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Abstract. Let X be an additive full subcategory of an abelian category. It is a classical fact that if X
is contravariantly finite, then the category modX of finitely presented right X -modules is abelian. In

this paper, we consider the question asking when the converse holds true for a resolving subcategory of
the category of finitely generated modules over a commutative noetherian henselian local ring. We give
both affirmative answers and negative answers to this question.

1. Introduction

Let A be an abelian category. Let X be an additive full subcategory of A. It follows from Auslander’s
1966 paper [4] that if X is contravariantly finite, then the category modX of finitely presented X -modules
is abelian. It is natural to ask whether the converse holds.

Question 1.1. When modX is abelian, is X contravariantly finite?

The main purpose of this paper is to study the above Question 1.1 for a resolving subcategory X of the
abelian category A = modR of finitely generated modules over a commutative noetherian ring R. In
what follows, we shall explain our main results. For simplicity, from here to the end of this section, we
assume that R is a complete local ring with residue field k.

The theorem below gives affirmative answers to Question 1.1. It is included in Corollaries 3.7, 3.10(1).

Theorem 1.2. Let X be a resolving subcategory of modR such that modX is an abelian category. Then
X is contravariantly finite if one of the following four conditions is satisfied.

(1) The ring R has (Krull) dimension at most one.
(2) The ring R is Cohen–Macaulay, and every R-module in X is maximal Cohen–Macaulay.
(3) Every R-module in X is Gorenstein projective.
(4) There is an R-module outside X that admits a right X -approximation, and one of the following holds.

(i) R is AB. (ii) X contains some syzygy of k. (iii) X is closed under cosyzygies.

Thus Question 1.1 has an affirmative answer in each of the above four cases.

Here, the notion of a Gorenstein projective module has been introduced by Enochs and Jenda [15], which
is the same as a totally reflexive module in the sense of Avramov and Martsinkovsky [9], and a module of
Gorenstein dimension at most zero in the sense of Auslander and Bridger [5]. The notion of an AB ring
has been introduced by Huneke and Jorgensen [18], which is a Gorenstein local ring satisfying a certain
condition on vanishing of Ext modules. A typical example of an AB ring is a local complete intersection.

Theorem 1.2 would lead us to expect that Question 1.1 always has an affirmative answer, but we shall
observe in Corollary 3.13 that it is not true.

Theorem 1.3. Suppose that R has dimension at least two. Then there exists a proper resolving sub-
category X of modR which is closed under subobjects and provides only trivial right approximations. In
particular, X is not contravariantly finite but modX is an abelian category. Thus such an X gives a
negative answer to Question 1.1.

Finally, we focus in Theorem 4.2 on the full subcategory GP(R) of modR consisting of Gorenstein
projective R-modules to relate the abelianity of modGP(R) with the Gorenstein property of the ring R.
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Theorem 1.4. The following four conditions are equivalent.

(1) The ring R is either Gorenstein or G-regular.
(2) The category modGP(R) is abelian.
(3) The subcategory GP(R) of modR is contravariantly finite.
(4) The evaluation functor modGP(R)→ modR has a right adjoint.

Here, following [21], we say that R is G-regular if every finitely generated Gorenstein projective R-module
is projective (hence free). The evaluation functor modGP(R) → modR means the functor defined by
F 7→ F (R). Note that the abelianity of modGP(R) depends only on the structure of GP(R) as an additive
category. Thus Theorem 1.4 in particular says that the Gorensteinness of the ring R is characterized only
by the structure of GP(R) as an additive category in the case where GP(R) ̸= addR.

This paper is organized as follows. Section 2 states our convention, basic notions and their basic
properties for later use. Section 3 is the main section of this paper, where the proofs of Theorems 1.2
and 1.3 are given. Section 4 is to state applications and more questions, where Theorem 1.4 is proved.

2. Basic definitions and properties

This section is devoted to collecting the background materials of this paper. To be precise, we state
in this section the definitions of our basic notions and several known properties of them, which are used
in later sections. We begin with our convention.

Convention 2.1. Throughout this paper, we assume the following. All rings are commutative noetherian
rings with identity, all modules are finitely generated, and all subcategories are strictly full. We let R be
a (commutative noetherian) ring. We denote by modR the category of (finitely generated) R-modules,
and by CM(R) the (full) subcategory of modR consisting of maximal Cohen–Macaulay R-modules. For
an additive category E , we identify each object E ∈ E with the subcategory of E consisting only of E.
We may omit subscripts and superscripts unless there is a danger of confusion.

This paper deals with a lot of closedness properties of subcategories. We state the precise definitions.

Definition 2.2. Let E be an additive category, and let X be a subcategory of E . We say that X is:

(1) closed under finite direct sums provided that for any X1, . . . , Xn ∈ X one has X1 ⊕ · · · ⊕Xn ∈ X ;
(2) closed under direct summands provided that for any A1, . . . , An ∈ E with A1 ⊕ · · · ⊕An ∈ X one has

A1, . . . , An ∈ X .
We denote by addE X the additive closure of X , that is, the smallest subcategory of E that contains X
and is closed under finite direct sums and direct summands.

Definition 2.3. Let A be an abelian category, and let X be a subcategory of A. We say that X is:

(1) closed under subobjects (resp. closed under quotient objects) provided that for every exact sequence
0→ A→ B (resp. 0← A← B) in A with B ∈ X one has A ∈ X ;

(2) closed under kernels (resp. closed under cokernels) provided that for every exact sequence 0→ A→
B → C (resp. 0← A← B ← C) in A with B,C ∈ X one has A ∈ X ;

(3) closed under kernels of epimorphisms (resp. closed under cokernels of monomorphisms) provided
that for every exact sequence 0 → A → B → C → 0 (resp. 0 ← A ← B ← C ← 0) in A with
B,C ∈ X one has A ∈ X ;

(4) closed under extensions provided that for every exact sequence 0 → A → B → C → 0 in A with
A,C ∈ X one has B ∈ X . Clearly, when this is the case, X is closed under finite direct sums.

Remark 2.4. Let A be an abelian category, and let X be a subcategory of A. Consider the conditions
that X is closed under

(1) subobjects, (2) kernels, (3) kernels of epimorphisms,
(4) quotient objects, (5) cokernels, (6) cokernels of monomorphisms, and (7) direct summands.

Then one has that (1) ⇒ (2) ⇒ (3), that (4) ⇒ (5) ⇒ (6), and that (2) ⇒ (7) ⇐ (5). Indeed, the only
nontrivial implications are the last two. Suppose that (2) or (5) holds. Splicing the split exact sequences
0 → A → A ⊕ B → B → 0 and 0 → B → A ⊕ B → A → 0 with A,B ∈ A, we get an exact sequence
0→ A→ A⊕B → A⊕B → A→ 0. This shows that if A⊕B ∈ X , then A ∈ X . Thus (7) follows.

Next we recall the definitions of a syzygy and a resolving subcategory, the latter of which has been
introduced by Auslander and Bridger [5].
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Definition 2.5. Let A be an abelian category with enough projective objects.

(1) We denote by projA the subcategory of A consisting of projective objects.
(2) Let M be an object of A. For an integer n > 0, the nth syzygy of M is by definition an object N of A

that appears in an exact sequence 0→ N → Pn−1 → Pn−2 → · · · → P1 → P0 in A with Pi ∈ projA
for all 0 ⩽ i ⩽ n− 1, and it is denoted by Ωn

AM . We set Ω0
AM = M . For each n ⩾ 0 we denote by

ΩnA the subcategory of A consisting of nth syzygies. The object Ωn
AM is uniquely determined up

to projective summands, and any projective object is an nth syzygy for all n ⩾ 0, i.e., projA ⊆ ΩnA.
(3) A subcategory X of A is said to be closed under syzygies if ΩAX ∈ X for all X ∈ X , that is to say,

if for every exact sequence 0→ Y → P → X → 0 in A with P ∈ projA and X ∈ X one has Y ∈ X .
(4) A subcategory X of A is called resolving if X contains projA and is closed under direct summands,

extensions and kernels of epimorphisms. Here, being closed under kernels of epimorphisms can be
replaced with being closed under syzygies, since an exact sequence 0→ A→ B → C → 0 in A gives
rise to an exact sequence 0→ ΩC → A⊕ P → B → 0 in A with P ∈ projA.

We recall the definitions of a dominant subcategory, a semidualizing module and a Gorenstein projec-
tive module over a commutative noetherian ring.

Definition 2.6. (1) A subcategory X of modR is called dominant if for every prime ideal p of R there
exists an integer n ⩾ 0 such that Ωn

Rp
κ(p) belongs to addmodRp

Xp. Here, κ(p) denotes the residue

field Rp/pRp of Rp, and Xp stands for the subcategory of modRp consisting of Rp-modules of the
form Xp with X ∈ X . Any subcategory of modR containing Ωn(modR) for some n ⩾ 0 is dominant.

(2) An R-module C is called semidualizing if the natural map R→ HomR(C,C) is an isomorphism and
Ext>0

R (C,C) = 0. The R-module R is a typical example of a semidualizing R-module. If R is a
Cohen–Macaulay local ring with a canonical module ω, then ω is a semidualizing R-module.

(3) Let C be a semidualizing R-module, and set (−)† = HomR(−, C). An R-module is called Gorenstein
C-projective (or totally C-reflexive) if the natural map M →M†† is an isomorphism and Ext>0

R (M ⊕
M†, C) = 0. We denote by GP(C) the subcategory of modR consisting of Gorenstein C-projective
R-modules. Gorenstein R-projective R-modules are simply called Gorenstein projective R-modules.
If R is a Cohen–Macaulay local ring with a canonical module ω, then the Gorenstein ω-projective
R-modules are precisely the maximal Cohen–Macaulay R-modules, that is to say, GP(ω) = CM(R).

There are indeed a lot of examples of a resolving subcategory. We present here some of them, which
appear later. Also, we mention that dominance can be interpreted quite simply in some cases.

Example 2.7. (1) If R is a Cohen–Macaulay local ring, then CM(R) is a resolving subcategory of modR.
(2) For a semidualizing R-module C the subcategory GP(C) of modR is resolving by [3, Theorem 2.1].
(3) Let R be a local ring. Denote by mod0 R the subcategory of modR consisting of R-modules which

are locally free on the punctured spectrum of R. Then mod0 R is a resolving subcategory of modR.
(4) Let X be a resolving subcategory of modR. When R is Cohen–Macaulay, X is dominant if and only

if X contains CM(R). When d = dimR < ∞, the dominance of X is equivalent to saying that X
contains Ωd(modR). These statements are none other than [23, Corollary 1.2].

Now we recall the definitions of a right approximation and a contravariantly finite subcategory, which
are introduced by Auslander and Smalø [8].

Definition 2.8. Let E be an additive category, and let X be a subcategory of E .
(1) A morphism f : X → E (in E) with X ∈ X is called a right X -approximation (of E) if for every

morphism f ′ : X ′ → E with X ′ ∈ X there is a morphism g : X ′ → X such that f ′ = fg. Note that
for each M ∈ X the identity morphism of M is a right X -approximation of M . We denote by rapE X
the subcategory of E consisting of objects admitting right X -approximations. There are inclusions

(2.8.1) X ⊆ rapX ⊆ E .

(2) We say that X is contravariantly finite if every object of E admits a right X -approximation, that is
to say, if the equality rapX = E holds, which is the equality of the second inclusion in (2.8.1).

(3) A left X -approximation and a covariantly finite subcategory are defined dually.

We present two examples of a contravariantly finite subcategory.
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Example 2.9. (1) The additive closure addX of an R-module X is a contravariantly finite subcategory
of modR. Indeed, for an R-module M , choose a system of generators f1, . . . , fn of the R-module
HomR(X,M). Then it is easy to see that the map (f1, . . . , fn) : X

⊕n →M is a right X -approximation
of M . A dual argument shows that addX is also a covariantly finite subcategory of modR.

(2) If R is a Cohen–Macaulay local ring with a canonical module, then CM(R) is a contravariantly finite
subcategory of modR. This is a consequence of [6, Theorem 1.1].

The following easy lemma becomes necessary once in the next section.

Lemma 2.10. Let E be an additive category. Let X and Y be subcategories of E. If there are inclusions
X ⊆ Y ⊆ rapX , then there is an inclusion rapY ⊆ rapX .

Proof. Let f : Y → E be a right Y-approximation of an object E ∈ E . Since Y ∈ Y ⊆ rapX , there
exists a right X -approximation g : X → Y . We claim that the composition fg : X → E is a right X -
approximation. Indeed, take a homomorphism a : X ′ → E with X ′ ∈ X . As f is a right Y-approximation
andX ′ ∈ X ⊆ Y, there is a homomorphism b : X ′ → Y such that a = fb. As g is a right X -approximation,
there exists a homomorphism c : X ′ → X such that b = gc. The equality a = (fg)c shows the claim. ■

For a subcategory X of modR we denote by X⊥ the subcategory of modR consisting of R-modules
M such that Ext>0

R (X,M) = 0 for all X ∈ X . It is straightforward that X⊥ is closed under extensions
and cokernels of monomorphisms. The following lemma is a fundamental tool throughout the paper, and
this is why we need henselianity to obtain our main results.

Lemma 2.11. Let R be a henselian local ring. Let X be a resolving subcategory of modR. Let M be
an R-module. Then M possesses a right X -approximation if and only if there exists an exact sequence

0→ Y → X
f−→M → 0 of R-modules such that X ∈ X and Y ∈ X⊥.

Proof. The “only if” part is shown in [22, Lemma 3.8]. To show the “if” part, let X ′ ∈ X . The induced

sequence HomR(X
′, X)

g−→ HomR(X
′,M)→ Ext1R(X

′, Y ) is exact, and Ext1R(X
′, Y ) = 0 as X ′ ∈ X and

Y ∈ X⊥. Therefore the map g is surjective, which means that the map f is a right X -approximation. ■
Now we recall the definitions of a module over an additive category, and its being finitely generated

and finitely presented. These notions have been introduced by Auslander [4].

Definition 2.12. Let E be an additive category.

(1) We denote by Mod E the functor category of E ; recall that the objects of Mod E are additive con-
travariant functors from E to the category of abelian groups, and the morphisms of Mod E are natural
transformations. Note that Mod E is an abelian category. An object and a morphism of Mod E are
called a (right) E-module and an E-homomorphism, respectively.

(2) An E-module F is said to be finitely generated if there exists an exact sequence HomE(−, E0)→ F → 0
of E-modules with E0 ∈ E . We say that F is finitely presented if there exists an exact sequence

(2.12.1) HomE(−, E1)→ HomE(−, E0)→ F → 0

of E-modules with E0, E1 ∈ E . We call an exact sequence of the form (2.12.1) a finite presentation of
F . The subcategory of Mod E consisting of finitely presented E-modules is denoted by mod E . This
is called the Auslander category of E in [24, Chapter 4]. However, nowadays, this name is often used
to mean a certain different category; see [11, Chapter 3] for instance. Thus, in this paper, we call
mod E the finitely presented module category of E so as not to confuse the reader.

(3) Let f : X → Y be a morphism in E . A morphism g : K → X is called a pseudo-kernel of f provided
that the induced sequence HomE(−,K) → HomE(−, X) → HomE(−, Y ) of E-homomorphisms is
exact. We say that E has pseudo-kernels if every morphism in E admits a pseudo-kernel.

The existence of right approximations is interpreted in terms of finite generation in the functor category.

Lemma 2.13. Let E be an additive category. Let X be an additive subcategory of E. An object E ∈ E
admits a right X -approximation if and only if the functor HomE(−, E)|X is a finitely generated X -module.

Proof. If f : X → E is a right X -approximation, then HomE(−, f)|X is an epimorphism in ModX . If
ϕ : HomE(−, Y )|X → HomE(−, E)|X is a surjective X -homomorphism with Y ∈ X , then Yoneda’s lemma
gives a morphism g : Y → E in E with ϕ = HomE(−, g)|X , and g is seen to be a right X -approximation. ■



RESOLVING SUBCATEGORIES WHOSE FINITELY PRESENTED MODULE CATEGORIES ARE ABELIAN 5

Remark 2.14. Let E be an additive category, and let X be an additive subcategory of E . By Lemma
2.13 the contravariant finiteness of X means that HomR(−, E)|X is finitely generated for all E ∈ E . Thus
we may call X contravariantly infinite if the equality of the first inclusion in (2.8.1) holds, that is to say,
X = rapX , because it means that HomR(−, E)|X is not finitely generated except the trivial case where
E ∈ X . In this paper, we shall consider both contravariant finiteness and contravariant infiniteness. To
make it simple and avoid confusion, we often say that rapX = E (resp. X = rapX ) rather than that X
is contravariantly finite (resp. X is contravariantly infinite).

The following lemma yields a criterion for the finitely presented module category to be abelian.

Lemma 2.15. Let E be an additive category. Then the following assertions hold true.

(1) As a subcategory of Mod E, the category mod E is closed under cokernels and extensions.
(2) The category mod E is abelian if and only if E has pseudo-kernels.

Proof. Let A = Mod E . Let P be the subcategory of A consisting of objects having the form HomE(−, E)
with E ∈ E . Using Yoneda’s lemma, we get P ⊆ projA. Apply [4, Proposition 2.1(a)(b)] to A and P. ■

The result below gives sufficient conditions for the abelianity of the finitely presented module category.

Proposition 2.16. Let A be an abelian category. Let X be an additive subcategory of A which is either
closed under kernels or contravariantly finite. Then modX is an abelian category.

Proof. According to Lemma 2.15(2), it is enough to prove that each morphism f : X → X ′ in X has a

pseudo-kernel. Take an exact sequence 0 → K
g−→ X

f−→ X ′ in A. If X is closed under kernels, then K
belongs to X , and the induced exact sequence 0→ HomA(−,K)|X → HomA(−, X)|X → HomA(−, X ′)|X
implies that g : K → X is a pseudo-kernel of f . If X is contravariantly finite, then there is a right X -
approximation h : X ′′ → K, and the induced exact sequence HomA(−, X ′′)|X → HomA(−, X)|X →
HomA(−, X ′)|X implies that the composition gh : X ′′ → X is a pseudo-kernel of f . ■

Next we recall the definitions of the transpose and cosyzygy of a module over the ring R.

Definition 2.17. Let M be an R-module.

(1) Set (−)∗ = HomR(−, R). Take an exact sequence P1
f−→ P0 →M → 0 of R-modules with P0 and P1

projective. We denote by TrR M the cokernel of the map f∗ : P ∗
0 → P ∗

1 , and call it the (Auslander)
transpose of M . This is uniquely determined up to projective summands. The Gorenstein projectivity
of M is equivalent to the vanishing Ext>0

R (M ⊕ TrM,R) = 0. We refer the reader to [5] for details.
(2) The (first) cosyzygy of M is defined as the cokernel of a left (addR)-approximation of M (one exists as

addR is covariantly finite by Example 2.9(1)) and denoted by Ω−1M . This is uniquely determined up
to projective summands. We say that a subcategory X of modR is closed under cosyzygies provided
that Ω−1X ∈ X for all X ∈ X . There is an isomorphism Ω−1M ∼= TrΩTrM of R-modules (up to
projective summands) for every R-module M ; see [19, Lemma 4.1] for instance.

We close the section by reminding the reader of a well-known result, which is used several times in
this paper. This is a direct consequence of [10, Theorem 3.1.17, Corollary 9.6.2 and Remarks 9.6.4(a)].

Lemma 2.18. Let R be a local ring. Let n be a nonnegative integer. Suppose that there exists a nonzero
R-module M such that idR M ⩽ n. Then R is a Cohen–Macaulay ring with dimR ⩽ n.

3. Affirmative and negative answers to Question 1.1

In this section we provide several sufficient conditions for Question 1.1 to be affirmative, and present
some cases where Question 1.1 is negative. Throughout this section, we fix the following notation.

Notation 3.1. Let (R,m, k) be a henselian local ring. Let X be a resolving subcategory of modR. Let
C be the subcategory of modR consisting of modules C such that HomR(−, C)|X ∈ modX . Let B be the
smallest subcategory of modR which contains C and is closed under direct summands and extensions.

We make a list of properties of X , C, B and rapX , some of which are frequently used later.

Proposition 3.2. (1) The subcategory rapX of modR is closed under direct summands and extensions.
(2) There are inclusions of subcategories: X ⊆ C ⊆ B ⊆ rapB ⊆ rapX ⊆ modR.
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(3) The subcategory C of modR is closed under finite direct sums.
(4) Suppose that modX is an abelian category. Then the following statements hold true.

(a) The subcategory C of modR is closed under kernels. Therefore, C is closed under direct summands
and syzygies, and contains Ω2(modR). In particular, C is dominant, and so are B, rapB, rapX .

(b) Let M be an R-module. Let C be an R-module belonging to C. Then HomR(M,C) belongs to C.
(c) For any R-module C that belongs to C, the R-module Ext1R(TrC,R) also belongs to C.
(d) The subcategory B of modR is resolving.
(e) If the equality X = rapX holds, then the subcategory X of modR is closed under kernels.

(5) If rapX is closed under kernels of epimorphisms (or equivalently, if rapX is resolving), then it holds
that C = rapX . In particular, the equality rapX = modR implies the equality C = modR.

(6) If there is an equality X = rapX , then one has the inclusion X⊥ ∩ Ω(modR) ⊆ addR.

Proof. (1) If
(
f
g

)
: X → M ⊕N is a right X -approximation, then it can directly be verified that f, g are

right X -approximations. Hence rapX is closed under direct summands. We observe from Lemma 2.11
and the proof of [7, Proposition 3.6] that rapX is closed under extensions.

(2) The only nontrivial inclusion is rapB ⊆ rapX . By Lemma 2.10, we have only to show B ⊆ rapX .
In view of (1), it suffices to show C ⊆ rapX . This is a direct consequence of Lemma 2.13.

(3) Let C,C ′ ∈ C. Then HomR(−, C)|X and HomR(−, C ′)|X are finitely presented X -modules. Taking
the direct sum of finite presentations of those two X -modules, we see that the X -module HomR(−, C)|X⊕
HomR(−, C ′)|X = HomR(−, C ⊕ C ′)|X is also finitely presented. Hence C ⊕ C ′ belongs to C.

(4a) Let 0 → L → M → N be an exact sequence of R-modules such that M,N ∈ C. An exact
sequence 0 → HomR(−, L)|X → HomR(−,M)|X → HomR(−, N)|X is induced, and HomR(−,M)|X and
HomR(−, N)|X belong to modX . Since modX is abelian, HomR(−, L)|X belongs to modX as well. Thus
L is in C. It follows that C is closed under kernels. Remark 2.4 implies that C is closed under direct
summands. As C contains X and X is resolving, C contains addR = proj(modR). Combining this with
the fact that C is closed under kernels, we see that C is closed under syzygies and contains Ω2(modR).

(4b) Take an exact sequence P1 → P0 →M → 0 with P0, P1 ∈ addR. This induces an exact sequence
0→ HomR(M,C)→ HomR(P0, C)→ HomR(P1, C). Since the modules HomR(P0, C) and HomR(P1, C)
belong to addC, they are in C. The fact that C is closed under kernels implies that HomR(M,C) is in C.

(4c) Set (−)∗ = HomR(−, R). There is an exact sequence 0 → Ext1R(TrC,R) → C → C∗∗ by [5,
Proposition 2.6(a)]. Note that M∗ is a second syzygy for each R-module M . As C contains Ω2(modR),
we have C∗∗ ∈ C. Since C is closed under kernels, the module Ext1R(TrC,R) belongs to C.

(4d) Let D be the subcategory of modR consisting of modules M with ΩM ∈ B. Then C is contained
in D since C is closed under syzygies and contained in B. If N is a direct summand of an R-module M ,
then ΩN is a direct summand of ΩM . If 0→ L→M → N → 0 is an exact sequence of R-modules, then
there is an exact sequence 0→ ΩL→ ΩM → ΩN → 0. Using these facts, we see that D is closed under
direct summands and extensions. The definition of B implies that D contains B, which means that B is
closed under syzygies. We conclude that B is a resolving subcategory of modR.

(4e) As X ⊆ C ⊆ rapX , the equality X = rapX implies X = C. Hence X is closed under kernels.
(5) We have C ⊆ rapX . Pick an R-module M ∈ rapX . There is a right X -approximation f : X →M .

As X contains the projective R-modules, we observe that f is surjective. By assumption, the kernel K of
f belongs to rapX . There is a right X -approximation Y → K. The induced sequence HomR(−, Y )|X →
HomR(−, X)|X → HomR(−,M)|X → 0 is seen to be exact, and it follows that M belongs to C.

(6) Let M be an R-module in X⊥ ∩ Ω(modR). Then there is an exact sequence σ : 0 → M → F
f−→

N → 0 of R-modules with F free. Since F ∈ X and M ∈ X⊥, the proof of Lemma 2.11 shows that f is a
right X -approximation. Hence N ∈ rapX = X . Note that σ corresponds to an element of Ext1R(N,M),
which vanishes as M ∈ X⊥ and N ∈ X . Therefore the short exact sequence σ splits, and M is free. ■

To prove our next proposition, we establish a lemma.

Lemma 3.3. Let 0→ L→M → N → 0 be an exact sequence of R-modules. If L ∈ X⊥ ∩ C and M ∈ C,
then N ∈ C. In particular, the subcategory X⊥∩C of modR is closed under cokernels of monomorphisms.

Proof. An exact sequence 0 → HomR(−, L)|X → HomR(−,M)|X → HomR(−, N)|X → Ext1R(−, L)|X is
induced. As the R-module L is in X⊥, we have Ext1R(−, L)|X = 0. Since the X -modules HomR(−, L)|X
and HomR(−,M)|X belong tomodX , so does HomR(−, N)|X by Lemma 2.15(1), which meansN ∈ C. ■
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We provide several sufficient conditions for the residue field k of R to belong to the subcategory C.

Proposition 3.4. Assume modX is abelian. Suppose one of the following four conditions is satisfied.
(1) C contains a module of depth 0. (2) depthR = 0. (3) C ∩mod0 R ⊈ Ω(modR). (4) C ̸= X .

Then the residue field k of R belongs to C. In particular, k admits a right X -approximation.

Proof. If k is in C, then there exists a right X -approximation of k by Proposition 3.2(2).
(1) Let C be an R-module in C of depth 0. Then HomR(k,C) is a nonzero k-vector space, and belongs

to C by Proposition 3.2(4b). As C is closed under direct summands by Proposition 3.2(4a), we have k ∈ C.
(2) We have R ∈ X , while X ⊆ C by Proposition 3.2(2). We get R ∈ C. It follows from (1) that k ∈ C.
(3) Find an R-module C in C ∩mod0 R which is not a syzygy. Thus L := Ext1R(TrC,R) is nonzero by

[5, Proposition 2.6(a)] and [16, Lemma 3.4]. As C ∈ mod0 R (mod0 R is defined in Example 2.7(3)), the
R-module L has finite length and depth 0. Proposition 3.2(4c) implies L ∈ C. We obtain k ∈ C by (1).

(4) We find C ∈ C with C /∈ X . As C belongs to rapX by Proposition 3.2(2), there is an exact sequence
0 → Y → X → C → 0 with X ∈ X and Y ∈ X⊥ by Lemma 2.11. The subcategory C contains X,C
and is closed under kernels by Proposition 3.2(2)(4a), the module Y is in C, whence Y ∈ X⊥ ∩ C. Take a
maximal regular sequence x = x1, . . . , xn on Y . There exists a family of exact sequences of R-modules:

{0→ Y/(x1, . . . , xi−1)Y
xi−→ Y/(x1, . . . , xi−1)Y → Y/(x1, . . . , xi)Y → 0}ni=1.

Applying Lemma 3.3 repeatedly, we observe that Y/xY ∈ X⊥∩C ⊆ C. It follows from (1) that k ∈ C. ■

Proposition 3.5. Assume that d = dimR ⩾ 1 and modX is abelian. Suppose that k belongs to B (this
holds true under the assumption of Proposition 3.4). Then Ωd−1(modR) is contained in B. Hence any
(d−1)st syzygy has a right X -approximation. In particular, the equality rapX = modR holds when d = 1.

Proof. Taking Proposition 3.2(2) into account, we have only to show that Ωd−1M ∈ B for each R-module
M . Note from Proposition 3.2(4d) that B is a resolving subcategory of modR.

(1) Suppose that M has finite length. Then, since B is closed under extensions and contains k, we see
that M ∈ B. Since B is closed under syzygies, we obtain Ωd−1M ∈ B.

(2) By (1) we may assume dimM > 0. Then there is an exact sequence 0→ L→M → N → 0 of R-
modules such that L has finite length and that N is nonzero and has positive depth. Proposition 3.2(4a)
says B is dominant. By [23, Corollary 4.6] we have ΩrN ∈ B, where r = supp∈SpecR{depthRp−depthNp}.
Note that 0 ⩽ r ⩽ d. If r = d, then depthRp = d and depthNp = 0 for some p ∈ SpecR, which implies
p = m and depthN = 0, a contradiction. Hence r ⩽ d− 1, and Ωd−1N = Ωd−1−r(ΩrN) ∈ B. There is an
exact sequence 0→ Ωd−1L→ Ωd−1M → Ωd−1N → 0, and Ωd−1L ∈ B by (1). Therefore Ωd−1M ∈ B. ■

Now we state and prove the theorem below, which is one of the main results of this paper.

Theorem 3.6. Let C be a semidualizing R-module with X ⊆ GP(C). If modX is abelian, rapX = modR.

Proof. Recall by Example 2.7(2) that GP(C) is a resolving subcategory of modR. We freely use this fact.
We claim that GP(C) is contained in rapX . Indeed, it follows from Proposition 3.2(2)(4a)(4d) that

B is a dominant resolving subcategory of modR and contained in rapX . Fix a Gorenstein C-projective
R-module M . For each p ∈ SpecR, the localization Cp is a semidualizing Rp-module, and the localization
Mp is a Gorenstein Cp-projective Rp-module. It holds that depthMp ⩾ depthRp by [17, page 68] (or
[12, Theorem (3.14)]). Applying [23, Theorem 1.1], we see that M belongs to B. Now, the claim follows.

It follows by Proposition 3.2(2)(4a) that rapX contains Ω2(modR). So it suffices to show that for an R-
module M with ΩM ∈ rapX one has M ∈ rapX . Take an exact sequence 0→ ΩM → F →M → 0 with
F free. Lemma 2.11 gives an exact sequence 0→ Y → X → ΩM → 0 with X ∈ X and Y ∈ X⊥. As X is
in GP(C), there is an exact sequence 0→ X → C ′ → G→ 0 with C ′ ∈ addC and G ∈ GP(C) (we can get
such an exact sequence by applying (−)† = HomR(−, C) to an exact sequence 0→ Ω(X†)→ P → X† → 0
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with P free). We obtain the left and middle commutative diagrams below, which are pushout diagrams.

0

��

0

��
0 // Y // X //

��

ΩM //

��

0

0 // Y // C ′ //

��

Y ′ //

��

0

G

��

G

��
0 0

0

��

0

��
0 // ΩM //

��

F //

��

M // 0

0 // Y ′ //

��

G′ //

��

M // 0

G

��

G

��
0 0

0

��

0

��
Y ′′

��

Y ′′

��
0 // Y ′′′ //

��

X ′ f //

��

M // 0

0 // Y ′ //

��

G′ //

��

M // 0

0 0

The modules Y,C ′ belong to X⊥, and so does Y ′ by the middle row in the left diagram. The modules F,G
belong to GP(C), and so does G′ by the middle column in the middle diagram. The claim and Lemma
2.11 yield an exact sequence 0→ Y ′′ → X ′ → G′ → 0 with X ′ ∈ X and Y ′′ ∈ X⊥. We obtain the right
commutative diagram displayed above, which is a pullback diagram. The modules Y ′, Y ′′ belong to X⊥,
and so does Y ′′′ by the left column in the right diagram. The middle row in the right diagram and the
proof of Lemma 2.11 imply that the map f is a right X -approximation of M , and thus M ∈ rapX . ■

Applying the results stated above, we obtain the corollary below, which includes part of Theorem 1.2.

Corollary 3.7. Assume modX is abelian. Then rapX = modR if one of the following statements holds.

(1) The ring R is a homomorphic image of a Gorenstein ring and dimR ⩽ 1.
(2) The ring R is a Cohen–Macaulay ring with a canonical module ω, and X is contained in CM(R).
(3) The subcategory X is contained in GP(R).

Proof. We obtain (3) and (2) by applying Theorem 3.6 to C = R and C = ω, respectively. Let us show
(1). By (2) we may assume dimR = 1. By Propositions 3.4(1) and 3.5, we may assume depthC > 0 for
all C ∈ C. Proposition 3.2(2) implies R ∈ X ⊆ C. We see that R is Cohen–Macaulay and X ⊆ CM(R).
As R is a homomorphic image of a Gorenstein ring, it has a canonical module. By (2) we are done. ■

Here we recall a notion introduced by Huneke and Jorgensen [18]. A local ring R is called AB if R is
Gorenstein and there exists an integer n ⩾ 0 such that Ext≫0

R (M,N) = 0 with M,N ∈ modR implies
Ext>n

R (M,N) = 0. We can show the following proposition, which gives a sufficient condition for the
resolving subcategory X to consist of maximal Cohen–Macaulay R-modules. Note that the assumption
of the first assertion of the proposition is satisfied if the subcategory X is dominant.

Proposition 3.8. Assume that one has X ≠ rapX . Then the following assertions hold true.

(1) If Ωnk ∈ X for some n ⩾ 0, then the ring R is Cohen–Macaulay, and X is contained in CM(R).
(2) If R is an AB ring, then X is contained in CM(R).

Proof. Choose an R-module M such that M ∈ rapX and M /∈ X . Lemma 2.11 yields an exact sequence
0→ B → A→M → 0 of R-modules with A ∈ X and B ∈ X⊥. Since M is not in X , we have B ̸= 0.

(1) We have Ext>0
R (Ωnk,B) = 0. It follows that Ext>n

R (k,B) = 0, which implies idR B ⩽ n. Lemma
2.18 deduces that R is Cohen–Macaulay. Let X ∈ X be a nonzero R-module. Then Ext>0

R (X,B) = 0. It
is observed from [10, Exercise 3.1.24] thatX is a maximal Cohen–Macaulay R-module. Thus X ⊆ CM(R).

(2) Let 0 ̸= X ∈ X . Then Ext>0
R (X,B) = 0. By [2, Lemma 2.5] we get depthR− depthX = 0. Since

an AB ring is Cohen–Macaulay, we see that X is maximal Cohen–Macaulay. We obtain X ⊆ CM(R). ■

Remark 3.9. The latter half of the proof of Proposition 3.8(1) can be replaced with the following
argument using methods in [14]. Suppose X is not contained in CM(R). Then there exists X ∈ X with
e := depthX < dimR =: d. By [14, Proposition 4.2] we get Ωek ∈ X . Hence Ext>0

R (Ωek,B) = 0, which
implies idR N ⩽ e. Lemma 2.18 gives d ⩽ e. This contradiction shows that X is contained in CM(R).

We obtain the following corollary, which includes part of Theorem 1.2.

Corollary 3.10. (1) Assume that modX is an abelian category. Suppose (i) R is AB, or (ii) X contains
Ωnk for some n ⩾ 0, or (iii) X is closed under cosyzygies. Then either X = rapX or rapX = modR.
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(2) Consider the following two conditions for a subcategory Y of modR.
(a) The subcategory Y is resolving, closed under kernels, and satisfies Y ̸= rapY.
(b) The ring R is Cohen–Macaulay and has dimension 1 or 2, and Y = CM(R).
Then (a) implies (b). If R is a homomorphic image of a Gorenstein ring, (a) and (b) are equivalent.

Proof. (1) Use Proposition 3.8 and Corollary 3.7(2) for (i),(ii). For (iii), either k ∈ X or X ⊆ GP(R)
holds by [19, Theorem 1.3]. The former case is included in (ii). In the latter case Corollary 3.7(3) applies.

(2) Assume that (a) holds. Since Y contains addR and is closed under kernels, it contains Ω2(modR).
Proposition 3.8(1) implies that R is Cohen–Macaulay and Y is contained in CM(R). As Y is dominant,
it contains CM(R) by [14, Theorem 4.5] or Example 2.7(4). The equality Y = CM(R) follows. We thus
have Ω2(modR) ⊆ Y = CM(R), which implies dimR ⩽ 2. If R is artinian, then Y = CM(R) = modR,
which contradicts the assumption that Y ̸= rapY. Therefore R has dimension 1 or 2. Thus (b) holds.

Suppose that R is a homomorphic image of a Gorenstein ring and (b) holds. Then R admits a canonical
module. Examples 2.7(1) and 2.9(2) imply that Y is resolving with rapY = modR. Since dimR > 0, we
have Y ̸= rapY. Since dimR ⩽ 2, by the depth lemma Y is closed under kernels. Therefore (a) holds. ■

Corollary 3.11. Assume that R is a homomorphic image of a Gorenstein ring and modX is abelian.
(1) One has X = rapX if and only if X = C. (2) If X ̸= rapX , one then has k ∈ C ⊆ B ⊆ rapX .
(3) There is an equality B = rapB.

Proof. (1) Proposition 3.2(2) gives the inclusions X ⊆ C ⊆ rapX , which show the “only if” part. The “if”
part will follow if we get a contradiction by assuming C = X ̸= rapX . Proposition 3.2(4a) says X = C
is closed under kernels. Corollary 3.10(2) and its proof imply R is Cohen–Macaulay, X = CM(R) and
rapX = modR. Proposition 3.2(5) yields C = modR. Then X = modR, and X = rapX , a contradiction.

(2) It follows from (1) that X ̸= C. We get k ∈ C ⊆ B ⊆ rapX by Propositions 3.2(2) and 3.4(4).
(3) If X = rapX , then B = rapB by Proposition 3.2(2). Let X ̸= rapX . Then k ∈ B by (2). We will

be done once we derive a contradiction by assuming B ̸= rapB. Choose an R-module M ∈ rapB with
M /∈ B. Lemma 2.11 gives an exact sequence 0 → N → B → M → 0 with B ∈ B and 0 ̸= N ∈ B⊥. As
k ∈ B, we have Ext>0

R (k,N) = 0. Lemma 2.18 shows R is artinian. As B contains k and is closed under
extensions, it coincides with modR. Therefore we have B = rapB. This gives a desired contradiction. ■

The condition that a subcategory ofmodR is both resolving and closed under kernels looks so restrictive
that we may wonder if there exists no such example except trivial ones. The following proposition gives
rise to such a subcategory, even satisfying more restrictive conditions.

Proposition 3.12. Let Φ be a subset of SpecR containing AssR. Let Y be the subcategory of modR
consisting of modules M such that AssM is contained in Φ.

(1) One has that Y is a resolving subcategory of modR closed under subobjects. In particular, the sub-
category Y contains Ω(modR) and modY is an abelian category.

(2) Suppose Y ̸= rapY. Then R is a Cohen–Macaulay ring of dimension 1, and Y coincides with CM(R).

Proof. (1) Using basic properties of associated prime ideals, we see that Y is closed under subobjects and
extensions. As Φ contains AssR, we have R ∈ Y. Thus Y is resolving. Since a syzygy is a submodule of
a projective R-module, Y contains Ω(modR). By Proposition 2.16 (and Remark 2.4), modY is abelian.

(2) It follows by (1) and Corollary 3.10(2) that R is a Cohen–Macaulay ring with dimension 1 or 2 and
Y coincides with CM(R). As Y contains Ω(modR) by (1) again, the case dimR = 2 does not occur. ■

The above proposition yields the corollary below, which is none other than Theorem 1.3 and gives a
negative answer to Question 1.1.

Corollary 3.13. Assume that R is neither a 1-dimensional Cohen–Macaulay ring nor satisfies AssR =
SpecR. Then there exists a proper resolving subcategory Y of modR which is closed under subobjects and
satisfies Y = rapY. In particular, one has both that modY is abelian and that rapY ̸= modR.

Proof. Choose any subset Φ of SpecR such that AssR ⊆ Φ ̸= SpecR. Let Y be a subcategory of modR
consisting of modules M with AssM ⊆ Φ. Since Φ ̸= SpecR, we see that Y ̸= modR. By Proposition
3.12(1)(2) we have that Y is resolving and closed under subobjects, modY is abelian, and Y = rapY. ■

As an application of the above corollary, we present two examples.
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Example 3.14. Suppose that the ring R has dimension at least two.

(1) Assume that R has positive depth. Let Y be the subcategory of modR consisting of R-modules that
have positive depth. Then Y is such a subcategory as in Corollary 3.13 and satisfies k /∈ Y . This is
observed by taking the punctured spectrum of R as Φ in the proof of the corollary.

(2) Assume R satisfies Serre’s condition (S1). Let Y be the subcategory of modR consisting of R-modules
none of whose associated prime ideal has height 1. Then Y is such a subcategory as in Corollary 3.13
and satisfies k ∈ Y. This is seen by letting Φ = {p ∈ SpecR | ht p ̸= 1} in the proof of the corollary.

4. Applications and further questions

In this short section, we first apply our results in the previous sections to the subcategory of Gorenstein
projective modules. We then present two questions related to Question 1.1 and give some observations.

Proposition 4.1. Let X be an additive subcategory of modR containing R. Then rapX = modR if and
only if the functor ev : modX → modR given by ev(F ) = F (R) has a right adjoint.

Proof. The “only if” part follows from [1, Theorem 3.4(1)]. We prove the “if” part. Fix an R-module
M . Let ϕ : modR→ modX be a right adjoint to the functor ev. Then there is a functorial isomorphism
HomR(F (R),M) ∼= HommodX (F, ϕ(M)), where F ∈ modX . For each X ∈ X , the functor HomR(−, X)|X
belongs to modX . Since R is assumed to belong to X , we get functorial isomorphisms

HomR(X,M) ∼= HomR(HomR(R,X),M) ∼= HommodX (HomR(−, X)|X , ϕ(M)) ∼= ϕ(M)(X),

where to get the last isomorphism we apply Yoneda’s lemma. We thus obtain an isomorphism of functors
HomR(−,M)|X ∼= ϕ(M). Since ϕ(M) belongs to modX , it follows from Lemma 2.13 that the R-module
M admits a right X -approximation. Consequently, the equality rapX = modR holds. ■

Using the above proposition, we can get the theorem below. We should remark that condition (2) in
the theorem depends only on the structure of GP(R) as an additive category.

Theorem 4.2. Let R be a henselian local ring. The following are equivalent.
(1) The ring R is Gorenstein or G-regular. (2) The category modGP(R) is abelian.
(3) One has rapGP(R) = modR. (4) The functor ev : modGP(R)→ modR has a right adjoint.

Proof. First of all, GP(R) is a resolving subcategory of modR by Example 2.7(2). The equivalence (2)
⇔ (3) (resp. (3) ⇔ (4)) follows from Proposition 2.16 and Corollary 3.7(3) (resp. Proposition 4.1). If R
is Gorenstein (resp. G-regular), then GP(R) coincides with CM(R) (resp. addR) and there is an equality
rapGP(R) = modR by Example 2.9. Hence, the implication (1) ⇒ (3) holds. The opposite implication
(3) ⇒ (1) is a consequence of [13, Theorem C] (see also [22, Corollary 1.5]). ■

The following question naturally arises in view of Propositions 3.4, 3.5 and Corollary 3.11(2).

Question 4.3. Let R be a henselian local ring with residue field k. Let X be a resolving subcategory of
modR. Assume that k is not in X but admits a right X -approximation. Is then X contravariantly finite?

Remark 4.4. (1) Question 4.3 has an affirmative answer if R is artinian. Indeed, Proposition 3.2(1) says
rapX is closed under extensions. If rapX contains k and R is artinian, then we have rapX = modR.

(2) The assumption in Question 4.3 that the residue field k of R does not belong to X is indispensable. In
fact, X := mod0 R is a resolving subcategory of modR by Example 2.7(3) and we have k ∈ X ⊆ rapX .
However, X is not necessarily contravariantly finite. For example, if the ring R is Gorenstein and X
is contravariantly finite, then X coincides with addR or CM(R) or modR; see [22, Theorem 1.2].

In view of Corollary 3.13 and Example 3.14, our Question 1.1 is not always affirmative, and we should
modify it. It would be reasonable to make the additional assumption that there exists a nontrivial object
which admits a right approximation. Thus our modified question is the following.

Question 4.5. Let R be a henselian local ring. Let X be a resolving subcategory of modR such that
the category modX is abelian. Assume that there exists an R-module which does not belong to X but
admits a right X -approximation. Is then X contravariantly finite?
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Remark 4.6. Question 4.5 has an affirmative answer if we replace the abelianity of modX with the
stronger condition that X is closed under kernels (see Proposition 2.16) and assume further that R is a
homomorphic image of a Gorenstein ring. Indeed, Corollary 3.10(2) shows that R is Cohen–Macaulay
and X = CM(R). It follows from Example 2.9(2) that rapX = modR.
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