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Abstract. The notion of local rings with quasi-decomposable maximal ideal

was formally introduced by Nasseh and Takahashi. In separate works, the
authors of the present paper showed that such rings have rigid homological

properties; for instance, they are both Ext- and Tor-friendly. One point of

this paper is to further explore the homological properties of these rings and
also introduce new classes of such rings from a combinatorial point of view.

Another point is to investigate how far some of these homological properties

can be pushed along certain diagrams of local ring homomorphisms.

1. Introduction

Convention. Throughout the paper, (R,mR, k) is a commutative noetherian local

ring and R̂ denotes the completion of R in the mR-adic topology. If R = R̂, then
we say that R is complete. By a “fiber product ring” we mean a fiber product of
the form S ×k T , where S and T are commutative noetherian local rings with a
common residue field k such that S ̸= k ̸= T ; see 3.1 for the definition and notation.

Ogoma [46] observed that the class of local rings with decomposable maximal
ideal coincides with that of the fiber product rings; see 3.2 for details. The history of
such rings goes back quite far because of their interesting properties and numerous
applications; see, for instance, the works of Kostrikin and Šafarevič [34], Dress and
Krämer [17], Lescot [35], Ogoma [45, 47], and also the work of the authors and
VandeBogert [40]. In recent years, further progress has been made on the structure
and homological properties of these rings, as we explain after the next paragraph.

Following [13], the local ring R is called Ext-friendly (resp. Tor-friendly) if for
every pair (M,N) of finitely generated R-modules, the condition ExtiR(M,N) = 0

(resp. TorRi (M,N) = 0) for i≫ 0 implies that pdR(M) <∞ or idR(N) <∞ (resp.
pdR(M) <∞ or pdR(N) <∞). By [13, Propositions 2.2 and 5.5], Tor-friendliness
implies Ext-friendliness. Also, an Ext-friendly ring R satisfies the Auslander-Reiten
Conjecture that states if ExtiR(M,M ⊕ R) = 0 for a finitely generated R-module
M and all i ⩾ 1, then M is free; see [3] for the history of this conjecture.
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In [43, Theorem 3.1], Nasseh and Yoshino showed that a fiber product ring of
the form S ×k

(
k[x]/(x2)

)
is Tor-friendly (hence, Ext-friendly). A few years later,

Nasseh and Sather-Wagstaff [39, Theorem 1.1] generalized this result by proving
that any fiber product ring of the form S×kT is Tor-friendly.1 Furthermore, Nasseh
and Takahashi [42, Theorem A] proved that the maximal ideal of a fiber product ring
is always a direct summand of a direct sum of certain syzygies of finitely generated
modules of infinite projective dimension. Several other properties and applications
of these rings have also been studied in [1, 16, 18, 25, 26, 31, 37, 41, 44, 54].

Although, fiber product rings (or, local rings with decomposable maximal ideal)
have nice properties and applications, there are two particular vexing facts about
them. First of all, these rings are not integral domain; see our discussion in 3.5.
Second of all, by [35], depth of such rings is always ⩽ 1, while their Krull dimension
can be any positive integer. Therefore, a randomly given fiber product ring is most
likely non-Cohen-Macaulay; see also [40, Fact 2.2]. These facts motivated Nasseh
and Takahashi [42] to consider a more general version of such rings, namely, the
class of local rings that deform to fiber product rings. Such rings are called local
rings with quasi-decomposable maximal ideal; see 3.4.

Several classes of Cohen-Macaulay and non-Gorenstein local rings with quasi-
decomposable maximal ideal that are integral domain have been introduced in [42].
Such classes include certain numerical semigroup rings as well as Cohen-Macaulay
singular local rings with infinite residue field and minimal multiplicity (e.g., 2-
dimensional non-Gorenstein normal local domains with a rational singularity); see
Example 3.7 for more details. In Section 3 of this paper, we prove the following re-
sult that introduces new classes of both Cohen-Macaulay and non-Cohen-Macaulay
local rings with quasi-decomposable maximal ideal from a combinatorial point of
view; see 3.8 for the terminology.

Theorem 1.1. Let G be a finite simple graph on n vertices with vn a star vertex.

(a) The complete local ring k[[ΣG]] over the field k is Cohen-Macaulay of dimension
n with quasi-decomposable maximal ideal.

(b) The complete local ring k[[G̃]] over the field k has dimension n, depth n−1, and
quasi-decomposable maximal ideal.

As one might expect, local rings with quasi-decomposable maximal ideal have
rigid homological properties like those of the fiber product rings. For instance,
these rings are Tor-friendly (hence, Ext-friendly) by [42, Corollaries 6.5 and 6.8];
see also [52], where Takahashi studied these rings as a special case of the, so-called,
dominant local rings. One point of the present paper is to further explore the
homological properties of such rings. Therefore, from this point of view, a part of
this paper can be considered as an addendum to [39, 42].

Another point of the present paper is as follows: local rings which are homolog-
ically similar may be distinguished by the property of having quasi-decomposable
maximal ideal (or not); see Examples 4.6 and 4.7 and their subsequent paragraph.
This persuades us to consider a relaxed version of the quasi-decomposable maximal
ideal condition in some results of this paper. More precisely, we will investigate
how far we can push some of the properties along certain diagrams of local ring

1Another generalization of the result of Nasseh and Yoshino [43, Theorem 3.1] to the differential
graded homological algebra setting is found in [12, Theorem 4.1].
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homomorphisms starting with any local ring and ending with a local ring that has
quasi-decomposable maximal ideal. Among other results in this direction, we prove
the following in Section 5, which, roughly speaking, shows that the Ext-friendly
property is weakened when we push it along diagrams of local ring homomorphisms.

Theorem 1.2. Let R
φ−→ R′ ψ←− S be a diagram of local ring homomorphisms such

that φ is a composition of flat local maps and deformations, ψ is a deformation,
and S has quasi-decomposable maximal ideal. If N is a non-zero finitely generated
R-module with ExtiR(N,R) = 0 for i≫ 0, then G-dimR(N) <∞.

A generalized version of a conjecture of Tachikawa [51, Chapter 8] in commu-
tative algebra (which is a special case of the Auslander-Reiten Conjecture) states
that if R is Cohen-Macaulay with a canonical module ω, then ExtiR(ω,R) = 0 for
all i ⩾ 1 implies that R is Gorenstein; see [6] for the history of this conjecture. The
following result is an immediate consequence of Theorem 1.2, which is a souped up
version of the fact that local rings with quasi-decomposable maximal ideal satisfy
the generalized Tachikawa’s Conjecture.

Corollary 1.3. Assume that R is Cohen-Macaulay with a canonical module ω that
admits a diagram of local ring homomorphisms described as in Theorem 1.2. If
ExtiR(ω,R) = 0 for all i ⩾ 1, then R is Gorenstein

Finally, following the same theme as of Theorem 1.2, our goal in Section 6 is to
study the cardinality of the set S(R) that consists of shift-isomorphism classes of
semidualizing R-complexes along diagrams of local ring homomorphisms. The set
S(R) is known to be a finite set that, in general, can be big. However, our main
result in Section 6, stated next, shows that under the existence of certain diagrams
of local ring homomorphisms this set is small.

Theorem 1.4. Assume that R admits a diagram of local ring homomorphisms

R = R0 → R1 ← R2 → · · · ← Rn

such that Rn has quasi-decomposable maximal ideal. Assume that each leftward
pointing map is complete intersection such that the induced map on residue fields
is an isomorphism. Assume further that each rightward pointing map has finite
complete intersection dimension. Then card(S(R)) ⩽ 2.

2. Local ring homomorphisms: general background

2.1. Throughout this paper, D(R) denotes the derived category of R, where the
objects are the (possibly unbounded) R-complexes. An R-complex X is called
homologically bounded if Hi(X) = 0 for |i| ≫ 0. An R-complex X is homologically
finite if it is homologically bounded and each Hi(X) is finitely generated. The right
and left derived functors of Hom and tensor product functors in D(R) are denoted
by RHomR(−,−) and −⊗L

R−, respectively. For an integer i, the i-th shift of an R-

complex X is denoted by ΣiX. Note that
(
ΣiX

)
j
= Xj−i with ∂

ΣiX
j = (−1)i∂Xj−i

for all integers j. Quasi-isomorphisms of R-complexes, i.e., isomorphisms in D(R),
are denoted by the symbol ≃.
2.2. We say that R is a deformation of S if there is a surjective ring homomorphism
φ : S → R with Ker(φ) generated by an S-regular sequence. In this case, we may
also say that φ is a deformation, or S deforms to R. The minimal number of
generators of Ker(φ) is called the codimension of φ.
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2.3. We say that R is a complete intersection if there is a deformation ψ : S → R̂,
where S is a regular local ring. If Ker(ψ) is principal, then R is called a hypersurface.
(In particular, we take the perspective that a regular local ring is a hypersurface.)

2.4 ([9]). Let φ : R → S be a local ring homomorphism. We denote by φ̀ : R → Ŝ

the composition of φ with the natural map S ↪→ Ŝ.

A Cohen factorization of φ is a diagram R
φ̇−→ R′ φ′

−→ S of local ring homomor-
phisms such that R′ is complete, φ = φ′φ̇, the map φ̇ is flat with regular closed
fibre (i.e., R′/mRR

′ is a regular local ring), and φ′ is surjective. If S is complete,
then it follows from [9, (1.1) Theorem and (1.5) Proposition] that φ has a Cohen
factorization.

2.5 ([5]). Let φ : R → (S,mS) be a local ring homomorphism and R
φ̇−→ R′ φ′

−→ Ŝ
be a Cohen factorization of φ̀. We say that φ is complete intersection at mS (or
simply complete intersection) if φ′ is a deformation. Note that this definition is
independent of the choice of Cohen factorization; see [5, (3.3) Remark]. Also R and
φ are complete intersection if and only if S is complete intersection and fdR(S) <∞;
see [5, (5.9), (5.10), and (5.12)].

2.6 ([2]). We say that a finitely generated R-module L has Gorenstein dimension
0, and write G-dimR(L) = 0, if the following conditions are satisfied:

(i) the canonical map L→ L∗∗ is an isomorphism, where (−)∗ = HomR(−, R);
(ii) ExtiR(L,R) = 0 = ExtiR(L

∗, R) for all i ⩾ 1.

Modules with Gorenstein dimension 0 are also called totally reflexive.
For a non-negative integer n, we say that a finitely generated R-module M has

Gorenstein dimension at most n, and write G-dimR(M) ⩽ n, if there exists an exact
sequence 0→ Ln → · · · → L1 → L0 →M → 0 of finitely generated R-module such
that G-dimR(Li) = 0 for all 0 ⩽ i ⩽ n. If such an exact sequence does not exist,
then we say M has infinite Gorenstein dimension, and write G-dimR(M) =∞.

If R is Gorenstein, then for every finitely generated R-module M we have
G-dimR(M) <∞. Conversely, if G-dimR(k) <∞, then R is Gorenstein; see [2].

2.7 ([8]). Using the notation from 2.5, we set

G-dim(φ) := G-dimR′(Ŝ)− edim(φ̇)

where edim(φ̇) denotes the embedding dimension of the regular closed fibre of φ̇.
Note that, by [32, 3.2. Theorem], this definition is independent of the choice of
Cohen factorization. Moreover, it follows from the definition that if φ is complete
intersection, then G-dim(φ) <∞.

2.8. Let X be a homologically finite R-complex. The Poincaré and Bass series of
X, denoted PRX (t) and IXR (t), respectively, are the formal power series

PRX (t) :=
∑
i⩾0

rankk(Tor
R
i (X, k))t

i and IXR (t) :=
∑
i⩾0

rankk(Ext
i
R(k,X))ti.

2.9 ([8, (7.1) Theorem]). Let φ : R→ (S,mS) be a local ring homomorphism with
G-dim(φ) < ∞. The Bass series of φ, denoted Iφ(t), is a formal Laurent series
with non-negative integer coefficients satisfying the formal relation

ISS (t) = IRR (t)Iφ(t). (2.9.1)
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We say that φ is quasi-Gorenstein at mS (or simply quasi-Gorenstein) if Iφ(t) =
ta for some integer a. In this case, it follows from [8, (7.4) Theorem] that a =
depth(S) − depth(R). By [8, (7.7.2)], the ring S is Gorenstein if and only if R is
Gorenstein and φ is quasi-Gorenstein.

If φ is quasi-Gorenstein and fdR(S) <∞, then φ is called Gorenstein at mS (or
simply Gorenstein). By [7, (7.2) Theorem] we have that R and φ are Gorenstein if
and only if S is Gorenstein and fdR(S) <∞.

2.10 ([10]). A diagram R
φ−→ R′ π←− S of local ring homomorphisms is called a

quasi-deformation if φ is flat and π is a deformation. The complete intersection
dimension of an R-module M , denoted CI-dimR(M), is defined to be

CI-dimR(M) := inf{pdS(M⊗RR′)−pdS(R′) | R→ R′ ← S is a quasi-deformation}.

If R is complete intersection, then for every finitely generated R-module M we
have CI-dimR(M) < ∞. Conversely, if CI-dimR(k) < ∞, then R is complete
intersection; see [10, (1.3) Theorem].

2.11 ([49]). Let φ : R→ S be a local ring homomorphism. The complete intersec-
tion dimension of φ, denoted CI-dim(φ), is defined to be

CI-dim(φ) := inf

{
CI-dimR′(Ŝ)− edim(φ̇)

∣∣∣∣∣ R φ̇−→ R′ φ′

−→ Ŝ is a Cohen
factorization of φ̀

}
.

It is unknown whether the finiteness of CI-dim(φ) is independent of the choice of
Cohen factorization.

2.12. If φ : R → S is a local ring homomorphism with CI-dim(φ) < ∞ and S is
a complete intersection, then R is a complete intersection. Indeed, use a Cohen
factorization to reduce to the case where φ is surjective. In this case, we have
CI-dimR(S) < ∞, and therefore, cxR(S) < ∞; see [10, (5.6) Theorem]. (Here,
cxR(S) denotes the complexity of S over R; see [4] for the definition.) If S is a
complete intersection, then by [4, Theorem 8.1.2] we have cxS(k) < ∞. It then
follows from [11, Theorem 9.1.1(1) and Remark 7.1.1] that cxR(k) < ∞. Thus,
again by [4, Theorem 8.1.2] we conclude that R is a complete intersection.

The next discussion uses the notion of (semi)dualizing complexes. For the defi-
nitions of these complexes and more we refer the reader to Section 6.

2.13 ([8]). Let φ : R→ S be a local ring homomorphism, and let DR̂ be a dualizing

R̂-complex. A dualizing complex for φ is a semidualizing S-complex Dφ with the

property that DR̂ ⊗L
R̂
(Ŝ ⊗L

S D
φ) is a dualizing Ŝ-complex. If we assume that

G-dim(φ) <∞, then a dualizing complex Dφ̀ for φ̀ exists by [8, (6.7) Lemma].

3. Local rings with quasi-decomposable maximal ideal

This section is devoted to the definition of local rings with quasi-decomposable
maximal ideal – a notion that was formally introduced by Nasseh and Takahashi
in [42] – and to the proof of Theorem 1.1 in which we introduce combinatorially
constructed classes of such rings. The class of local rings with quasi-decomposable
maximal ideal naturally includes that of local rings with decomposable maximal
ideal. Therefore, we start this section with the following definition; see Remark 3.2.
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3.1. Let (S,mS , k) and (T,mT , k) be commutative noetherian local rings. The fiber
product of S and T over their common residue field k is defined to be

S ×k T := {(s, t) ∈ S × T | πS(s) = πT (t)}

where S
πS−−→ k

πT←−− T are the natural surjections. Note that S ×k T is a local ring
with maximal ideal mS×kT = mS ⊕mT and residue field k.

We say that the local ring R is a (non-trivial) fiber product if there exist local
rings (S,mS , k) and (T,mT , k) with S ̸= k ̸= T such that R ∼= S ×k T .

3.2. It follows from [46, Lemma 3.1] (or [42, Fact 3.1]) that the class of fiber product
rings coincides with the class of local rings with decomposable maximal ideal. More
precisely, if mR = I⊕J is a non-trivial decomposition of mR, then R ∼= R/I×kR/J .

3.3. One can check that for any field k there is a ring isomorphism

k[[x1, . . . , xn]]

(f1, . . . , fu)
×k

k[[y1, . . . , ym]]

(g1, . . . , gv)
∼=

k[[x1, . . . , xn, y1, . . . , ym]](
f1, . . . , fu, g1, . . . , gv, xiyj |

1 ⩽ i ⩽ n
1 ⩽ j ⩽ m

) .
3.4. The maximal ideal mR of the ring R is called quasi-decomposable if there is an
R-regular sequence x ∈ mR such that mR/(x) is decomposable. In this case we say
that R has quasi-decomposable maximal ideal. By 3.2, R has quasi-decomposable
maximal ideal if it deforms to a fiber product ring.

3.5. Identifying mS and mT with the ideals mS⊕0 and 0⊕mT of S×kT in 3.1, note
that mSmT = 0. Hence, fiber product rings (e.g., local rings with decomposable
maximal ideal) are not integral domains, thus, not regular. However, the following
result holds true; see 4.5 for a more detailed discussion.

Proposition 3.6. If R is a regular local ring of dimension n ⩾ 2, then mR is
quasi-decomposable.

Proof. First assume that n = 2. Let R′ = R/(xy), where x, y ∈ mR is a regular
system of parameters. We show that the maximal ideal mR′ = (x, y)R′ is decom-
posable. Since R is a unique factorization domain, we have xR∩ yR = xyR. Thus,
xR′ ∩ yR′ = (0). This implies that mR′ = (x, y)R′ = xR′ ⊕ yR′, as desired.

Now we prove the general case where n ⩾ 3. Let r1, . . . , rn ∈ mR be a regular
system of parameters and note that R = R/(r3, . . . , rn) is a 2-dimensional regular
ring. Hence, by the previous case, R has quasi-decomposable maximal ideal. Since
r3, . . . , rn is R-regular, R also has quasi-decomposable maximal ideal. □

Several classes of local rings with quasi-decomposable maximal ideal (that are
not fiber products) have been introduced in [42]. Such classes include the following.

Example 3.7. The ring R has quasi-decomposable in any of the following cases.

(a) R is a Cohen-Macaulay local ring which is not a hypersurface with infinite
residue field and minimal multiplicity, e.g., R is a 2-dimensional non-Gorenstein
normal local domain with a rational singularity.

(b) R = k[[H]] is a local complete numerical semigroup ring over a field k, where
H = ⟨pq + p + 1, 2q + 1, p + 2⟩ is the numerical semigroup with p, q > 0 and
gcd(p+ 2, 2q + 1) = 1.

(c) R = k[[H]] is a non-Gorenstein almost-Gorenstein numerical semigroup ring
with edim(R) = 3 and e(R) ⩽ 6. (Here, edim(R) denotes the embedding
dimension of R.)
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(d) R is any of the Cohen-Macaulay local rings in [53, Examples 7.1, 7.2, 7.4, 7.5].

In the rest of this section, we prove Theorem 1.1 that, as we mentioned earlier,
introduces new classes of Cohen-Macaulay and non-Cohen-Macaulay local rings
with quasi-decomposable maximal ideal from a combinatorial point of view. We
assume that the reader is familiar with combinatorial aspects of commutative alge-
bra. However, to avoid confusion, we specify some terminology.

3.8. Let G be a finite simple graph (i.e, G has no loops and no multiple edges)
with vertex set V = {v1, . . . , vn} and edge set E. Consider the polynomial ring
S = k[v1, . . . , vn] over a field k. The edge ideal of G in S, denoted I(G), is the ideal
generated by the edges of G, that is,

I(G) := ({vivj ∈ S | vivj ∈ E})S.

Set k[G] := S/I(G) and k[[G]] := k̂[G] = k[[v1, . . . , vn]]/(I(G)), where k̂[G] is the
completion of k[G] with respect to the graded maximal ideal of k[G].

Let W = {w1, . . . , wn} denote a second list of vertices. By ΣG we denote the
graph obtained from G by adding a whisker at each vertex of G, that is, ΣG has
vertex set V ∪W and edge set {viwi | i = 1, . . . , n} ∪ E. Also, the graph obtained

from G by adding a whisker to each vertex except for vn is denoted by G̃.

Theorem 1.1(a) follows directly from the next discussion.

3.9. Continue with the terminology of 3.8. The edge ideal I(ΣG) of the ring
S′ := k[v1, . . . , vn, w1, . . . , wn] is Cohen-Macaulay, i.e., the quotient ring k[ΣG] =
S′/I(ΣG) is Cohen-Macaulay by [57, Proposition 2.2] and [58, Proposition 6.3.2].
Specifically, the ring k[ΣG] has dimension n, and also the sequence v1−w1, . . . , vn−
wn is k[ΣG]-regular with k[ΣG]/(v1 − w1, . . . , vn − wn) isomorphic to the local
artinian ring k[G]′ := k[v1, . . . , vn]/(I(G), v

2
1 , . . . , v

2
n). (One way to view this is

via polarization of the non-square-free ideal (I(G), v21 , . . . , v
2
n); for a discussion on

polarization see, for instance, [19].) It follows that v1 − w1, . . . , vn − wn is also
k[[ΣG]]-regular with

k[[ΣG]]/(v1 − w1, . . . , vn − wn) ∼= k[G]′.

From the definition of k[G]′, it is straightforward to show that the socle elements
of k[G]′ are in bijection with the maximal cliques in the complementary graph Gc.
For instance, for the path P3 = (v1 − v2 − v3), the complementary graph consists
of the edge v1 − v3 and the isolated vertex v2. This gives two maximal cliques in
P c3 (that are the connected components of P c3 ) corresponding to the socle elements
v1v3 and v2 in k[P3]

′ = k[v1, v2, v3]/(v
2
1 , v

2
2 , v

3
3 , v1v2, v2v3). Notice in this example

that the vertex v2 is a star-vertex, that is, it is adjacent to every other vertex in
P3. Notice further that this element shows that k[P3]

′ is a fiber product as follows:

k[P3]
′ =

k[[v1, v2, v3]]

(v21 , v
2
2 , v

3
3 , v1v2, v2v3)

∼=
k[[v2]]

(v22)
×k

k[[v1, v3]]

(v21 , v
3
3)
.

It follows that k[[ΣP3]] has quasi-decomposable maximal ideal.
In general, this process (with star vertex vn) yields the isomorphism

k[G]′ ∼= k[[vn]]/(v
2
n)×k k[H]′
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where H is the subgraph of G induced by the vertices v1, . . . , vn−1. On the other
hand, if one only mods out by v2−w2, . . . , vn−wn, then one obtains a quotient iso-
morphic to the 1-dimensional Cohen-Macaulay fiber product k[[vn]]×k (k[H]′[[wn]]);
see 3.10 for a concrete example.

3.10. For a list of variables X = X1,1, X2,1, . . . , X1,n, X2,n, consider the ideal

I = (X1,1, X2,1)
2 + · · ·+ (X1,n, X2,n)

2

of the ring k[[X]] over a field k. For the new variables Y,Z, the ring

R =
k[[Z,X, Y ]]

(I, ZX,ZY )

constructed in [40, Proof 4.1] is a 1-dimensional Cohen-Macaulay fiber product
ring that arises from an edge ideal construction. Specifically, consider the following
graph G obtained by connecting n paths of length 1 to a single vertex v.

v2,1 v1,2 v2,2 · · · v1,n

v1,1 v v2,n

Note that v is a star vertex for this graph. Thus, the ring k[[ΣG]] has quasi-
decomposable maximal ideal by Theorem 1.1(a). In fact, modding k[[ΣG]] out by
the regular sequence of elements of the form vi,j−wi,j , we are setting each v2i,j = 0,
and this yields the 1-dimensional Cohen-Macaulay local ring

k[[v1,1, v2,1, v1,2, v2,2, . . . , v1,n, v2,n, v, w]](
v21,1, v1,1v2,1, v

2
2,1, v

2
1,2, v1,2v2,2, v

2
2,2, . . . , v

2
1,n, v1,nv2,n, v

2
2,n,

vw, vv1,1, vv2,1, vv1,2, vv2,2, . . . , vv1,n, vv2,n

)
which is isomorphic to the ring R.

We conclude this section with the proof of Theorem 1.1(b).

Proof of Theorem 1.1(b). Continue with the terminology of 3.8, and let

k[G]′′ := k[v1, . . . , vn]/(I(G), v
2
1 , . . . , v

2
n−1).

Notice that vnvi = 0 for all i < n in k[G]′′, but v2n ̸= 0. It then follows that

k[G]′′ ∼= k[vn]×k k[v1, . . . , vn−1]/(I(H), v21 , . . . , v
2
n−1).

Hence, by [40, Fact 2.2], the ring k[G]′′ has dimension 1 and depth 0. Furthermore,

polarizing shows that this ring is a deformation of the ring k[[G̃]] with dimension n
and depth n− 1, as desired. □

4. Gorenstein and complete intersection properties

The structure of Gorenstein local rings with decomposable maximal ideal (i.e.,
fiber product rings) can be described completely; see Propositions 4.1 and 4.3 below.
As one sees in Theorem 4.4, this description can be generalized to the local rings
with quasi-decomposable maximal ideal. In this section, we also provide examples
to show that local rings which are homologically similar can be distinguished by the
property of having quasi-decomposable maximal ideal or not. This fact persuades
us to consider a relaxed version of the quasi-decomposable maximal ideal condition
in Theorem 4.4 and prove Corollary 4.8 as a more general version.
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Throughout the paper, e(R) denotes the Hilber-Samuel multiplicity of R.

Proposition 4.1 ([40, Corollary 2.7 and Fact 2.9]). If mR is decomposable, then
R is Gorenstein if and only if it is a 1-dimensional hypersurface. In this case, if
R ∼= S×k T , then both S and T are 1-dimensional regular local rings and e(R) = 2.

As an immediate consequence of this proposition we have the following result.

Corollary 4.2. Let R be a 1-dimensional Gorenstein ring. Then, mR is quasi-
decomposable if and only if it is decomposable.

In Proposition 4.1, if we assume that the local ring R is complete, then we obtain
a more detailed description of its structure.

Proposition 4.3. Assume that mR is decomposable, and let R ∼= S ×k T . If R is
Gorenstein and complete, then there exists a 2-dimensional complete regular local
ring Q with regular system of parameters r, s such that

S ∼= Q/rQ, T ∼= Q/sQ, and R ∼= Q/rsQ.

Proof. The existence of the ring Q with the desired properties comes from Cohen’s
structure theorem, as in [54, Corollary 3.2.5]. □

The following result is a generalization of Proposition 4.1.

Theorem 4.4. If mR is quasi-decomposable, then R is Gorenstein if and only if
it is a hypersurface. Moreover, if these equivalent conditions are satisfied, then
dim(R) ⩾ 1 and e(R) ⩽ 2.

Proof. If R is a hypersurface, then it is Gorenstein.
For the converse, assume that R is Gorenstein. It follows that there is an R-

regular sequence x = x1, . . . , xc ∈ mR such that the maximal ideal mR of the

ring R = R/(x) is decomposable. Since R is also Gorenstein, Proposition 4.1
implies that R is a 1-dimensional hypersurface. Write R ∼= S ×k T , where S and
T are 1-dimensional regular local rings. Since mR = mS ⊕ mT , it follows readily

that edim(R) = 2. By construction, we have dim(R) = dim(R) + c = 1 + c and
edim(R) ⩽ edim(R)+c = 2+c. Hence, edim(R)−dim(R) ⩽ (2+c)−(1+c) = 1, so
R is a hypersurface. For the inequality involving e(R), note that e(R) ⩽ e(R) = 2
by Proposition 4.1. □

4.5. In contrast to Proposition 3.6, if R is a singular n-dimensional hypersurface,
then mR may or may not be quasi-decomposable. For instance, Theorem 4.4 rules
out artinian hypersurfaces and the hypersurfaces of multiplicity greater than 2.
However, even the hypersurfaces of dimension 1 and multiplicity 2 need not have
quasi-decomposable maximal ideal. Indeed, by Corollary 4.2, if R is a 1-dimensional
hypersurface that has quasi-decomposable maximal ideal, then it is not an integral
domain. Hence, for any field k, the ring k[[x, y]]/(x2 − y3) ∼= k[[t2, t3]] does not have
quasi-decomposable maximal ideal.

On the other hand, in higher dimensions, some integral domain hypersurfaces of
multiplicity 2 do have quasi-decomposable maximal ideal while others do not; see
Examples 4.6 and 4.7 below.

Example 4.6. Let R = C[[x, y, z]]/(x2 + y2 + z2). This ring is a 2-dimensional hy-
persurface domain that has quasi-decomposable maximal ideal. In fact, the element
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z is R-regular and we have

R

zR
∼=

C[[x, y]]
(x2 + y2)

=
C[[x, y]]

(x+ iy)(x− iy)
∼=

C[[u, v]]
(uv)

∼= C[[u]]×C C[[v]].

Example 4.7. If g is an element of the cube of the maximal ideal (x, y, z) of the
ring k[[x, y, z]] over the field k, then the hypersurface R = k[[x, y, z]]/(x2 + g) does
not have quasi-decomposable maximal ideal. (Note that e(R) = 2, and there are
plenty of examples where this ring is an integral domain.) By way of contradiction,
suppose that f ∈ k[[x, y, z]] such that f ∈ R is R-regular and that R := R/fR is
isomorphic to a fiber product ring of the form S ×k T .

Note that it follows readily that the maximal ideal of R/m3
R

is decomposable.

Indeed, if mR = mS ⊕mT , then m3
R
= m3

S ⊕m3
T , so the maximal ideal of R/m3

R
is

mR/m
3
R
= (mS ⊕mT )/(m

3
S ⊕m3

T )
∼= (mS/m

3
S)⊕ (mT /m

3
T ).

Note that the condition g ∈ (x, y, z)3 implies that

R

m3
R

∼=
k[[x, y, z]]

(x2 + g, f) + (x, y, z)3
=

k[[x, y, z]]

(x2, f) + (x, y, z)3
. (4.7.1)

If f ∈ (x, y, z)2, then e(R) ⩾ 4, contradicting Proposition 4.1. Thus, we have
f ∈ (x, y, z)∖ (x, y, z)2. Now we consider two cases.

Case 1: f ≡ ax2 (mod (x, y, z)3) for some a ∈ k. In this case, (4.7.1) reads as

R

m3
R

∼=
k[[x, y, z]]

(x2) + (x, y, z)3
.

If the maximal ideal of this ring is decomposable, then in particular there are two
linearly independent linear forms α = bx+cy+dz and α′ = b′x+c′y+d′z such that
αα′ = 0 in R/m3

R
, that is, αα′ ∈ (x2) + (x, y, z)3 ⊂ k[[x, y, z]]. It is straightforward

to show that there are no such forms, a contradiction.
Case 2: f ̸≡ ax2 (mod (x, y, z)3) for all a ∈ k. In this case, since f is in

(x, y, z) ∖ (x, y, z)2, the elements x, f form part of a regular system of parameters
for the ring k[[x, y, z]]. Let x, f, u be a regular system of parameters for k[[x, y, z]].
Then, (4.7.1) reads as

R

m3
R

∼=
k[[x, f, u]]

(x2, f) + (x, f, u)3
∼=

k[[x, u]]

(x2) + (x, u)3
.

As in Case 1, it is straightforward to use linear forms to show that the maximal
idea of this ring is indecomposable, again, a contradiction.

Thus, R does not have quasi-decomposable maximal ideal.

Examples 4.6 and 4.7 are interesting in that they show that rings which are some-
what similar can be distinguished by the property of having quasi-decomposable
maximal ideal (or not). These rings have many similar homological properties,
both being hypersurfaces. This fact can be seen by observing that each one is a
deformation of the regular local ring k[[x, y, z]], which does have quasi-decomposable
maximal ideal by Proposition 3.6. With this in mind, it is natural to consider a re-
laxed version of the quasi-decomposable maximal ideal condition. This is explored
in the next result (as a consequence of Theorem 4.4) which concludes this section.

Corollary 4.8. Assume R is Gorenstein. The following conditions are equivalent.
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(i) R is a complete intersection.
(ii) R admits a diagram of deformations R → R′ ← R′′ such that R′′ has quasi-

decomposable maximal ideal.

(iii) R̂ admits a deformation R̂ ← Q, where Q has quasi-decomposable maximal
ideal.

(iv) There exists a quasi-Gorenstein local ring homomorphism R → R̃ of finite

complete intersection dimension such that R̃ admits a finite sequence

R̃← R1 → R2 ← · · · → Rn

of deformations in which Rn has decomposable maximal ideal.
(v) There exists a quasi-Gorenstein local ring homomorphism R → R̃ of finite

complete intersection dimension such that R̃ admits a finite sequence

R̃← R1 → R2 ← · · · → Rn (4.8.1)

of complete intersection local ring homomorphisms in which Rn has quasi-
decomposable maximal ideal.

Proof. (i) =⇒ (ii) Assume that R is a complete intersection. Let x ∈ mR be a
maximal R-regular sequence, and set R′ := R/(x). Note that R′ is artinian and
hence, it is complete. By Cohen’s Structure Theorem, R′ is a homomorphic image
of a regular local ring R′′ that can be chosen such that dimR′′ ⩾ 2. Since R is a
complete intersection, the same is true of R′, so the map R′′ → R′ is a deformation.
Furthermore, R′′ has quasi-decomposable maximal ideal by Proposition 3.6.

(ii) =⇒ (iv) Assume that R is Gorenstein and admits a diagram of deforma-
tions R → R′ ← R′′ such that R′′ has quasi-decomposable maximal ideal. The
deformation R→ R′ is quasi-Gorenstein by 2.9 and has finite complete intersection
dimension. Since R′′ has quasi-decomposable maximal ideal, there is a deformation
R′′ → R2 such that R2 has decomposable maximal ideal. Now, take the given
diagram R → R′ ← R′′ and set R̃ = R′ and R1 = R′′ with n = 1 to conclude that
condition (iv) holds.

(iv) =⇒ (v) follows from the facts that every deformation is a complete inter-
section local ring homomorphism and every ring with decomposable maximal ideal
has quasi-decomposable maximal ideal.

(v) =⇒ (i) Under the assumptions, note that by 2.9 the ring R̃ is Gorenstein since

R is Gorenstein and R→ R̃ is quasi-Gorenstein. The sequence (4.8.1) of complete
intersection local ring homomorphisms shows that each ring Ri is Gorenstein, by 2.7
and 2.9. It follows from Theorem 4.4 that Rn is a hypersurface, so by 2.5 each Ri
is a complete intersection. In particular, R̃ is a complete intersection and hence, R
is a complete intersection by 2.12.

(i) =⇒ (iii) If R is a complete intersection, then there is a deformation Q→ R̂,
where Q is a regular local ring that can be chosen to have dimension ⩾ 2. Note
that Q has quasi-decomposable maximal ideal by Proposition 3.6.

(iii) =⇒ (iv) Assume that R is Gorenstein and the completion R̂ admits a

deformation R̂ ← Q such that Q has quasi-decomposable maximal ideal. Argue

as in the proof of (ii) =⇒ (iv), using the fact that the natural map R → R̂ is
quasi-Gorenstein and has finite complete intersection dimension, to conclude that
condition (iv) holds. □
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5. Gorenstein property and the vanishing of Ext

In this section, we prove Theorem 1.2 and Corollary 1.3 from the introduction.
We start with the next result for which the proof is omitted because it is a direct
consequence of [42, Corollary 6.8] and [21, Corollary 4.4].

Proposition 5.1. If R is singular and mR is quasi-decomposable, then the following
conditions are equivalent.

(i) R is Gorenstein.
(ii) R is a hypersurface.
(iii) There exists a non-zero finitely generated R-module N with idR(N) <∞ such

that ExtiR(N,R) = 0 for i≫ 0.
(iv) There exists a finitely generated R-module M with pdR(M) = ∞ such that

ExtiR(M,R) = 0 for i≫ 0.

Proof of Theorem 1.2 will be given after the following result, which is a souped
up version of Proposition 5.1 and is a consequence of Theorem 1.2. Note that
Corollary 1.3, which states that the generalized Tachikawa’s Conjecture holds for
R, follows directly from part (a) of the following result by assuming ω = N .

Corollary 5.2. A singular local ring R is Gorenstein if any of the following holds.

(a) There exists a non-zero finitely generated R-module N with idR(N) <∞ such
that ExtiR(N,R) = 0 for i ≫ 0, and there is a diagram of local ring homo-

morphisms R
φ−→ R′ ψ←− S such that φ is a composition of flat local maps and

deformations, ψ is a deformation, and S has quasi-decomposable maximal ideal.
(b) There exists a finitely generated R-module M with pdR(M) = ∞ such that

ExtiR(M,R) = 0 for i ≫ 0, and there is a local ring homomorphism R
φ−→ S

that is a composition of flat local maps and deformations and S has quasi-
decomposable maximal ideal.

Proof. Assume that (a) holds. If S were regular, then R′ would be Gorenstein, im-
plying that R is Gorenstein as well. Therefore, we assume without loss of generality
that S is singular. By Theorem 1.2, we have G-dimR(N) <∞. On the other hand,
by assumption, we know that idR(N) < ∞. Hence, it follows from [30, Theorem
3.2] that R is Gorenstein, as desired.

To show that (b) implies R is Gorenstein, argue as in the proof of Theorem 1.2
(below) to conclude that either pdR(M) < ∞ or R is Gorenstein. Since M has
infinite projective dimension by assumption, we conclude that R is Gorentein. □

Proof of Theorem 1.2. Let e be the codimension of the deformation ψ. Then,

R′ ≃ ΣeRHomS(R
′, S). (5.2.1)

Write φ as a composition φ = φ1 · · ·φn of flat maps and deformations. Rewrite
each deformation as a composition of codimension-1 deformations, if necessary, to
assume without loss of generality that each deformation has codimension 1.

To prove that G-dimR(N) <∞, we argue by induction on n. For the base case
n = 0, note that φ is the identity on R = R′. By assumption, the R-complex
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RHomR(N,R) is homologically bounded. It follows from (5.2.1) that

RHomR(N,R) ≃ RHomR(N,Σ
eRHomS(R,S))

≃ ΣeRHomR(N,RHomS(R,S))

≃ ΣeRHomS(R⊗L
R N,S)

≃ ΣeRHomS(N,S).

Hence, the S-complex RHomS(N,S) is homologically bounded as well. In other
words, we have ExtiS(N,S) = 0 for i ≫ 0. From [42, Corollary 6.8], we have that
pdS(N) <∞ or S is Gorenstein. In either of these cases, we have G-dimS(N) <∞.
It now follows from [14, (2.2.8) Theorem] that G-dimR(N) <∞ as well.

For n ⩾ 1 we consider the following cases.

Case 1: Suppose that φn : R→ R′′ is flat. By flat base change, for the R′′-module
N ′′ := R′′ ⊗R N we have ExtiR′′(N ′′, R′′) = 0 for i ≫ 0. On the other hand,
the diagram R′′ → R′ ← S satisfies the hypotheses of our induction step, so we
conclude that G-dimR(N) = G-dimR′′(N ′′) <∞; see, for instance, [8, (4.1.4)].

Case 2: Suppose that φn : R → R′′ is a codimension-1 deformation. Then, φn is
surjective with kernel generated by an R-regular element x. If N1 is a syzygy of
N , then x is N1-regular. Dimension-shifting implies that ExtiR(N1, R) = 0 for all
i≫ 0. It also follows that N ′′

1 := R′′ ⊗R N1 ≃ R′′ ⊗L
R N1. Therefore, we have

RHomR′′(N ′′
1 , R

′′) ≃ RHomR′′(R′′ ⊗L
R N1, R

′′)

≃ RHomR(N1,RHomR′′(R′′, R′′))

≃ RHomR(N1, R
′′).

Thus, we have ExtiR′′(N ′′
1 , R

′′) ∼= ExtiR(N1, R
′′) for all i ⩾ 1. Because of the short

exact sequence 0 → R
x−→ R → R′′ → 0, using the assumption ExtiR(N1, R) = 0

for i ≫ 0, we conclude that ExtiR′′(N ′′
1 , R

′′) ∼= ExtiR(N1, R
′′) = 0 for i ≫ 0.

It follows from the induction step that G-dimR(N1) = G-dimR′′(R′′ ⊗L
R N1) =

G-dimR′′(N ′′
1 ) <∞; see [2, (4.31) Corollary]. Since N1 is a syzygy of N , it follows

that G-dimR(N) <∞, as desired. □

Next example shows that part (b) of Corollary 5.2 cannot be weakened to having

a diagram R
φ−→ R′ ψ←− S described in part (a).

Example 5.3. Consider the Cohen-Macaulay local rings S = k[[x, y, z]]/(x2, xy, y2)
and R = k[[x, y, z]]/(x2, xy, y2, z2). Note that S has quasi-decomposable maximal
ideal because the S-regular sequence z satisfies

S/(z) ∼= k[[x, y]]/(x2, xy, y2) ∼= k[[x]]/(x2)×k k[[y]]/(y2).
Also, R is not Gorenstein and the natural projection S → R is a codimension-
1 deformation. On the other hand, the R-module R/(z) has infinite projective
dimension and is totally reflexive so it has lots of Ext-vanishing with respect to R;
see 5.5 below for the definition of totally reflexive.

The following result is a slight variation on the implication “(b) =⇒ R is Goren-
stein” of Corollary 5.2.

Proposition 5.4. Assume that there exists a finitely generated R-module M with
CI-dimR(M) =∞ such that ExtiR(M,R) = 0 for i≫ 0, and there is a diagram of
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local ring homomorphisms R
φ−→ R′ ψ←− S such that φ is flat, ψ is a deformation,

and S has quasi-decomposable maximal ideal. Then, R is Gorenstein.

Proof. If CI-dimR(M) = ∞, then it follows from [10, (1.13) Proposition] that
CI-dimR′(R′ ⊗RM) =∞ as well. Now, argue as in the proof of Corollary 5.2. □

We have seen in Corollaries 4.8 and 5.2 that rings which admit certain dia-
grams of local ring homomorphisms with the ring appearing on the right having
quasi-decomposable maximal ideal have restrictive homological properties some-
how similar to the rings with quasi-decomposable maximal ideals. We conclude
this section with a result about G-regularity that is of a similar spirit.

5.5. Following [55], the ring R is called G-regular if the class of totally reflexive
R-modules (i.e., finitely generated R-modules of Gorenstein dimension 0) coincides
with the class of free R-modules.

Proposition 5.6. Let φ : R → S be a local ring homomorphism that is a com-
position of flat local ring homomorphisms and deformations. Assume that S is
Cohen-Macaulay and has quasi-decomposable maximal ideal. If R is not a complete
intersection, then S and R are both G-regular.

Proof. Note that our assumptions imply that fdR(S) < ∞. Since R is not a com-
plete intersection, finite flat dimension descent implies that S is also not a complete
intersection; see 2.5. Theorem 4.4 implies that S is not Gorenstein. Our assump-
tion that S is Cohen-Macaulay and has quasi-decomposable maximal ideal implies
that S is G-regular by [42, Corollary 6.6]. The proof of loc. cit. shows that if
A→ B is a deformation such that B is Cohen-Macaulay and G-regular, then A is
Cohen-Macaulay and G-regular. It is straightforward to show that the same im-
plication holds when the map A → B is flat and local. Thus, it follows that R is
Cohen-Macaulay and G-regular. □

5.7. In contrast with Corollary 4.8, one cannot improve Proposition 5.6 to allow
for a zig-zag of local ring homomorphisms. In fact, Example 5.3 shows that if S is
Cohen-Macaulay and has quasi-decomposable maximal ideal, R is not a complete

intersection, and R
=−→ R

τ←− S is a diagram of local ring homomorphisms, where τ
is a codimension-1 deformation, then one cannot conclude that R is G-regular.

6. Semidualizing complexes

The notion of Semidualizing modules was originally introduced by Foxby [20]
and rediscovered by several authors independently for different applications; see,
for instance [8, 27, 50, 56, 59]. Special cases of such modules include canonical
modules over Cohen-Macaulay rings, a notion that was introduced by Grothendieck;
for more details see [29].

Our goal in this section is to prove Theorem 1.4 in which we show that the
cardinality of the set consisting of shift-isomorphism classes of semidualizing R-
complexes is small under the existence of a certain diagram of local ring homomor-
phisms. This set, which is denoted by S(R) (see 6.3 below), is known to be a finite
set by [38]. On the other hand, for every integer n ⩾ 1, by [40, Theorem B], there
exists a local ring R with card(S(R)) = 2n. Hence, in general, S(R) can be big.

Note that for a single ring R, if R is a fiber product ring or more generally, if
mR is quasi-decomposable, then by [39, Corollary 4.6] and Proposition 6.6 below
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we have that S(R) is small. More precisely, in these cases we have card(S(R)) ⩽ 2.
Theorem 1.4, in fact, shows how far we can push this result along a zig-zag diagram
of local ring homomorphisms.

6.1. A finitely generated R-module C is semidualizing if one has R ∼= HomR(C,C)
and ExtiR(C,C) = 0 for all i ⩾ 1. For instance, the free R-module R1 is semidual-
izing. A dualizing module D for R is a semidualizing module with idR(D) <∞.2

Note that R admits a dualizing module if and only if it is Cohen-Macaulay and
a homomorphic image of a local Gorenstein ring.

More generally, we define the following notions.

6.2. A homologically finite R-complex C is semidualizing if the natural homothety
morphism χRC : R → RHomR(C,C) is an isomorphism in D(R). A dualizing com-
plex is a semidualizing complex of finite injective dimension, i.e., a semidualizing
complex that is isomorphic in D(R) to a bounded complex of injective R-modules.

6.3. The set of isomorphism (resp. shift-isomorphism) classes of semidualizing R-
modules (resp. R-complexes) in D(R) is denoted S0(R) (resp. S(R)). Note that
S0(R) is naturally a subset of S(R) because every semidualizing R-module is a
semdualizing R-complex concentrated in degree 0.

6.4. Note that R is Gorenstein if and only if the free R-module R1 of rank 1 is
dualizing for R, and this is if and only if R1 is the only semidualizing R-complex
up to shift-isomorphism in D(R). By [28] and [33] we know that R has a dualizing
complex if and only if it is a homomorphic image of a local Gorenstein ring.

6.5. The map on S induced by base-change along a local ring homomorphism of
finite flat dimension is 1-1; see [22, Theorems 4.5 and 4.9].

Proposition 6.6. If mR is quasi-decomposable, then card(S(R)) ⩽ 2. More pre-
cisely, S(R) consists of the free R-module R1 and dualizing R-complex (if it exists).

Proof. Let x ∈ mR be an R-regular sequence such that R := R/xR is a fiber
product. As we mentioned in 6.5, the map S(R)→ S(R) induced by base-change
is 1-1. By [39, Corollary 4.6] we have card(S(R)) ⩽ 2. More precisely, S(R)

consists of the free R-module R
1
and dualizing R-complex (if it exists). Hence, if

C ∈ S(R), then C := R ⊗L
R C is shift-isomorphic to R or it is dualizing for R, in

case that R has a dualizing complex. In the first case, C ≃ R up to a shift by, e.g.,

the standard equality of Poincaré series PR
C
(t) = PRC (t); for this equality see, for

instance, [8, (1.5.3) Lemma]. In the second case, C must be dualizing for R by [7,
(5.1) Theorem] since every deformation is a Gorenstein local homomorphism. □

In order to prove Theorem 1.4 as a generalization of Proposition 6.6, we need
some more preliminary results, beginning with a useful lemma that one can possibly
deduce from results in [24]. (Here, lenR(M) denotes the length of an R-moduleM .)

Lemma 6.7. Let φ : R → S be a flat local ring homomorphism, and assume that

the induced map k → S/mRS is an isomorphism. Then, the induced map ϕ̂ : R̂→ Ŝ
is also an isomorphism. In particular, if R is complete, then φ is an isomorphism.

The assumption that the induced map k → S/mRS is an isomorphism is equiv-
alent to the following: mRS = mS and Im(φ) +mS = S.

2The notions of dualizing module and canonical module agree when R is Cohen-Macaulay.
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Proof. Since φ is flat, the Nagata Flatness Theorem [36, Exercise 22.1] implies that

lenS(S/m
n
RS) = lenR(R/m

n
R) lenS(S/mRS) = lenR(R/m

n
R) (6.7.1)

for all positive integers n. Using the condition k ∼= S/mRS, one sees that every
composition series for S/mnRS over S is also a composition series over R, hence,
the equality lenS(S/m

n
RS) = lenR(S/m

n
RS) holds. Therefore, by (6.7.1) we have

lenR(S/m
n
RS) = lenR(R/m

n
R).

The induced map R/mnR → S/mnRS is flat and local for all integers n ⩾ 1. In
particular, this map is injective. The previous paragraph therefore implies that this
map is bijective. Passing to the inverse limit, we conclude that the induced map

R̂→ Ŝ is an isomorphism. (Note that since mRS = mS , the mR-adic completion of
S is the same as its mS-adic completion.) In particular, if R is complete, then the

composition R̂ = R→ S → Ŝ is an isomorphism; since each map in the composition
is flat and local (hence, injective) it follows that they are all also surjective. □

The next result complements [48, Proposition 3.15].

Proposition 6.8. Let φ : R → (S,mS , l) be a complete intersection local ring ho-
momorphism of finite flat dimension. Assume that R is complete and the induced
map k → l is an isomorphism. Then the induced maps

S(R)→ S(S)→ S(Ŝ)

are bijective.

Proof. As we note in 6.5, the induced maps S(R) → S(S) → S(Ŝ) are injective,
so we only need to prove surjectivity.

Case 1: S is complete and φ is flat with regular closed fibre. Let y ∈ mS give
a minimal generating sequence y for the maximal ideal mS/mRS of the regular
local ring S/mRS. Since φ is flat, the fact that y is S/mRS-regular implies that
y is S-regular. Moreover, the induced map R → S/(y)S is flat; see [36, Corollary
to Theorem 22.5]. By construction, the maximal ideal of S/(y)S is mR(S/(y)S).
Thus, the map R → S/(y)S satisfies the hypotheses of Lemma 6.7. Since R is
assumed to be complete, we deduce from Lemma 6.7 that the map R→ S/(y)S is
an isomorphism. In particular, the induced map S(R) → S(S/(y)S) is bijective.
This surjective map factors as S(R)→ S(S)→ S(S/(y)S). Since these maps are
also injective, as we have noted, it is straightforward to deduce that they are both
surjective. Since S is assumed to be complete, the proof in this case is finished.

Case 2: the general case. As in the previous case, it suffices to show that the

induced map S(R) → S(Ŝ) is surjective. So, assume without loss of generality

that S is complete. Consider a Cohen factorization R
φ̇−→ R′ φ′

−→ S of φ. Since
φ is complete intersection of finite flat dimension, the map φ′ is a deformation.
Since R′ is complete, by [23, Proposition 4.2] the map S(R′)→ S(S) is surjective.
Now, Case 1 implies that S(R) → S(R′) is also surjective, so the composition
S(R)→ S(S) is surjective as well. □

Lemma 6.9. Let φ : R→ S be a local ring homomorphism, and let X be a homo-
logically finite R-complex. Then the following conditions are equivalent.

(i) X is dualizing for R and φ is quasi-Gorenstein.
(ii) X ∈ S(R), S ⊗L

R X is dualizing for S, and G-dim(φ) <∞.
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Proof. (i) =⇒ (ii) follows from [8, (7.8) Theorem].
(ii) =⇒ (i): We have a series of equalities

PRX (t)IXR (t)Iφ(t) = IRR (t)Iφ(t)

= ISS (t)

= I
S⊗L

RX
S (t)PSS⊗L

RX
(t)

= taPSS⊗L
RX

(t)

= taPRX (t)

where, the first and third equalities are from [15, (3.18.2)], the second equality
is (2.9.1), the fourth equality (for some a ∈ Z) follows from the assumption that
S ⊗L

R X is dualizing for S and [28, V.3.4], and the last equality is from [8, (1.5.3)
Lemma]. Cancellation implies that IXR (t) = tb and Iφ(t) = tc for some b, c ∈ Z; the
first of these equalities implies that X is dualizing for R again by [28, V.3.4], and
the second one implies that φ is quasi-Gorenstein by 2.9. □

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. It suffices to show that if C is a semidualizing R-complex
such that C ̸≃ ΣiR for all i ∈ Z, then C is dualizing for R. Assume that such
a C is given. We can assume without loss of generality that each Ri is complete.
Note that this does not change the properties of the maps in the diagram nor the
assumption about Rn. We now argue by induction on n ⩾ 0.

The base case n = 0 has been covered by Proposition 6.6.
For the induction step, let n ⩾ 2, noting that the shape of the given diagram

implies that n is even. Since the ring homomorphism R0 → R1 has finite complete
intersection dimension, it follows from [15, (5.1) Theorem] and [49, Theorem 6.1(a)]
that C1 := R1 ⊗L

R C ∈ S(R1). Then, Proposition 6.8 implies that there is a
semidualizing R2-complex C2 such that C1 ≃ R1 ⊗L

R2
C2. The standard equality

of Poincaré series PRC (t) = PR1

C1
(t) = PR2

C2
(t) implies that for all i ∈ Z we have

C2 ̸≃ ΣiR2. By our induction hypothesis, we conclude that C2 is dualizing for R2.
The fact that the local ring homomorphism R2 → R1 is complete intersection of
finite flat dimension implies that it is Gorenstein. Therefore, [7, (5.1) Theorem]
implies that C1 is dualizing for R1. Since the map R0 → R1 has finite complete
intersection dimension, it has finite Gorenstein dimension. Hence, an application
of Lemma 6.9 shows that C is dualizing for R, as desired. □

In light of the conclusions of Theorem 1.4, it is clear that the hypotheses are
restrictive. The next result is another indication of this.

Corollary 6.10. Under the assumptions of Theorem 1.4, either the ring R is
Gorenstein or each ring homomorphism φi : R2i → R2i+1 with 0 ⩽ i ⩽ (n− 2)/2 is
quasi-Gorenstein.

Proof. As in the proof of Theorem 1.4, we can assume without loss of generality that
each Ri is complete. In particular, each Ri has a dualizing complex Di. Assume
that R = R0 is not Gorenstein, so D0 ̸≃ ΣiR0 for all i ∈ Z. We show by induction
on n that each map φi is quasi-Gorenstein.

The base case n = 0 holds vacuously. For the induction step, let n ⩾ 2, noting
that the shape of the given diagram implies that n is even. Since R1 is complete,



18 S. NASSEH, KERI ANN SATHER-WAGSTAFF, AND R. TAKAHASHI

by [8, (5.3)] (see also 2.13) the ring homomorphism φ0 has a dualizing complex
Dφ0 . By definition, this means that Dφ0 is a semidualizing R1-complex such that

D1 ≃ (D0 ⊗L
R R1)⊗L

R1
Dφ0 ≃ D0 ⊗L

R D
φ0 . (6.10.1)

Since R1 is complete, R1 ← R2 has finite flat dimension because it is a complete
intersection ring homomorphism. On the other hand, by Theorem 1.4 we have
card(S(R2)) ⩽ 2. Hence, by Proposition 6.8 we have Dφ0 ≃ ΣiR1 or Dφ0 ≃ ΣiD1

for some integer i. If Dφ0 ≃ ΣiD1, then taking Poincaré series in (6.10.1) we have

PR1

D1
(t) = PRD0

(t)PR1

Dφ0 (t) = tiPRD0
(t)PR1

D1
(t)

where the left equality comes from [8, (1.5.3) Lemma]. It follows that PRD0
(t) = t−i,

and therefore, D0 ≃ ΣiR0, which is a contradiction.
Hence, we must have Dφ0 ≃ ΣiR1 for some i ∈ Z. In other words, R1 is a

dualizing complex for φ0. Thus, φ0 is quasi-Gorenstein by [8, (7.8) Theorem].
For our induction argument, it remains to show that R2 is not Gorenstein. To

this end, suppose by way of contradiction that R2 were Gorenstein. Then, Propo-
sition 6.8 implies that 1 = card(S(R2)) = card(S(R1)), i.e., R1 is Gorenstein. It
follows that R is Gorenstein by [8, (7.7.2)], which is a contradiction. □
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5. L. L. Avramov, Locally complete intersection homomorphisms and a conjecture of Quillen on
the vanishing of cotangent homology, Ann. of Math. (2) 150 (1999), no. 2, 455–487.
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25. T. H. Freitas, V. H. Jorge Pérez, R. Wiegand, and S. Wiegand, Vanishing of Tor over fiber

products, Proc. Amer. Math. Soc. 149 (2021), 1817–1825.
26. H. Geller, Minimal resolutions of fiber products, Proc. Amer. Math. Soc. 150 (2022), 4159–

4172.

27. E. S. Golod, G-dimension and generalized perfect ideals, Trudy Mat. Inst. Steklov. 165 (1984),
62–66, Algebraic geometry and its applications.

28. R. Hartshorne, Residues and duality, Lecture Notes in Mathematics, No. 20, Springer-Verlag,
Berlin, 1966.

29. R. Hartshorne, Local cohomology, A seminar given by A. Grothendieck, Harvard University,

Fall, vol. 1961, Springer-Verlag, Berlin, 1967.
30. H. Holm, Rings with finite Gorenstein injective dimension, Proc. Amer. Math. Soc. 132

(2004), no. 5, 1279–1283.

31. A. Iarrobino, C. McDaniel, and A. Seceleanu, Connected sums of graded Artinian Gorenstein
algebras and Lefschetz properties, J. Pure Appl. Algebra 226 (2022), no. 1, Paper No. 106787,

52 pp.

32. S. Iyengar and S. Sather-Wagstaff, G-dimension over local homomorphisms. Applications to
the Frobenius endomorphism, Illinois J. Math. 48 (2004), no. 1, 241–272.

33. T. Kawasaki, On arithmetic Macaulayfication of Noetherian rings, Trans. Amer. Math. Soc.

354 (2002), no. 1, 123–149.
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