7.2. Let ϕ : A → B be a flat local homomorphism of Noetherian local rings and q ≥ 1 be

an integer. Then the following conditions are equivalent :

(1) B is a q-Gorenstein ring ;

(2) A is a q-Gorenstein ring and BP/pBP is a Gorenstein ring for every P ∈ SpecB with depthBP <

q, where p = ϕ−1(P ).

Proposition 7.3. Let R be a Noetherian ring. Then the following assertions hold true.

(1) Let q ≥ 1 be an integer. Then R[t] is a q-Gorenstein ring if and only if R is a q-Gorenstein

ring, where t is an indeterminate.

(2) Let H be a symmetric numerical semigroup. If R is a q-Gorenstein ring, then the semigroup

ring R[H] of H over R is a q-Gorenstein ring.

(3) Let X = {Xij}1≤i≤`,1≤j≤m be indeterminates where `,m ≥ 2, and set T = R[X]. Let t be an

integer such that 2 ≤ t ≤ min {`,m} and let I = It(X) denote the ideal of S generated by the

t× t minors of the matrix X. We set S = T/I.

(a) Let ` = m. If R is a q-Gorenstein ring, then S is a q-Gorenstein ring.

(b) Suppose that R is a field and let t = 2. Then S is a d-Gorenstein ring, where d = `+m−1.
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