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Abstract. In this paper, we consider the Frobenius pushforward endofunctor F∗ of the
bounded derived category of finitely generated modules over an F -finite noetherian local
ring. We completely determine the categorical entropy of F∗ in the sense of Dimitrov,
Haiden, Katzarkov, and Kontsevich.

1. Introduction

For a categorical dynamical system, namely, a pair (T ,Φ) of a triangulated category T
and an exact endofunctor Φ : T → T , Dimitrov, Haiden, Katzarkov, and Kontsevich [1]
have introduced an invariant hT

t (Φ) called the categorical entropy of Φ, which is a categorical
analogue of the topological entropy. The categorical entropy hT

t (Φ) is a function in one real
variable with values in R ∪ {−∞} and measures the complexity of the exact endofunctor Φ.

In this paper, we consider the Frobenius endomorphism F : R → R of a commutative
noetherian local ring R with prime characteristic p > 0, assuming that R is F -finite, that
is to say, the map F is (module-)finite. The Frobenius endomorphism F induces two exact
endofunctors. One is called the Frobenius pushforward F∗ on the bounded derived category
Db(R) of finitely generated R-modules and the other is called the Frobenius pullback LF ∗ on
the derived category Dperf(R) of perfect R-complexes. As to the latter, Majidi-Zolbanin and

Miasnikov [11] considered the full subcategory Dperf
fl (R) of Dperf(R) consisting of perfect com-

plexes with finite length cohomologies, and computed the categorical entropy h
Dperf

fl (R)
t (LF ∗).

The aim of this paper is to study the Frobenius pushforward F∗ on Db(R) and compute
its categorical entropy. The main result of this paper is the following theorem.

Theorem 1.1 (Corollary 4.3). Let (R,m, k) be a d-dimensional F -finite noetherian local ring
with prime characteristic p. Then there is an equality

h
Db(R)
t (F∗) = d log p+ log[F∗(k) : k].

For an arbitrary finite local endomorphism φ : R → R of an arbitrary noetherian local
ring R, one can take its pushforward φ∗ : D

b(R) → Db(R). In such a general setting, one can
still obtain the following weaker result on the categorical entropy.

Theorem 1.2 (Theorem 3.2). Let (R,m, k) be a d-dimensional noetherian local ring and
φ : R → R a local ring endomorphism of finite length. Then there is an inequality

h
Db(R)
t (φ∗) ≥ hloc(φ) + log[φ∗(k) : k].
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Here, hloc(φ) is the local entropy of φ, which has been introduced by Majidi-Zolbanin, Mias-
nikov, and Szpiro [12].

The organization of this paper is as follows. Section 2 is devoted to giving basic definitions
including that of the categorical entropy. In Section 3, as a consequence of Theorem 1.2,
we prove one inequality of the equality given in Theorem 1.1. In Section 4, we prove the
opposite inequality, so that the the proof of Theorem 1.1 is completed.

Convention. Throughout the present paper, we assume that all rings are commutative and
noetherian, and all subcategories are strictly full.

2. Preliminaries

In this section, we recall the notions of the categorical entropy of an exact endofunctor of
a triangulated category and the local entropy of an endomorphism of local ring. First of all,
let us fix some notations.

Notation 2.1. (1) For a ring R, denote by Db(R) = Db(modR) the category of bounded
complexes of finitely generated R-modules, and by Dperf(R) the full subcategory of perfect
complexes. Here, a complex X of R-modules is called perfect if there exists a bounded
complex P of finitely generated projective R-modules such that X ∼= P in Db(R).

(2) Let f : R → S be a ring homomorphism.
(a) The pullback functor f ∗ : modR → modS is defined by f ∗(M) = M ⊗R S for M ∈

modR. The left derived functor of f ∗ is an exact functor Lf ∗ : Dperf(R) → Dperf(S).
(b) If f is finite, then the pushforward functor f∗ : modS → modR is defined by the

abelian group f∗(M) := M for M ∈ modS together with the R-module structure via
f . The pushforward functor f∗ is exact, whence its right derived functor f∗ = Rf∗ :
Db(modS) → Db(modR) is defined by the degreewise application of f∗.

(3) For a triangulated category T and an object X of T , we denote by thickX the smallest
thick subcategory of T that contains X.

2.1. Categorical entropy. We recall the definition and basic properties of the categorical
entropy of an exact endofunctor of a triangulated category. The following notation is useful.

Notation 2.2. Let T be a triangulated category.

(1) For two full subcategories X ,Y ⊆ T , we denote by X ∗ Y the full subcategory of T
consisting of objects Z which fit into an exact triangle X → Z → Y → X[1] with X ∈ X
and Y ∈ Y . By the octahedral axiom, this symbol turns out to be associative: the
equality (X ∗ Y) ∗ Z = X ∗ (Y ∗ Z) holds for full subcategories X ,Y ,Z of T .

(2) For an integer r ≥ 2 and full subcategories E1, . . . , Er ⊆ T , we inductively define E1 ∗ · · ·∗
Er = (E1 ∗ · · ·∗Er−1)∗Er. If Ei = {Xi} for all i, then we write X1 ∗ · · ·∗Xr for E1 ∗ · · ·∗Er.

If Xi = X for all i, then we put X∗r =

r times! "# $
X ∗ · · · ∗X.

Definition 2.3. ([1, Definition 2.1]) Let X, Y be objects in T . For a real number t, define
the complexity δTt (X, Y ) ∈ R≥0 ∪ {∞} of Y with respect to X by

δTt (X, Y ) = inf

%
r&

i=1

enit

'''''
Y ⊕ Y ′ ∈ X[n1] ∗ · · · ∗X[nr]

for some Y ′ ∈ T and n1, . . . , nr ∈ Z

(
.

We will drop the superscript T when there is no possibility of confusion. By definition,
δt(X, Y ) < ∞ if and only if Y ∈ thickX.
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We list several fundamental properties of the complexity.

Lemma 2.4. Let T be a triangulated category.

(1) For X, Y, Z ∈ T with Z ∈ thickY ⊆ thickX, one has δt(X,Z) ≤ δt(X, Y )δt(Y, Z).
(2) For X, Y, Z ∈ T , one has δt(X, Y ) ≤ δt(X, Y ⊕ Z) ≤ δt(X, Y ) + δt(X,Z).
(3) For X, Y, Z ∈ T , one has δt(X ⊕ Y, Z) ≤ δt(X,Z).
(4) For X, Y ∈ T , one has δt(X, Y [n]) = δt(X, Y )ent.
(5) For X, Y, Y1, . . . , Yr ∈ T with Y ∈ Y1 ∗ · · · ∗ Yr, one has δt(X, Y ) ≤

)r
i=1 δt(X, Yi).

(6) For an exact functor Φ : T → T ′ and X, Y ∈ T , one has δT
′

t (Φ(X),Φ(Y )) ≤ δTt (X, Y ).

Proof. Assertions (1), (2) and (6) are shown in [1, Proposition 2.2], while (4) and (5) are
direct consequences of the definition. Let us prove (3). We may assume δt(X,Z) < ∞. Take
Z ′ ∈ T and n1, . . . nr ∈ Z such that Z ⊕ Z ′ ∈ X[n1] ∗X[n2] ∗ · · · ∗X[nr]. We easily see that

Z ⊕ Z ′ ⊕ Y [n1 + n2 + · · ·+ nr] ∈ (X ⊕ Y )[n1] ∗ (X ⊕ Y )[n2] ∗ · · · ∗ (X ⊕ Y )[nr]

holds. Therefore, the inequality δt(X ⊕ Y, Z) ≤ δt(X,Z) follows. !
An object G of a triangulated category T is called a split generator if T = thickG. For

an excellent scheme X, the derived category Db(cohX) of bounded complexes of coherent
sheaves on X has a split generator by [2, Theorem 4.15]; see also [8, Theorem 1.1].

Definition 2.5 ([1, Definition 2.4]). Let T be a triangulated category with a split generator
G. Let Φ : T → T be an exact endofunctor. For a real number t, we put

hT
t (Φ) =

*
+

,
lim
n→∞

1

n
log δTt (G,Φn(G)) if δt(G,Φe(G)) ∕= 0 for all e ≫ 0,

−∞ otherwise,

and call it the categorical entropy of Φ. It follows from [1, Lemma 2.6] that hT
t (Φ) exists in

[−∞,∞) and is independent of the choice of a split generator G. Omitting the superscript
T , we may simply write ht(Φ) if there is no danger of confusion.

Remark 2.6. Let T , G and Φ be as in Definition 2.5.

(1) Let n be an integer such that δt(G,Φn(G)) = 0. Then it follows by Lemma 2.4(1)(6) that

δt(G,Φn+1(G)) ≤ δt(G,Φn(G))δt(Φ
n(G),Φn+1(G)) ≤ δt(G,Φn(G))δt(G,Φ(G)) = 0,

and this shows δt(G,Φn′
(G)) = 0 for all n′ ≥ n.

(2) Let G′ be another split generator. Then, by Lemma 2.4(1)(6), for each n ≥ 0 one has

δt(G,Φn(G)) ≤ δt(G,G′)δt(G
′,Φn(G′))δt(Φ

n(G′),Φn(G))

≤ δt(G,G′)δt(G
′,Φn(G′))δt(G

′, G).

Therefore, if δt(G,Φn(G)) ∕= 0 for all n ≥ 0, then δt(G
′,Φn(G′)) ∕= 0 for all n ≥ 0, and

moreover, δt(G,G′) ∕= 0 and δt(G
′, G) ∕= 0.

Let us recall several asymptotic notations.

Notation 2.7. For two sequences {an}∞n=1 and {bn}∞n=1 of real numbers, we write

• an = O(bn) if there is a real number C > 0 such that an ≤ Cbn for all n ≫ 1,
• an = Ω(bn) if there is a real number C > 0 such that an ≥ Cbn for all n ≫ 1, and
• an = Θ(bn) if an = O(bn) and an = Ω(bn).

We present some elementary facts about the asymptotic notations introduced above.
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Lemma 2.8. Let {an}∞n=1 be a sequence of positive real numbers such that am+n ≤ aman for
all m,n ≥ 1. Let u be a positive real number. Set α = limn→∞

log an
n

∈ [−∞,∞) (this limit
exists by Fekete’s lemma). Then the following statements hold.

(1) (a) If an = O(un), then α ≤ log u.
(b) If an = Ω(un), then α ≥ log u.
(c) If an = Θ(un), then α = log u.

(2) For any real number β > α, one has an = O(enβ).

Proof. (1) Let us show assertion (a). By definition, there is a real number C > 0 such that
an/u

n ≤ C for all n ≫ 1. It holds that

0 = lim supn→∞( 1
n
logC) ≥ lim supn→∞( 1

n
log an

un )

= lim supn→∞( log an
n

− log u) = limn→∞
log an

n
− log u,

which implies that α = limn→∞
log an

n
≤ log u. Assertions (b) and (c) can be shown similarly.

(2) Since limn→∞
log an

n
< β, we have limn→∞ log

n
√
an

eβ
= limn→∞( log an

n
−β) < 0. This means

that limn→∞
n
√
an

eβ
< 1. Hence the inequality

n
√
an

eβ
< 1 holds for all n ≫ 1, and we get an < enβ

for all n ≫ 1. Now the conclusion an = O(enβ) follows. !
Using the above lemma, we can prove the following proposition, which connect the order

of the complexity and the categorical entropy.

Proposition 2.9. Let T be a triangulated category. Let G be a split generator of T . Let
Φ : T → T be an exact functor. Then the following statements hold true.

(1) (a) If δt(G,Φn(G)) = O(un), then ht(Φ) ≤ log u.
(b) If δt(G,Φn(G)) = Ω(un), then ht(Φ) ≥ log u.
(c) If δt(G,Φn(G)) = Θ(un), then ht(Φ) = log u.

(2) For any β > ht(Φ), one has the equality δt(G,Φn(G)) = O(enβ).

Remark 2.10. Let T , G,Φ be as in Proposition 2.9. The categorical polynomial entropy

hpol
t (Φ) := lim sup

n→∞

log δt(G,Φn(G))− nht(Φ)

log n

has been introduced by Fan, Fu and Ouchi [3]. If hpol
t (Φ) is positive, then it is easy to see that

δt(G,Φn(G)) ∕= O(enht(Φ)). Therefore, for each α ∈ R, the equality δt(G,Φn(G)) = O(enα) is
stronger than the equality ht(Φ) = α in general.

2.2. Local entropy. Next we recall the notion of the local entropy of a local dynamical
system introduced in [12]. We start by basic notions from (local) commutative algebra.

Definition 2.11. A local homomorphism φ : (R,m, k) → (S, n, l) of local rings is of finite
length if the ideal φ(m)S of S is n-primary. If φ is finite, then it is of finite length.

Here are examples of local endomorphisms of finite length which we consider in this paper.

Example 2.12. (1) If a local ring R has prime characteristic p > 0, then the Frobenius
endomorphism F : R → R given by x /→ xp is of finite length.

(2) Let Γ =
)r

i=1 Z≥0 ai be a finitely generated additive monoid and k a field. Let k[[Γ]]
denote the completion of the monoid ring k[Γ] = k[tai | i = 1, . . . , r] with respect to its
homogeneous maximal ideal (tai | i = 1, . . . , r). For an integer m ≥ 1, the morphism of
monoids Γ → Γ given by x /→ mx induces a local ring endomorphism Fm : k[[Γ]] → k[[Γ]]
which is of finite length.
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For a local endomorphism φ of a local ring R, an integer e ≥ 1, and an R-module M , we
write φe

M for φe
∗(M). When φ is understood from the context, we simply write eM .

Definition 2.13. Let φ be a local endomorphism of a local ring R. We say that R is φ-finite
provided that φR is finitely generated as an R-module.

Remark 2.14. (1) If a local ring R is φ-finite, then so is the residue field k, i.e., [φk : k] < ∞.
(2) Let R be a local ring of prime characteristic p. If R is F -finite, then R is excellent. The

converse holds if the residue field k is F -finite; see [10, Theorem 2.5 and Corollary 2.6].
(3) Let k be a field. Let Γ =

)r
i=1 Z≥0 ai be a finitely generated additive monoid. Then the

local ring k[[Γ]] is Fm-finite for every positive integer m. Indeed, Fmk[[Γ]] is generated by
the monomials {ti1a1 · · · tirar | 0 ≤ i1, . . . , ir < m} as an k[[Γ]]-module.

The following easy lemma is frequently used later.

Lemma 2.15. Let φ be a finite local endomorphism of a local ring R. For an R-module M
of finite length and e ≥ 0, the R-module eM has finite length with ℓR(

eM) = [1k : k]e · ℓR(M).

Proof. First we prove ℓR(
eM) = [ek : k] · ℓR(M) by induction on n := ℓR(M). The case n = 1

is clear as M ∼= k. Let n > 1. Then there is an exact sequence 0 → N → M → k → 0 of R-
modules. Applying e(−) to this sequence, we get an exact sequence 0 → eN → eM → ek → 0.
By the induction hypothesis, ℓR(

eN) = [ek : k] · ℓR(N) and ℓR(
ek) = [ek : k], which yield

ℓR(
eM) = ℓR(

eN) + ℓR(
ek) = [ek : k] · ℓR(N) + [ek : k] = [ek : k](ℓR(N) + 1) = [ek : k] · ℓR(M).

Next we prove [ek : k] = [1k : k]e. Since 1k ∼= k⊕[1k:k], one has ek = e−1(1k) ∼= e−1(k⊕[1k:k]) ∼=
(e−1k)⊕[1k:k]. We thus get an isomorphism ek ∼= k⊕[1k:k]e by induction on e. !
Definition 2.16 ([12, Definition 5]). By a local algebraic dynamical system (R,φ), we mean
a pair of a local ring R and a local endomorphism φ of R which is of finite length. A local
algebraic dynamical system (R,φ) is called finite if R is φ-finite.

For a local algebraic dynamical system (R,φ), the local entropy of φ is defined by

hloc(φ) := lim
e→∞

log ℓR(R/φe(m)R)

e
.

This limit exists and is nonnegative by [12, Theorem 1].

For a local ring R we denote by e(R) and edimR the (Hilbert–Samuel) multiplicity and
the embedding dimension of a local ring R, respectively. Under a certain assumption, we can
explicitly compute the local entropy.

Lemma 2.17. Let (R,φ) be a local algebraic dynamical system. Put d = dimR and ν =
edimR. Assume that there exists an integer u ≥ 1 such that mνue ⊆ φe(m)R ⊆ mue

for all
e ≫ 1. Then ℓR(R/φe(m)R) = Θ(ude). In particular, there is an equality hloc(φ) = d log u.

Proof. By assumption, we have inequalities ℓR(R/mue
) ≤ ℓR(R/φe(m)R) ≤ ℓR(R/mνue

) for
all e ≫ 1. Since ℓR(R/mue

)/ude and ℓR(R/mνue
)/ude converge to the nonzero real num-

bers e(R)d! and e(R)νd! respectively, we obtain the equality ℓR(R/φe(m)R) = Θ(ude). The
equality hloc(φ) = d log u follows from ℓR(R/φe(m)R) = Θ(ude) and Proposition 2.9(1c). !

Since the endomorphisms in Example 2.12 satisfy the assumption in this lemma, we get:

Corollary 2.18. (1) Let R be a d-dimensional F -finite local ring of characteristic p. Then
the equalities ℓR(R/F e

∗ (m)R) = Θ(pde) and hloc(F ) = d log p hold.
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(2) Let k be a field, Γ a finitely generated additive monoid and R = k[[Γ]]. Let m ≥ 1 be an
integer. Then one has the equalities ℓR(R/(Fm)

e
∗(m)R) = Θ(mde) and hloc(Fm) = d logm.

In this paper, we are mainly concerned with the Frobenius functor. Let (R,m, k) be an
F -finite local ring with characteristic p. Then the Frobenius endomorphism F : R → R
induces the Frobenius pushforward

F∗ = RF∗ : Db(R) −−−−−−−→ Db(R)

⊆ ⊆

Db
fl(R) /−−−−−−−→ Db

fl(R),

and the Frobenius pullback (see [11, Proposition 1.10])

LF ∗ : Dperf(R) −−−−−−−→ Dperf(R)

⊆ ⊆

Dperf
fl (R) /−−−−−−−→ Dperf

fl (R).

Here, Db
fl(R),Dperf

fl (R) stand for the subcategories of Db(R),Dperf(R) consisting of complexes
with finite length homologies, respectively. The categorical entropy of the Frobenius pullback
on Dperf

fl (R) is computed by Majidi-Zolbanin and Miasnikov:

Theorem 2.19 ([11, Corollary 2.6]). Let R be a d-dimensional complete local ring of prime

characteristic p > 0. Then the equality h
Dperf

fl (R)
t (LF ∗) = d log p holds.

On the other hand, for the Frobenius pullback on Dperf(R), the following holds.

Proposition 2.20. Let R be a local ring of prime characteristic p > 0. Then one has the

equality δ
Dperf(R)
t (R, (LF ∗)e(R)) = 1 for all e ≥ 0. In particular, the equality h

Dperf(R)
t (LF ∗) = 0

holds.

Proof. Let us prove the first equality. As (LF ∗)e(R) ∼= R for all e ≥ 0, it suffices to show

δ
Dperf(R)
t (R,R) = 1. The inequality δ

Dperf(R)
t (R,R) ≤ 1 obviously holds. Assume that there

exist n1, . . . , nr ∈ Z and X ∈ Dperf(R) with R ⊕X ∈ R[n1] ∗ · · · ∗ R[nr]. Then at least one
of the numbers n1, . . . , nr is zero. Indeed, if n1, . . . , nr are all nonzero, then the equalities
HomDperf(R)(R,R[ni]) = 0 with i = 1, . . . , r yield HomDperf(R)(R, Y ) = 0 for any Y ∈ R[n1] ∗
· · · ∗ R[nr]. In particular, we have HomDperf(R)(R,R ⊕ X) = 0, which leads a contradiction.

Thus
)r

i=1 e
nit ≥ 1, and so δ

Dperf(R)
t (R,R) ≥ 1. Now the first equality of the proposition

follows. As R is a split generator of Dperf(R), the second equality follows from the first. !
We can also compute the categorical entropy of the Frobenius pushforward on Db

fl(R).

Proposition 2.21. Let (R,m, k) be a d-dimensional F -finite local ring. Then for every e ≥ 1

the equality δ
Db

fl(R)
t (k, ek) = [1k : k]e holds. In particular, one has h

Db
fl(R)

t (F∗) = log[1k : k].

Proof. As k is a split generator of Db
fl(R), it is enough to show the first equality. The

inequality δ
Db

fl(R)
t (k, ek) ≤ [1k : k]e is trivial because ek ∼= k⊕[1k:k]e . Take integers n1, . . . , nr

and X ∈ Db
fl(R) such that k⊕[1k:k]e ⊕X ∈ k[n1] ∗ · · · ∗ k[nr]. Since ℓR(H

0(−)) is a subadditive
function with respect to exact triangles, we obtain the (in)equalities

[1k : k]e ≤ ℓR(H
0(k⊕[1k:k]e)) ≤ ℓR(H

0(k⊕[1k:k]e ⊕X)) ≤
)r

i=1 ℓR(H
0(k[ni])) = #{i | ni = 0}.

Hence
)r

i=1 e
nit ≥

)
ni=0 1 ≥ [1k : k]e. The inequality δ

Db
fl(R)

t (k, ek) ≥ [1k : k]e follows. !
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From these results, the remaining problem is to compute the categorical entropy of the
Frobenius pushforward on Db(R), which we shall deal with in the subsequent sections.

We close this section by giving a remark.

Remark 2.22. The categorical entropy has been introduced as a categorical analogue of the
topological entropy htop(f), which is defined for a pair (X, f) of a Hausdorff space X and a
continuous self-map f : X → X. The topological entropy satisfies the following properties
(cf. [4, Section 1.6]):

(a) If Y ⊆ X is a closed subspace such that f(Y ) ⊆ Y , then htop(f |Y ) ≤ htop(f).
(b) If X =

-n
i=1 Yi where each Yi is a closed subspace such that f(Yi) ⊆ Yi, then htop(f) =

max{htop(f |Yi
) | i = 1, 2, . . . , n}.

It is natural to ask if the following categorical analogues of these properties hold. However,
the above Theorem 2.19 and Proposition 2.20 show that they do not hold in general:

Let (T ,Φ) be a categorical dynamical system.

(a’) Let S ⊆ T be a thick subcategory such that Φ(S) ⊆ S. Then hS
t (Φ|S) ≤ hT

t (Φ).
(b’) Let S1,S2, . . . ,Sn ⊆ T be thick subcategories such that T = thick(S1,S2, . . . ,Sn) and

Φ(Si) ⊆ Si. Then hT
t (Φ) = max{hSi

t (Φ|Si
) | i = 1, 2, . . . , n}.

Here, (b’) has been addressed and proved to be true in [9] when 〈S1,S2, . . . ,Sn〉 is a semi-
orthogonal decomposition of T .

3. Lower bounds

In this section, we give in terms of local entropies a lower bound on the categorical entropy
ht(φ) of the pushforward φ∗ : D

b(R) → Db(R) along a finite local endomorphism φ of a local
ring R. The following lemma plays a key role in showing the main theorem in this section,
ideas of whose proof are taken from [11, Lemma 2.1]. Denote by K(−) the Koszul complex.

Lemma 3.1. Let (R,m, k) be a local ring. Let x be a sequence of elements of R with
.

(x) =
m. Let G ∈ Db(R). Fix an integer N such that Hi(G ⊗L

R K(x)) = 0 for all |i| > N , and set
B = max{ℓR(Hi(G⊗L

R K(x))) | −N ≤ i ≤ N}. Then for any E ∈ Db(R) and m ∈ Z, one has

ℓR(H
m(E ⊗L

R K(x))) ≤ BemteN |t|δt(G,E).

Proof. We can assume E ∈ thickG, because otherwise, the right-hand side is positive infinity.
We find E ′ ∈ Db(R) and integers n1, . . . , nr such that E ⊕ E ′ ∈ G[n1] ∗ G[n2] ∗ · · · ∗ G[nr].
Applying −⊗L

R K(x), we get a containment

(E ⊗L
R K(x))⊕ (E ′ ⊗L

R K(x)) ∈ (G⊗L
R K(x))[n1] ∗ (G⊗L

R K(x)[n2] ∗ · · · ∗ (G⊗L
R K(x)[nr].

Since ℓR(H
i(−)) is a subadditive function with respect to exact triangles, the inequalities

ℓR(H
m(E ⊗L

R K(x))) ≤ ℓR(H
m(E ⊗L

R K(x))⊕ Hm(E ′ ⊗L
R K(x)))

≤
)r

i=1 ℓR(H
m+ni(G⊗L

R K(x))) ≤ B|Sm|

follow, where Sm := {i | −N ≤ m+ ni ≤ N}. Using the inequality ex ≥ e−|x|, we have

e−N |t||Sm| ≤
)

i∈Sm
e−|(m+ni)t| ≤

)r
i=1 e

−|(m+ni)t| ≤
)r

i=1 e
(m+ni)t = emt

)r
i=1 e

nit.

Thus ℓR(H
m(E ⊗L

R K(x))) ≤ B|Sm| ≤ BemteN |t| )r
i=1 e

nit, and the assertion follows. !
The following theorem is the main result of this section.
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Theorem 3.2. Let (R,m, k) be a local ring with Krull dimension d and embedding dimension
ν. Let (R,φ) be a finite local algebraic dynamical system. Suppose that Db(R) has a split
generator (e.g., if R is excellent). Then there is an inequality

ht(φ∗) ≥ hloc(φ) + log[1k : k].

If there exists an integer u ≥ 1 such that the inclusions mνue ⊆ φe(m)R ⊆ mue
hold for all

e ≫ 1, then the following stronger equality holds for any split generator G of Db(R).

δt(G, eG) = Ω(([1k : k]ud)e).

Proof. We begin with showing the first assertion. Let G be a split generator of Db(R). We
may assume inf G := inf{i | Hi(G) ∕= 0} = 0 and R is a direct summand of H0(G) by Remark
2.6(2). By Lemma 3.1, for any fixed t there exists Dt > 0 such that ℓR(H

0(eG ⊗ K(x))) ≤
Dt · δt(G, eG), where x is a system of generators of m. As inf G = 0, we get equalities

H0(eG⊗K(x)) = H0(eG)/mH0(eG) = eH0(G)/m(eH0(G)) = e(H0(G)/φe(m)H0(G)).

Here, the second equality follows since the Frobenius pushforward F∗ is exact on the category
of R-modules. From these observations, we obtain (in)equalities

δt(G, eG) ≥ D−1
t · ℓR(e

/
H0(G)/φe(m)H0(G)

0
) = D−1

t · [ek : k] · ℓR(H0(G)/φe(m)H0(G))

= D−1
t · [1k : k]e · ℓR(H0(G)/φe(m)H0(G)) ≥ D−1

t · [1k : k]e · ℓR(R/φe(m)R),
(∗)

where for the first equality we use Lemma 2.15 and for the last inequality we use the assump-
tion that R is a direct summand of H0(G). Take the logarithms of both sides of (∗), divide
them by e, and take the limits to get the inequality ht(φ∗) ≥ hloc(φ) + log[1k : k].

Finally, we show the second assertion of the theorem. Lemma 2.17 implies ℓR(R/φe(m)R) =
Θ(ude). It follows from Remark 2.6(2) and (∗) that δt(G, eG) = Ω(([1k : k]ud)e). !

As a direct consequence of Theorem 3.2, we get the following corollary.

Corollary 3.3. (1) Let (R,m, k) be a d-dimensional F -finite local ring with characteristic p.
Then the equality δt(G, eG) = Ω(([1k : k]pd)e) holds for every split generator G of Db(R).
In particular, there is an inequality ht(F∗) ≥ d log p+ log[1k : k].

(2) Let k be a field, Γ a finitely generated additive monoid and R = k[[Γ]]. Let m be a positive
integer. Then one has the equality δt(G, (Fm)

e
∗G) = Ω(mde) for every split generator G

of Db(R). In particular, there is an inequality ht((Fm)∗) ≥ d logm.

Next, we generalize Corollary 3.3(1) to the global case. To this end, we need a couple of
lemmas. For a prime ideal p of a ring R, set αp = logp[

1k(p) : k(p)].

Lemma 3.4. Let R be an F -finite ring. Let p ⊆ q be in SpecR. Then αp + ht p = αq + ht q.

Proof. It follows from [10, Proposition 2.3] that [1k(p) : k(p)] = [1k(q) : k(q)] · pdimRq/pRq ,
where p = charR. The ring R is excellent (see Remark 2.14(2)), and in particular, it is
catenary. Therefore, we have the equalities αp+ht p = αq+dimRq/pRq+ht p = αq+ht q. !

Modifying the definition of a Hochster–Huneke graph [6], we introduce the following graph
G(R) associated to a noetherian ring R.

• The set of vertices is MinR, the set of minimal prime ideals of R.
• There is an edge between two prime ideals p and q if p+ q ∕= R.

Lemma 3.5 (cf. [6, Theorem 3.6]). Let R be a ring. If SpecR is connected as a topological
space, then G(R) is connected as a graph.
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Proof. Assume that G(R) is not connected as a graph. Then there exists a nontrivial partition
MinR = A ⊔ B such that p + q = R for all p ∈ A and q ∈ B. Neither the ideal I =

1
p∈A p

nor the ideal J =
1

q∈B q is nilpotent, while the ideal IJ is nilpotent. We have

V(I) ∩ V(J) = (
-

p∈A V(p)) ∩ (
-

q∈B V(q)) =
-

p∈A,q∈B V(p+ q) = ∅.

We obtain a nontrivial decomposition SpecR = V(IJ) = V(I) ⊔ V(J) into disjoint closed
subsets. Therefore, SpecR is not connected as a topological space. !

Lemma 3.5 says that for any two prime ideals p, q of a ring R with SpecR connected, there
is a sequence of prime ideals p1 = p, p2, . . . , pn = q, q1, q2, . . . , qn−1 such that pi, pi+1 ⊆ qi for
i = 1, 2, . . . , n− 1. Lemma 3.4 implies αp + ht p = αq + ht q and hence the number αp + ht p
is constant for p ∈ SpecR. As a result, for an F -finite noetherian scheme X, the function

X → Z, x /→ dimOX,x + logp[
1k(x) : k(x)]

is continuous. If X is connected, then this is a constant function, namely, the number

βX := dimOX,x + logp[
1k(x) : k(x)]

is independent of the choice of x ∈ X.

Corollary 3.6. Let X be a d-dimensional F -finite connected noetherian scheme of character-
istic p. Then the equality δt(G, eG) = Ω(peβX ) holds for any split generator G of Db(cohX).
In particular, the following holds for any x ∈ X.

h
Db(cohX)
t (F∗) ≥ βX log p = dimOX,x · log p+ log[1k(x) : k(x)].

Proof. Since X is F -finite, it is excellent by Remark 2.14(2). It follows from [2, Theorem
4.15] that there is a split generator G of Db(cohX). Let x be any point of X. Then Gx is a
split generator of Db(OX,x). Indeed, there is an equivalence of triangulated categories

Db(cohX)/S(x) ∼= Db(OX,x), E /→ Ex,

where S(x) := {E ∈ Db(cohX) | Ex
∼= 0}; see [14, Lemma 2.2] and [13, Lemma 3.2]. Note

that there is a commutative diagram

Db(cohX)
F∗ !!

(−)x
""

Db(cohX)

(−)x
""

Db(OX,x)
F∗
!! Db(OX,x).

Here, the vertical functors are the stalk functors and the horizontal ones are the Frobenius

pushforwards. Using [1, Proposition 2.2(c)], we get δ
Db(OX,x)
t (Gx,

eGx) ≤ δ
Db(cohX)
t (G, eG).

Corollary 3.3(1) implies δ
Db(OX,x)
t (Gx,

eGx) = Ω(([1k(x) : k(x)]ddimOX,x)e) = Ω(peβX ). !

Remark 3.7. If X is a d-dimensional F -finite algebraic variety over an algbraically closed
field k, then βX = d+ logp[

1k : k]. Hence the inequality ht(F∗) ≥ d log p+ log[1k : k] holds.
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4. Upper bounds

In this section, we give an upper bound of the categorical entropy of the Frobenius push-
forward and complete the proof of Theorem 1.1. We begin with providing an easy lemma.

Lemma 4.1. Let R be a local ring, and let x be an R-regular element. Then, for all positive
integers n, one has that R/xnR ∈ (R/xR)∗n.

Proof. We use induction on n. The case n = 1 is clear. Let n ≥ 2. As x is R-regular, there is
an exact sequence 0 → R/xR → R/xnR → R/xn−1R → 0. Using the induction hypothesis,
we get R/xnR ∈ R/xR ∗R/xn−1R ⊆ R/xR ∗ (R/xR)∗(n−1) = (R/xR)∗n. !

Let R be a local ring. Let M be a finitely generated module M . Then we denote by µR(M)
the minimal number of generators of M . For an integer n ≥ 0, we denote by Ωn

RM the nth
syzygy of M in the minimal free resolution of M and by βR

n (M) the nth Betti number of M .
Now we are ready to give a proof of the main result of this section.

Theorem 4.2. Let (R,m, k) be a d-dimensional F -finite local ring of characteristic p. Then:

(1) There is an equality δt(G, eG) = O(([1k : k]pd)e) for any split generator G of Db(R).
(2) There is an inequality ht(F∗) ≤ d log p+ log[1k : k].

Proof. It is enough to prove (1) because it implies (2). By Remark 2.6(2), we have only to
show that there exists a split generator G such that δt(G, eG) = O(([1k : k]pd)e). Let us
show it by induction on d. Assume d = 0. Then k is a split generator of Db(R). Since
ek ∼= k⊕[1k:k]e , we have δt(k,

ek) ≤ [1k : k]e = peα, and this implies δt(k,
ek) = O([1k : k]e).

Now suppose that d > 0 and that the equality δt(G, eG) = O(([1k : k]pd
′
)e) holds for any

F -finite local ring R of dimension d′ < d and some split generator G of Db(R). Let R be
a d-dimensional F -finite local ring. Take a filtration 0 = I0 ⊆ I1 ⊆ · · · ⊆ Ir = R of ideals
with Ii/Ii−1

∼= R/pi for some pi ∈ SpecR. For a complex X ∈ Db(R), there is a filtration
0 = I0X ⊆ I1X ⊆ · · · ⊆ IrX = X of complexes such that IiX/Ii−1X is a bounded complex
of finitely generated R/pi-modules. If each Db(R/pi) has a split generator Gi, then the above
filtration shows that

2r
i=1 Gi is a split generator of D

b(R). Moreover, one has the inequalities

δ
Db(R)
t (

2r
i=1 Gi,

e(
2r

i=1 Gi)) ≤
)r

i=1 δ
Db(R)
t (

2r
i=1 Gi,

eGi)

≤
)r

i=1 δ
Db(R)
t (Gi,

eGi) ≤
)r

i=1 δ
Db(R/pr)
t (Gi,

eGi),

where the first, second, and third inequalities follow from Lemma 2.4(5), (3) and (6), respec-
tively. Thus, it suffices to show the statement in the case where R is an integral domain.

By virtue of [7, Theorem 5.3], there exists a nonzero element x of R such that
xExt2d+1

R (M,N) = 0 for all R-modules M and N . Let G be a split generator of Db(R/xR) of

which R/xR is a direct summand. Then 3G := G⊕ R is a split generator of Db(R). Indeed,
let M be a finitely generated R-module M . As x kills Ext1R(Ω

2d
R M,−) ∼= Ext2d+1

R (M,−), the
module M is a direct summand of ΩR(Ω

2d
R M/xΩ2d

R M) by [5, Lemma 2.2]. Then

Ω2d
R M/xΩ2d

R M ∈ Db(R/xR) = thickDb(R/xR)(G) ⊆ thickDb(R)( 3G).

There is an exact sequence 0 → ΩR(Ω
2d
R M/xΩ2d

R M) → P → Ω2d
R M/xΩ2d

R M → 0 with P free,

and we see that M ∈ thickDb(R)( 3G). It follows that 3G is a split generator of Db(R).
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Using Lemma 2.4(2), we have an inequality δ
Db(R)
t ( 3G, e 3G) ≤ δ

Db(R)
t ( 3G, eG) + δ

Db(R)
t ( 3G, eR).

Also, by Lemma 2.4(3)(6) and the induction hypothesis, we get

δ
Db(R)
t ( 3G, eG) ≤ δ

Db(R)
t (G, eG) ≤ δ

Db(R/xR)
t (G, eG) = O(([1k : k]pd−1)e).

Therefore, it is enough to prove that δ
Db(R)
t ( 3G, eR) = O(([1k : k]pd)e).

The minimal free resolution of the R-module eR gives rise to an exact sequence

0 → Ω2d
R (eR) → R⊕βR

2d−1(
eR) → · · · → R⊕βR

0 (eR) → eR → 0.

As x is regular on R and eR, we obtain an exact sequence

0 → Ω2d
R (eR)/xΩ2d

R (eR) → (R/xR)⊕βR
2d−1(

eR) → · · · → (R/xR)⊕βR
0 (eR) → eR/x eR → 0.

Also, there is a canonical short exact sequence

0 → ΩR(Ω
2d
R (eR)/xΩ2d

R (eR)) → R⊕βR
2d(

eR) → Ω2d
R (eR)/xΩ2d

R (eR) → 0.

Here, we use the equalities µR(Ω
2d
R (eR)/xΩ2d

R (eR))) = µR(Ω
2d
R (eR)) = βR

2d(
eR). As we have

already seen, eR is a direct summand of ΩR(Ω
2d
R (eR)/xΩ2d

R (eR)). Hence there exists a finitely
generated R-module M such that the following containment holds true.

eR⊕M ∈ (eR/x eR)[−2d+ 1] ∗ (R/xR)⊕βR
0 (eR)[−2d] ∗ · · · ∗ (R/xR)⊕βR

2d−1(
eR)[−1] ∗R⊕βR

2d(
eR).

Since 3G contains R and R/xR as direct summands, this yields

δ
Db(R)
t ( 3G, eR) ≤ δ

Db(R)
t ( 3G, eR/x eR)e(−2d+1)t +

)2d
i=0 δ

Db(R)
t ( 3G, (R/xR)⊕βR

i (eR))e(−2d+i)t

≤ δ
Db(R)
t ( 3G, eR/x eR)e(−2d+1)t +

)2d
i=0 β

R
i (

eR)e(−2d+i)t

It follows from Lemma 4.1 that eR/x eR = e(R/xpeR) ∈ e((R/xR)∗p
e
) ⊆ (e(R/xR))∗p

e
. Hence,

δ
Db(R)
t ( 3G, eR/x eR) ≤ peδ

Db(R)
t ( 3G, e(R/xR)) ≤ peδ

Db(R/xR)
t (G, e(R/xR))

≤ peδ
Db(R/xR)
t (G, eG) = peO(([1k : k]pd−1)e) = O(([1k : k]pd)e).

Here, the first inequality follows by Lemma 2.4(5), the second by Lemma 2.4(3)(6), the third
by Lemma 2.4(2), and the last by the induction hypothesis. On the other hand, it is shown
by [15, Theorem] that βR

i (
eR) = O(([1k : k]pd)e). Consequently, we obtain

δ
Db(R)
t ( 3G, e 3G) = O(([1k : k]pd−1)e) +O(([1k : k]pd)e) = O(([1k : k]pd)e).

The proof of the theorem is now completed. !

The combination of Corollary 3.3(1) with Theorem 4.2 yields the following result.

Corollary 4.3. Let R be a d-dimensional F -finite local ring with characteristic p. Then
for any split generator G of Db(R), one has δt(G, eG) = Θ(([1k : k]pd)e). In particular, the
equality ht(F∗) = d log p+ log[1k : k] holds.
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