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Abstract. In this paper, we prove Faltings’ annihilator theorem for complexes over a CM-excellent ring.

As an application, we give a complete classification of the t-structures of the bounded derived category of
finitely generated modules over a CM-excellent ring of finite Krull dimension.

1. Introduction

Let R be a commutative noetherian ring. Following Česnavičius [5], we say that R is CM-excellent if it
satisfies the three conditions below, which have been studied deeply by Kawasaki [14, 15, 16].

• The ring R is universally catenary.
• The formal fibers of the localization of R at each prime ideal are Cohen–Macaulay.
• The Cohen–Macaulay locus of each finitely generated R-algebra is Zariski-open.

Typical examples of a CM-excellent ring include an excellent ring, more generally an acceptable ring in the
sense of Sharp [22], and a homomorphic image of a Cohen–Macaulay ring [16]. In particular, the ring R is
CM-excellent if it possesses a dualizing complex, since the existence of a dualizing complex is equivalent to
the condition that the ring is a homomorphic image of a Gorenstein ring of finite Krull dimension [14].

Let Db(R) stand for the bounded derived category of finitely generated R-modules. The first main result
of this paper is the following theorem, which is Faltings’ annihilator theorem for complexes.

Theorem 1.1 (Theorem 3.5). Let R be a CM-excellent ring. Let Y and Z be specialization-closed subsets
of SpecR, and let n be an integer. Then the following two conditions are equivalent for each X ∈ Db(R).

(1) For all prime ideals p and q of R with Z 3 p ⊇ q /∈ Y , one has the inequality ht p/q+ depthXq ⩾ n.
(2) There exists an ideal b of R such that V(b) ⊆ Y and bH<n

Z (X) = 0.

If we restrict Theorem 1.1 to the case where the complex X is a module, then it is the same as the main result
of [15], which extends a lot of previous results with additional assumptions, including Faltings’ original one
[8]; see [15] for more details. The main result of [7] shows the assertion of Theorem 1.1 under the stronger
assumptions that Y contains Z and that R possesses a dualizing complex. The latter assumption is to use
the local duality theorem; it does play an essential role in the proof of the result of [7].

As an application of Theorem 1.1, we obtain the second main result of this paper: the following theorem
provides a complete classification of the t-structures (in the sense of Bĕılinson, Bernstein and Deligne [3]) of
the triangulated category Db(R) in terms of certain filtrations by specialization-closed subsets of SpecR.

Theorem 1.2 (Theorem 5.5). Let R be a CM-excellent ring with finite Krull dimension. Then the aisles in
Db(R) bijectively correspond to the sp-filtrations of SpecR satisfying the weak Cousin condition.

The notion of sp-filtrations satisfying the weak Cousin condition, which appears in the above theorem, has
been used by Deligne, Bezrukavnikov and Kashiwara [2, 4, 13], and explictly introduced by Alonso Tarŕıo,
Jeremı́as López and Saoŕın [1]. This is a generalized version of the notion of codimension functions in the sense
of Grothendieck [11, Chapter V, §7]. The mutually inverse bijections giving the one-to-one correspondence
in the above theorem can be described explicitly; see Theorem 5.5. The main result of [1] shows the assertion
of Theorem 1.2 under the stronger assumption that the ring R admits a dualizing complex. This assumption
is, again, to apply the local duality theorem, and in fact, local duality plays a key role in the proof of the
result of [1].
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The organization of the present paper is as follows. Section 2 is devoted to stating several preliminary
definitions and results, including some observations on CM-excellence. In Section 3, we shall prove Faltings’
annihilator theorem for complexes, that is to say, we shall give a proof of Theorem 1.1 stated above. The
proof is done by reducing to the case of modules and invoking Kawasaki’s result [15], but the reduction
step turns out to be quite complicated and subtle, requiring various techniques. In Section 4, we recall the
definition of an sp-filtration of SpecR satisfying the weak Cousin condition, and interpret it in terms of a
certain function on SpecR which we call a t-function. In the final Section 5, we shall apply Theorem 1.1 to
obtain Theorem 1.2, where a classification of t-structures by the t-functions on SpecR is provided as well.

2. Preliminaries

This section consists of basic definitions, fundamental properties, simple observations that are used in later
sections. We begin with our convention adopted throughout the present paper.

Convention 2.1. We assume that all rings are commutative and noetherian, and all complexes are cochain
ones. Let R be a (commutative noetherian) ring. We denote by ModR the category of R-modules, by D(R)
the derived category of ModR, by modR the category of finitely generated R-modules, and by Db(R) the
bounded derived category of modR. The set of nonnegative integers is denoted by N.

We need the following standard numerical invariants for objects of D(R).

Definition 2.2. The supremum and the infimum of X ∈ D(R) are defined respectively by supX = sup{i ∈
Z | Hi(X) 6= 0} and infX = inf{i ∈ Z | Hi(X) 6= 0}. Note that supX and infX are elements of Z ∪ {±∞}.

Taking (soft) truncations gives rise to a certain series of exact triangles in Db(R).

Remark 2.3. Let X be a nonzero object of Db(R). Then there exists a series

{Xi+1 → Xi → Hsi(Xi)[−si]⇝ }ni=0

of exact triangles in Db(R) such that n ∈ N, X0 = X, Xn+1 = 0, si = supXi ∈ Z, Hj(Xi) = Hj(X) for all
j ⩽ si, and supX = s0 > · · · > sn = infX.

Next we recall the definitions of a specialization-closed subset and a local cohomology functor.

Definition 2.4. (1) A subset W of SpecR is called specialization-closed if V(p) ⊆ W for all p ∈ W . This is
equivalent to saying that W is a union of closed subsets of SpecR (in the Zariski topology).

(2) Let W be a specialization-closed subset of SpecR. For an R-module M we denote by ΓW (M) the set
of elements x ∈ M such that Supp(Rx) ⊆ W . Then ΓW (M) is a submodule of M , and we get a left-
exact additive covariant functor ΓW : ModR → ModR, which is called the W -torsion functor. Using
K-injective resolutions, one gets the right derived functor RΓW : D(R) → D(R) of ΓW . For each i
set Hi

W = Hi RΓW : D(R) → ModR and call it the ith local cohomology functor with respect to the
specialization-closed subset W . When I is an ideal of R and W = V(I), the functor Hi

W coincides with
the usual ith local cohomology functor Hi

I with respect to the ideal I.

We recall the definition of the depth of an object of Db(R) for a local ring R.

Definition 2.5. Let (R,m, k) be a local ring. Let X ∈ Db(R). Then one has the equality inf RHomR(k,X) =
infRΓm(X); see [9, Theorem I]. This value is called the depth of X and denoted by depthX.

The following statements are straightforward from the definition of a depth.

Remark 2.6. Let R be a local ring. Let W be a specialization-closed subset of SpecR.

(1) For each X ∈ Db(R) and n ∈ Z one has depthX[n] = depthX − n.
(2) Let X → Y → Z → X[1] be an exact triangle in Db(R). Then depthX ⩾ inf{depthY, depthZ + 1},

depthY ⩾ inf{depthX, depthZ} and depthZ ⩾ inf{depthY, depthX − 1}.

Now we recall the definition of a Cohen–Macaulay locus, and introduce and explain CM-excellence.

Definition 2.7. (1) We denote by CM(R) the Cohen–Macaulay locus of R, that is, the set of prime ideals
p of R such that the local ring Rp is Cohen–Macaulay.

(2) Following Česnavičius [5], we say that R is CM-excellent if R satisfies Kawasaki’s three conditions:
(C1) The ring R is universally catenary.
(C2) The formal fibers of Rp are Cohen–Macaulay for every p ∈ SpecR.
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(C3) For each finitely generated R-algebra S the subset CM(S) of SpecS is open.

Remark 2.8. (1) The ring R is CM-excellent if and only if the scheme SpecR is CM-excellent in the sense
of [5, Definition 1.2]. In fact, the “only if” part holds since the condition [5, Definition 1.2(2)] for SpecR
means that CM(R/p) is an open subset of SpecR/p for all p ∈ SpecR. To show the “if” part, let S be a
finitely generated R-algebra. Suppose that SpecR is CM-excellent. Then SpecS is CM-excellent as well,
by [5, Remark 1.5]. Hence for any q ∈ SpecS the subset CM(S/q) of SpecS/q is open, and nonempty
since it contains the zero ideal. It follows by [21, Theorem 24.5] that CM(S) is an open subset of SpecS.

(2) If R is acceptable in the sense of Sharp [22], then it is CM-excellent. Indeed, let S be a finitely generated
R-algebra. Then for each q ∈ SpecS the Gorenstein locus Gor(S/q) is open and nonempty (as it contains
the zero ideal). Since CM(S/q) contains Gor(S/q), it follows by [21, Theorem 24.5] that CM(S) is open.

(3) If R is excellent, then it is acceptable by [10, Corollary 1.5], and hence it is CM-excellent by (2).
(4) If R is a homomorphic image of a Cohen–Macaulay ring, it is CM-excellent by [16, Theorem 1.3]. Hence,

R is a CM-excellent ring of finite Krull dimension if it has a dualizing complex by [14, Corollary 1.4].
(5) When R has a Cohen–Macaulay module with full support, it is CM-excellent by [5, Remark 1.4] and (1).

3. Faltings’ annihilator theorem for complexes

The purpose of this section is to prove Faltings’ annihilator theorem for complexes over a CM-excellent
ring, which is Theorem 3.5. All the other things (except Remark 3.6) stated in the section are to achieve this
purpose. As is seen below, to show the theorem we use a reduction to the case of (shifts of) modules, which
is rather complicated and subtle, and requires several techniques of not only local cohomology and depths
of complexes, but also truncation and annihilation of complexes, Koszul complexes, torsion submodules with
respect to specialization-closed subsets, Zariski-openness of loci, associated prime ideals and prime avoidance.

We begin with introducing some notation about specialization-closed subsets.

Definition 3.1. Let W be a specialization-closed subset of SpecR.

(1) Let P be a prime ideal of R. We denote by WP the set of prime ideals of RP having the form pRP with
P ⊇ p ∈ W . This is a specialization-closed subset of SpecRP . Note that WP 6= ∅ if and only if P ∈ W .

(2) Let I be a proper ideal of R. We denote by W/I the set of prime ideals of R/I having the form p/I with
I ⊆ p ∈ W . This is a specialization-closed subset of SpecR/I.

The lemma below is used to show one of the implications of the equivalence given in our theorem.

Lemma 3.2. Let W be a specialization-closed subset of SpecR. Let n ∈ Z and X ∈ Db(R).

(1) Suppose that (R,m) is local and W is nonempty. If Hi
W (X) = 0 for all integers i < n, then depthX ⩾ n.

(2) Let p be a prime ideal of R. If p belongs to W and Hi
W (X)p = 0 for all integers i < n, then depthXp ⩾ n.

Proof. (1) As R is local and W is nonempty, m is in W . We may assume X ≇ 0 in Db(R). Put t = infX ∈ Z.
Take an injective resolution E = (0 → Et → Et+1 → · · · ) of X. As 0 = Hi

W (X) = Hi(ΓW (E)) for all i < n,
the induced sequence 0 → ΓW (Et) → · · · → ΓW (En) is exact. All the terms are injective modules, so the
sequence is split exact. Hence the induced sequence 0 → Γm(ΓW (Et)) → · · · → Γm(ΓW (En)) is (split) exact
as well, which is isomorphic to the sequence 0 → Γm(E

t) → · · · → Γm(E
n) as m ∈ W . Thus H<n

m (X) = 0.
(2) We have 0 = Hi

W (X)p = Hi
Wp

(Xp) for all i < n; the last equality follows by [7, Corollary 3.5(1)]. Since

p belongs to W , the set Wp is nonempty. Using (1), we obtain the desired inequality depthXp ⩾ n. ■

The next lemma plays an important role in the proof of the other implication of the equivalence in the
theorem. Thanks to this result, given a specialization-closed subset Y and a complex X, we can replace X
with another complex X ′ whose support is deeply involved with Y . We denote by K(−) the Koszul complex.

Lemma 3.3. Let X be an object of Db(R). The following statements hold.

(1) There is an ideal I = (x1, . . . , xr) of R such that SuppX = V(I) and (X
xi−→ X) = 0 in Db(R) for all i.

(2) Let y1, . . . , ys be a sequence of elements of R, and put X ′ = X ⊗L
R K(y1, . . . , ys).

(a) Let p ⊇ q be prime ideals of R. Let n ∈ Z. If ht p/q+depthXq ⩾ n, then ht p/q+depthX ′
q ⩾ n− s.

(b) Let Y, Z be a specialization-closed subset of SpecR. Let I be an ideal as in (1). Suppose that the ideal
J = (y1, . . . , ys) contains I and satisfies ΓY/I(R/I) = J/I. If there is an ideal c of R with V(c) ⊆ Y

and cH
<(n−s)
Z (X ′) = 0, then there is an ideal b of R with V(b) ⊆ Y and bH<n

Z (X) = 0.
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Proof. (1) The assertion is immediately follows from [20, Proposition 2.3(2)].
(2) Put Xi = X ⊗L

R K(y1, . . . , yi) for each 0 ⩽ i ⩽ s. Then X0 = X and Xs = X ′. For 1 ⩽ i ⩽ s, applying

Xi−1 ⊗L
R − to the exact triangle R

yi−→ R → K(yi)⇝, we get an exact triangle Xi−1
yi−→ Xi−1 → Xi ⇝.

(a) For 1 ⩽ i ⩽ s there is an exact triangle (Xi−1)q
yi−→ (Xi−1)q → (Xi)q ⇝, which induces depth(Xi)q ⩾

inf{depth(Xi−1)q, depth(Xi−1)q−1} = depth(Xi−1)q−1 by Remark 2.6(2). Hence depthX ′
q ⩾ depthXq−s.

(b) Set bi = c(I : ys) · · · (I : yi+1) for every integer 0 ⩽ i ⩽ s. Then, as bs = c, we have bs H
<(n−s)
Z (Xs) = 0.

Fix an integer 1 ⩽ i ⩽ s and assume that bi H
<(n−i)
Z (Xi) = 0. For each j ∈ Z there exists an exact sequence

(3.3.1) Hj−i
Z (Xi) → Hj−i+1

Z (Xi−1)
yi−→ Hj−i+1

Z (Xi−1).

Note that (I : yi) · yi Hj−i+1
Z (Xi−1) is contained in I Hj−i+1

Z (Xi−1). By (1), we have (X
xp−→ X) = 0 in Db(R)

for every 1 ⩽ p ⩽ r. Applying the functor Hj−i+1
Z (−⊗L

RK(y1, . . . , yi−1)), we observe that (H
j−i+1
Z (Xi−1)

xp−→
Hj−i+1

Z (Xi−1)) = 0 in ModR for every 1 ⩽ p ⩽ r, which implies I Hj−i+1
Z (Xi−1) = 0 for all j ∈ Z. By

assumption, we have bi H
j−i
Z (Xi) = 0 for all j < n. It follows from (3.3.1) that bi−1 = bi(I : yi) kills

Hj−i+1
Z (Xi−1) for any j < n. By induction on s− i, we get b0 H

j
Z(X0) = 0 for any j < n, i.e., b0 H

<n
Z (X) = 0.

It remains to show that V(b0) is contained in Y , and for this it suffices to check that V(I : yi) is contained
in Y for all 1 ⩽ i ⩽ s. Take any p ∈ V(I : yi). Then there are inclusions I ⊆ I :R yi ⊆ p, which induce
0 :R/I yi ⊆ p/I. Hence p/I ∈ V(0 :R/I yi) = SuppR/I((R/I)yi) ⊆ Y/I, where the last inclusion follows from

the fact that yi ∈ J/I = ΓY/I(R/I). Therefore the prime ideal p belongs to Y , and we are done. ■

Here we introduce a certain locus in SpecR of a finitely generated R-module. This is necessary in the
proof of the theorem to make the depth of a localized module high enough.

Definition 3.4. Let M be a finitely generated R-module. The maximal Cohen–Macaulay locus MCMR(M)
ofM is defined as the set of prime ideals p of R such that the Rp-module Mp is maximal Cohen–Macaulay, i.e.,
depthMp ⩾ dimRp. This inequality is equivalent to saying that Mp = 0 or Mp 6= 0 and depthMp = dimRp.

Now we can prove the main result of this section, which asserts that Faltings’ annihilator theorem holds
true for bounded complexes of finitely generated modules over a CM-excellent ring.

Theorem 3.5. Let R be a CM-excellent ring. Let Y, Z be specialization-closed subsets of SpecR, and let n
be an integer. Then the following two conditions are equivalent for each X ∈ Db(R).

(1) For all prime ideals p, q of R with Z 3 p ⊇ q /∈ Y there is an inequality ht p/q+ depthXq ⩾ n.
(2) There exists an ideal b of R such that V(b) ⊆ Y and bH<n

Z (X) = 0.

Proof. (2) ⇒ (1): Put Y ′ = Y ∪ Z. This is a specialization-closed subset of SpecR. As V(b) ⊆ Y ⊆ Y ′ and
Z ⊆ Y ′, we can apply [7, Theorem 4.5] to see that ht p/q+ depthXq ⩾ n for all Z 3 p ⊇ q /∈ Y ′.

Now, fix prime ideals p, q such that Z 3 p ⊇ q /∈ Y . If q is not in Z, then we have Z 3 p ⊇ q /∈ Y ′ and get
ht p/q+ depthXq ⩾ n. Suppose q ∈ Z. Since q is not in Y , it does not contain b. Hence 0 = (bHi

Z(X))q =

Hi
Z(X)q for all i < n. Lemma 3.2(2) implies depthXq ⩾ n, and therefore ht p/q+ depthXq ⩾ n.
(1) ⇒ (2): Assume that (1) holds. We shall deduce (2) by noetherian induction on SuppX. If SuppX = ∅,

then X ∼= 0 in Db(R), and (2) holds by letting b = R. Let SuppX 6= ∅. Then X ≇ 0 in Db(R). Use

Lemma 3.3(1) to find an ideal I = (x1, . . . , xr) of R such that SuppX = V(I) and (X
xi−→ X) = 0 in

Db(R) for all i. Choose an ideal J = (y1, . . . , ys) of R such that I ⊆ J and ΓY/I(R/I) = J/I. Set

X ′ = X ⊗L
R K(y1, . . . , ys) ∈ Db(R). We have SuppX ′ = SuppX ∩ V(J) = V(I) ∩ V(J) = V(J), where the

first equality follows from [20, Lemma 1.9(4) and Proposition 2.3(3)]. According to Lemma 3.3(2a), we have

(3.5.1) ht p/q+ depthX ′
q ⩾ n− s for all p, q ∈ SpecR such that Z 3 p ⊇ q /∈ Y.

In view of Lemma 3.3(2b), we will be done if we find an ideal c of R such that V(c) ⊆ Y and cH
<(n−s)
Z (X ′) = 0.

To show this, we may assume X ′ ≇ 0 in Db(R), and then J is a proper ideal of R. It follows from [12, Remark

2.7] that (X ′ yj−→ X ′) = 0 in Db(R) for all j. Hence (H(X ′)
yj−→ H(X ′)) = 0 in modR for all j, which means

that J annihilates H(X ′), or in other words, H(X ′) ∈ modR/J . As R is CM-excellent, any finitely generated
R-algebra has open Cohen–Macaulay locus. In particular, for every prime ideal P/J of SpecR/J the locus
CM((R/J)/(P/J)) = CM(R/P ) is open and nonempty as it contains the zero ideal. The ring R/J satisfies
[18, (5.0.1)], and MCMR/J (H(X ′)) is an open subset of SpecR/J by [18, Corollary 5.5(3)]. There is an ideal
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a of R containing J such that MCMR/J (H(X ′)) = D(a/J). Note that MCMR/J (H(X ′)) contains MinR/J .
Prime avoidance gives an element a ∈ a with a /∈

∪
P∈MinR R/J P . Apply Remark 2.3 to X ′ to get a series

(3.5.2) {Xi+1 → Xi → Hsi(X ′)[−si]⇝ }ei=0

of exact triangles in Db(R) such that X0 = X ′, Xe+1 = 0, si = supXi ∈ Z, Hj(Xi) = Hj(X ′) for all j ⩽ si,
and supX ′ = s0 > · · · > se = infX ′. We establish a claim.

Claim 1. For all integers 0 ⩽ i ⩽ e and for all prime ideals p, q of R such that Z 3 p ⊇ q /∈ Y ∪ V(a), one
has the inequality ht p/q+ depthHsi(X ′)q ⩾ n− s− si.

Proof of Claim 1. Fix an integer 0 ⩽ i ⩽ e and prime ideals p, q with Z 3 p ⊇ q /∈ Y ∪V(a). The zero module
has depth ∞, so that we may assume Hsi(X ′)q 6= 0. Since Hsi(X ′) is a direct summand of H(X ′), we have
q ∈ SuppHsi(X ′) ⊆ SuppH(X ′) ⊆ V(J). As q is not in V(a), we see that q/J ∈ D(a/J) = MCMR/J (H(X ′)).
This shows the second inequality below, while the first holds as Hsi(X ′)q is a direct summand of H(X ′)q.

depthHsi(X ′)q ⩾ depthH(X ′)q = depthH(X ′)q/J ⩾ dim(R/J)q/J = ht q/J.

Since Hsi((Xi)q) = Hsi(Xi)q = Hsi(X ′)q 6= 0, it holds that (Xi)q ≇ 0 in Db(Rq), and we get depth(Xi)q ⩽
inf(Xi)q + dimHinf(Xi)q((Xi)q) by [6, (1.4.4)]. We have inf(Xi)q ⩽ supXi = si, while

dimHinf(Xi)q((Xi)q) ⩽ dimH(Xi)q ⩽ dimH(X ′)q = ht(q/AnnH(X ′)) ⩽ ht q/J ⩽ depthHsi(X ′)q.

Here, the first two inequalities come from the fact that Hinf(Xi)q((Xi)q) is a direct summand of H(Xi)q, which
is a direct summand of H(X ′)q. The inclusion J ⊆ AnnH(X ′) shows the third inequality. Therefore,

(3.5.3) depth(Xi)q ⩽ inf(Xi)q + dimHinf(Xi)q((Xi)q) ⩽ si + depthHsi(X ′)q = depth(Hsi(X ′)[−si])q,

where the equality follows from Remark 2.6(1). Applying Remark 2.6(2) to the exact triangle (Xi+1)q →
(Xi)q → (Hsi(X ′)[−si])q ⇝ in Db(Rq), we observe that

depth(Xi+1)q ⩾ inf{depth(Xi)q, depth(H
si(X ′)[−si])q + 1} = depth(Xi)q.

Consequently, for each integer 0 ⩽ i ⩽ e it holds that

(3.5.4) depth(Xi)q ⩾ depth(Xi−1)q ⩾ · · · ⩾ depth(X0)q = depthX ′
q.

It follows from (3.5.1), (3.5.3) and (3.5.4) that for all integers 0 ⩽ i ⩽ e there are inequalities

ht p/q+ depthHsi(X ′)q ⩾ ht p/q+ (depth(Xi)q − si) ⩾ ht p/q+ (depthX ′
q − si) ⩾ n− s− si.

Now the proof of the claim is completed. □

By Claim 1, we can apply [15, Theorem 1.1] to the module Hsi(X ′) for 0 ⩽ i ⩽ e to find an ideal bi of R

with V(bi) ⊆ Y ∪ V(a) and bi H
<(n−s−si)
Z (Hsi(X ′)) = 0. Hence bi H

<(n−s)
Z (Hsi(X ′)[−si]) = 0. Applying HZ

to the exact triangles (3.5.2) shows bH
<(n−s)
Z (X ′) = 0, where b := b0b1 · · · be. We establish another claim.

Claim 2. There exists an element b ∈ b such that b /∈
∪

P∈MinR R/J P .

Proof of Claim 2. Suppose that the ideal b is contained in some P ∈ MinR R/J = minV(J). Then I ⊆ J ⊆ P
and P ∈ V(b) ⊆ Y ∪V(a). The choice of the element a shows P ∈ Y , and hence P/I ∈ Y/I. It is seen that

P/I ∈ minV(J/I) = MinR/I((R/I)/(J/I)) = MinR/I R/J ⊆ AssR/I R/J.

Hence, P/I belongs to the set (AssR/I R/J) ∩ Y/I. However, since there are equalities

0 = ΓY/I((R/I)/ΓY/I(R/I)) = ΓY/I((R/I)/(J/I)) = ΓY/I(R/J),

the set (AssR/I R/J) ∩ Y/I is empty; see [19, Proposition 3.2(1b)(3)]. This contradition shows that none of
the prime ideals P ∈ MinR R/J contains b. Prime avoidance completes the proof of the claim. □

Since b is in b, we have bH
<(n−s)
Z (X ′) = 0. Set X ′′ = X ′⊗L

RK(b) ∈ Db(R). Applying the functor X ′⊗L
R−

to the exact triangle R
b−→ R → K(b)⇝ gives an exact triangle X ′ b−→ X ′ → X ′′ ⇝. There are equalities

SuppX ′′ = SuppX ′ ∩V(b) = V(J) ∩V(b) = V(J + (b)) ⊊ V(J) ⊆ V(I) = SuppX.

Here, the first equality follows from [20, Lemma 1.9(4) and Proposition 2.3(3)] again. The strict inclusion there
follows since we can take a minimal prime ideal P of J , and then the choice of b shows that P does not contain
b. Let p, q be prime ideals of R such that Z 3 p ⊇ q /∈ Y . Then depthX ′′

q ⩾ depthX ′
q − 1 by Remark 2.6(2),
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and hence ht p/q+ depthX ′′
q ⩾ n− s− 1 by (3.5.1). Apply the induction hypothesis to X ′′ to find an ideal

c of R such that V(c) ⊆ Y and cH
<(n−s−1)
Z (X ′′) = 0. The exact sequence Hi−1

Z (X ′′) → Hi
Z(X

′)
b−→ Hi

Z(X
′)

is induced for each integer i, and the vanishings bHi
Z(X

′) = cHi−1
Z (X ′′) = 0 for all i < n − s show that

cHi
Z(X

′) = 0 for all i < n− s. The proof of the theorem is now completed. ■
We close the section by mentioning the relationships of the above theorem with results in the literature.

Remark 3.6. (1) If we restrict Theorem 3.5 to the case where the complex X ∈ Db(R) is a module, then
the theorem asserts the same as [15, Theorem 1.1].

(2) Taking Remark 2.8(4) into account, one sees that Theorem 3.5 holds for any homomorphic image of a
Cohen–Macaulay ring, and hence it holds for any ring admitting a dualizing complex.

(3) Theorem 3.5 removes the assumption in [7, Theorem 4.5] that Y contains Z and weakens the assumtion
there that R is a homomorphic image of a Gorenstein ring of finite Krull dimension to the assumption
that R is CM-excellent (by Remark 2.8(4)).

4. Filtrations by supports and functions on the prime ideals

In this section, we study sp-filtrations of SpecR by interpreting them as order-preserving functions on
SpecR. First of all, let us recall the definitions of an sp-filtration and the weak Cousin condition.

Definition 4.1. Let ϕ : Z → 2SpecR be a map.

(1) We say that ϕ is a filtration by supports of SpecR, an sp-filtration of SpecR for short, provided that for
all integers i the subset ϕ(i) of SpecR is specialization-closed and there is an inclusion ϕ(i) ⊇ ϕ(i+ 1).

(2) Suppose that ϕ is an sp-filtration of SpecR. We say that ϕ satisfies the weak Cousin condition provided
that for all i ∈ Z and all saturated inclusions p ⊊ q in SpecR, if q ∈ ϕ(i), then p ∈ ϕ(i− 1).

We construct a correspondence between maps from Z to 2SpecR and maps from SpecR to Z ∪ {±∞}.

Definition 4.2. Let ϕ : Z → 2SpecR and f : SpecR → Z ∪ {±∞} be maps. We set:

F(ϕ)(p) = sup{i ∈ Z | p ∈ ϕ(i)}+ 1 for each p ∈ SpecR, and

Φ(f)(i) = {p ∈ SpecR | f(p) > i} for each i ∈ Z.

Then we get maps F(ϕ) : SpecR → Z ∪ {±∞} and Φ(f) : Z → 2SpecR. Note that FΦ(f)(p) = sup{i + 1 |
p ∈ Φ(f)(i)} = sup{i+ 1 | f(p) ⩾ i+ 1} = f(p) for each p ∈ SpecR. Hence the equality FΦ = id holds.

Through the maps constructed above, each sp-filtration of SpecR can be interpreted as an order-preserving
map from SpecR to Z ∪ {±∞}, that is, one has the following one-to-one correspondence.

Proposition 4.3. The assignments ϕ 7→ F(ϕ) and f 7→ Φ(f) give mutually inverse bijections

{ sp-filtrations of SpecR }
F // { order-preserving maps from SpecR to Z ∪ {±∞}}.
Φ

oo

Proof. Fix an sp-filtration ϕ : Z → 2SpecR and an order-preserving map f : SpecR → Z ∪ {±∞}.
If f(p) > i + 1, then f(p) > i. Hence Φ(f)(i) ⊇ Φ(f)(i + 1) for all i ∈ Z. Since f is order-preserving, if

p ∈ Φ(f)(i) and q ∈ V(p), then f(q) ⩾ f(p) > i and q ∈ Φ(f)(i). Thus, Φ(f) is an sp-filtration of SpecR.
Let p ⊆ q be an inclusion in SpecR. Since ϕ(i) is specialization-closed, if p ∈ ϕ(i), then q ∈ ϕ(i). Hence

F(ϕ)(p) = sup{i+ 1 | p ∈ ϕ(i)} ⩽ sup{i+ 1 | q ∈ ϕ(i)} = F(ϕ)(q). Thus, F(ϕ) is an order-preserving map.
We have ΦF(ϕ)(i) = {p ∈ SpecR | F(ϕ)(p) > i}. If F(ϕ)(p) > i, then sup{j ∈ Z | p ∈ ϕ(j)} ⩾ i, and

there is an integer j ⩾ i such that p ∈ ϕ(j), which implies p ∈ ϕ(j) ⊆ ϕ(i). Conversely, if p ∈ ϕ(i), then
i+1 ∈ {j +1 | p ∈ ϕ(j)} and i+1 ⩽ F(ϕ)(p). We have shown that F(ϕ)(p) > i if and only if p ∈ ϕ(i), and it
follows that ΦF(ϕ)(i) = ϕ(i) for all i ∈ Z. Thus, ΦF = id. Now the proof of the proposition is completed. ■

We define a function on SpecR to interpret an sp-filtration of SpecR satisfying the weak Cousin condition.

Definition 4.4. We say that a map f : SpecR → Z ∪ {±∞} is a t-function on SpecR provided that for all
inclusions p ⊆ q in SpecR one has the inequalities f(p) ⩽ f(q) ⩽ f(p) + ht q/p.

Example 4.5. (1) Let f : SpecR → Z ∪ {±∞} be a map, and let n be an integer.
(a) If f(p) = n for all p ∈ SpecR (i.e., f is a constant function), then f is a t-function of SpecR.
(b) More generally than (a), if f is a t-function on SpecR, then so is the map f+n given by p 7→ f(p)+n.
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(2) If R is catenary, then the map p 7→ ht p is a t-function of SpecR.

The t-functions on SpecR can be characterized in terms of saturated inclusions of prime ideals.

Proposition 4.6. A map f : SpecR → Z ∪ {±∞} is a t-function on SpecR if and only if for all saturated
inclusions p ⊊ q in SpecR the inequalities f(p) ⩽ f(q) ⩽ f(p) + 1 hold.

Proof. The “only if” part is evident. To show the “if” part, we take any inclusion p ⊆ q of prime ideals of
R, and put n = ht q/p. Then there exists a chain p = p0 ⊊ · · · ⊊ pn = q in SpecR, and then each inclusion is
saturated. Hence f(pi−1) ⩽ f(pi) ⩽ f(pi−1)+1 for all 1 ⩽ i ⩽ n. We get inequalities f(p) = f(p0) ⩽ f(p1) ⩽
· · · ⩽ f(pn) = f(q) and f(q) = f(pn) ⩽ f(pn−1) + 1 ⩽ f(pn−2) + 2 ⩽ · · · ⩽ f(p0) + n = f(p) + ht q/p. ■

There is a 1-1 correspondence between sp-filtrations satisfying the weak Cousin conditions and t-functions.

Proposition 4.7. The mutually inverse bijections (F,Φ) in Proposition 4.3 induce mutually inverse bijections{
sp-filtrations of SpecR

satisfying the weak Cousin condition

}
F // { t-functions on SpecR }.
Φ

oo

Proof. Fix a saturated inclusion p ⊊ q of prime ideals of R.
Let f be a t-function on SpecR. Then Proposition 4.3 implies that Φ(f) is an sp-filtration of SpecR.

Suppose that q belongs to Φ(f)(i). We have f(q) ⩾ i + 1 and f(q) ⩽ f(p) + 1 (by Proposition 4.6). Hence
f(p) ⩾ i, which means that p belongs to Φ(f)(i− 1). Therefore, Φ(f) satisfies the weak Cousin condition.

Let ϕ be an sp-filtration of SpecR satisfying the weak Cousin condition. Proposition 4.3 implies F(ϕ)(p) ⩽
F(ϕ)(q). We want to show the inequality F(ϕ)(q) ⩽ F(ϕ)(p) + 1. For this, we may assume F(ϕ)(q) 6= −∞.

Consider the case F(ϕ)(q) 6= ∞. There is an integer n with q ∈ ϕ(n) and F(ϕ)(q) = n+1. As ϕ satisfies the
weak Cousin condition, p is in ϕ(n−1). Hence n = (n−1)+1 ⩽ F(ϕ)(p), and F(ϕ)(q) = n+1 ⩽ F(ϕ)(p)+1.

Next we consider the case F(ϕ)(q) = ∞. In this case, for every integer n there exists an integer m ⩾ n
such that q ∈ ϕ(m). The weak Cousin condition on ϕ implies p ∈ ϕ(m− 1). We observe that F(ϕ)(p) = ∞.

We have shown that F(ϕ)(p) ⩽ F(ϕ)(q) ⩽ F(ϕ)(p) + 1. Proposition 4.6 implies that F(ϕ) is a t-function
on SpecR. Applying Proposition 4.3 again, we obtain the desired mutually inverse bijections. ■

5. Classification of t-structures of Db(R)

The purpose of this section is to classify, as an application of Theorem 3.5, the t-structures of the bounded
derived category Db(R) of finitely generated modules over any CM-excellent ring R of finite Krull dimension.
We start by recalling the definitions of a t-structure of a triangulated category, and its aisle and coaisle.

Definition 5.1. Let T be a triangulated category. A t-structure of T in the sense of Bĕılinson, Bernstein
and Deligne [3] is by definition a pair (X,Y[1]) of full subcategories of T such that X[1] ⊆ X, Y[1] ⊇ Y,
HomT(X,Y) = 0 and each object T ∈ T admits an exact triangle X → T → Y ⇝ in T with X ∈ X and
Y ∈ Y. Then X and Y are called the aisle and the coaisle of the t-structure (X,Y[1]), respectively.

Here we recall a couple of basic facts concerning aisles of t-structures of a triangulated category.

Remark 5.2. Let T be a triangulated category. Then the following statements hold.

(1) A full subcategory X of T is the aisle of some t-structure of T if and only if X[1] ⊆ X, X is extension-closed
(i.e., for any exact triangle A → B → C ⇝ in T with A,C ∈ X one has B ∈ X), and the inclusion functor
X → T has a right adjoint. For the details, we refer the reader to [17].

(2) For each aisle X in T there uniquely exists a t-structure of T whose aisle coincides with X. Thus, classifying
the t-structures of T is equivalent to classifying the aisles in T.

We establish a key lemma to prove our classification theorem of t-structures. We should mention that the
lemma is obtained just by virtue of our Theorem 3.5, i.e., Faltings’ annihilator theorem for complexes.

Lemma 5.3. Let R be CM-excellent. Let ϕ be an sp-filtration of SpecR satisfying the weak Cousin condition.

Let n ∈ Z and X ∈ Db(R). If H⩽i
ϕ(i)(X) = 0 for all i < n, then Hn

ϕ(n)(X) is a finitely generated R-module.

Proof. We claim that ht p/q + depthXq > n for all p, q ∈ SpecR with ϕ(n) 3 p ⊇ q /∈ ϕ(n). Indeed, there
is a chain q = p0 ⊊ · · · ⊊ pu = p in SpecR, where u = ht p/q. The inclusion pi−1 ⊊ pi is saturated for each
1 ⩽ i ⩽ u, and pu = p ∈ ϕ(n). As ϕ satisfies the weak Cousin condition, we inductively get q = p0 ∈ ϕ(n−u).
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If u = 0, then ϕ(n) 3 p = q /∈ ϕ(n), a contradiction. Hence u > 0, and n − u < n. By assumption, we have

H
⩽(n−u)
ϕ(n−u) (X) = 0. Lemma 3.2(2) shows depthXq > n− u. Thus, ht p/q+ depthXq > u+ (n− u) = n.

It follows from the above claim and Theorem 3.5 that there exists an ideal I of R such that V(I) ⊆ ϕ(n)

and I H⩽n
ϕ(n)(X) = 0. By [7, Corollary 3.3], the R-module Hi

ϕ(n)(X) is finitely generated for every i ⩽ n. ■

To state our theorem, we recall the definitions of certain maps introduced in [1].

Definition 5.4 ([1, paragraph just before Theorem 3.11]). Let ϕ be a sp-filtration of SpecR, and X an aisle
in Db(R). We define the full subcategory A(ϕ) of Db(R) and the sp-filtration Ψ(X) of SpecR by

A(ϕ) = {X ∈ Db(R) | SuppHi(X) ⊆ ϕ(i) for all i ∈ Z},
Ψ(X)(i) = {p ∈ SpecR | (R/p)[−i] ∈ X} for each i ∈ Z.

Now we can achieve the purpose of this section; the main result of the section is the theorem below.

Theorem 5.5. If R is CM-excellent and has finite Krull dimension, then one has one-to-one correspondences{
aisles

in Db(R)

}
Ψ //

{
sp-filtrations of SpecR

satisfying the weak Cousin condition

}
A

oo
F //

{
t-functions
on SpecR

}
.

Φ
oo

Proof. Proposition 4.7 yields the mutually inverse bijections (F,Φ). The mutually inverse bijections (Ψ,A)
are obtained by Lemma 5.3 and the proof of [1, Theorem 6.9]. In fact, the proof of [1, Theorem 6.9] shows
the assertion of Lemma 5.3 under the stronger assumption that R admits a dualizing complex (to invoke the
local duality theorem), uses induction on the length of ϕ (induction is possible because the existence of a
dualizing complex implies the finiteness of the Krull dimension of R by [11, Chapter V, Corollary 7.2] or [14,
Corollary 1.4]), and then applies [1, Lemma 5.7]. This argument remains valid as long as R is a CM-excellent
ring of finite Krull dimension. ■

Finally, we make a remark to say about the relationship of the above theorem with a result in [1].

Remark 5.6. The 1-1 correspondence of (1) and (2) in [1, Corollary 6.11] for Db(R) is the same as the one
(Ψ,A) in Theorem 5.5 under the stronger assumption that R admits a dualizing complex; see Remark 2.8(4).
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