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Abstract. We introduce a new notion of commutative noetherian local rings which we call dominant.
We explore fundamental properties of dominant local rings, and compare them with other local rings.

We also provide several methods to get a new dominant local ring from a given one. Finally, we classify
resolving subcategories of the module category modR, and thick subcategories of the derived category
Db(R) and the singularity category Dsg(R) for a local ring R whose certain localizations are dominant

local rings. Our results recover and refine all the known classification theorems described in this context.
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1. Introduction

Given an abelian or triangulated category C, one can discuss subcategory classification for C, which
means classifying reasonable full subcategories of C such as Serre subcategories, resolving subcategories,
thick subcategories and localizing subcategories. Subcategory classification has been actively studied in a
wide range of areas including stable homotopy theory [12, 26, 32, 33, etc.], modular representation theory
[13, 14, 15, 27, etc.], algebraic geometry [52, 53, 64, etc.] and ring theory [1, 6, 28, 34, 37, 47, etc.].

Let R be a (commutative, noetherian) local ring. We denote bymodR the category of finitely generated
R-modules, and by Db(R) the bounded derived category of modR. Let Dsg(R) stand for the singularity
category of R, that is, the Verdier quotient of Db(R) by perfect complexes. The author and his coauthors
[22, 24, 46, 57, 58, 59, 60, etc.] have worked on subcategory classification for the abelian category modR
and the triangulated categories Db(R) and Dsg(R). We continue this study in the present paper.

We introduce the full subcategory C(R) of modR consisting of modules M with depthMp ⩾ depthRp

for every prime ideal p of R. This is none other than the full subcategory CM(R) of modR consisting
of maximal Cohen–Macaulay modules when R is Cohen–Macaulay. We obtain in Theorem 3.8 a result
on the structure of modules in C(R), and some direct consequences in Corollary 4.7 about the Rouquier
dimensions and the ultimate dimensions (in the sense of [11, 50]) of certain Verdier quotients of Db(R).

Motivated by these results, we shall introduce a new notion of local rings: a dominant local ring is a
local ring R for which the thick closure of each nonzero object of Dsg(R) contains the residue field (see
Corollary 10.8). We prove that dominance is preserved under various fundamental operations in local
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rings. Moreover, we find out several classes of local rings containing or contained in the class of dominant
local rings. The following theorem collects some of our main results in this direction.

Theorem 1.1 (Theorems 5.6, 6.7, Corollary 5.8 and Propositions 5.10, 6.2). Let (R,m, k) be a local ring.

(1) Let x ∈ m be an R-regular element. If R/(x) is dominant, then so is R. The converse holds if x /∈ m2.

(2) R is dominant if and only if so is the power series ring R[[X]], if and only if so is the completion R̂.
(3) R is dominant if m is quasi-decomposable or R is Burch. In particular, R is dominant if it is either

a hypersurface, or a Cohen–Macaulay ring with minimal multiplicity and with k infinite.
(4) Suppose that R is a complete intersection. Then R is dominant if and only if it is a hypersurface.
(5) Suppose that R is dominant. Then R is Tor-friendly, and hence it is Ext-friendly, Tor-persistent and

Ext-persistent. In particular, the Auslander–Reiten conjecture holds for R.

Assertions (3) and (5) of the above Theorem 1.1 are actually complemented in Theorem 9.10, which
provides more precise information on the relationships of dominance with other properties of local rings.

After investigating in Section 7 whether and how dominance is inherited from one local ring to an-
other, we discover various dominant local rings, including certain local rings of embedding dimension
two (Proposition 8.1 and Corollary 8.4) and certain quotients of regular local rings (Corollary 8.7 and
Proposition 8.8). In particular, the quotient of a regular local ring by an ideal generated by at most two
elements turns out to be dominant unless it is a complete intersection; see Corollary 8.9.

Finally, we consider subcategory classification for modR, Db(R) and Dsg(R). For a subset Φ of SpecR,
we denote by CΦ(R) the full subcategory of C(R) consisting of modules that are locally free outside Φ, by
modΦ R the full subcategory of modR consisting of modules that are locally of finite projective dimension
outside Φ, by Db

Φ(R) the full subcategory of Db(R) consisting of complexes that are locally perfect outside
Φ, and by Dsg

Φ (R) the full subcategory of Dsg(R) consisting of objects that are locally zero outside Φ. Using
the above-mentioned Theorem 3.8, we obtain the following classification of resolving/thick subcategories.

Theorem 1.2 (Theorem 10.10). Let (R,m, k) be a local ring of depth t. Let Φ be a subset of SingR.

(1) Suppose that Rp is dominant for all p ∈ Φ∪{m}. Then there exist one-to-one correspondences among:
• the resolving subcategories of CΦ(R),
• the thick subcategories of CΦ(R) containing R,
• the thick subcategories of modΦ R containing R,
• the thick subcategories of Db

Φ(R) containing R,
• the thick subcategories of Dsg

Φ (R), and
• the specialization-closed subsets of Φ.

(2) Assume that R is a singular local ring. Suppose further that Rp is dominant for all p ∈ Φ \ {m}. Let
Ωtk denote the t-th syzygy of the R-module k. Then there exist one-to-one correspondences among:

• the resolving subcategories of CΦ(R) containing Ωtk,
• the thick subcategories of CΦ(R) containing R and Ωtk,
• the thick subcategories of modΦ R containing R and k
• the thick subcategories of Db

Φ(R) containing R and k,
• the thick subcategories of Dsg

Φ (R) containing k, and
• the nonempty specialization-closed subsets of Φ.

We should mention that those one-to-one correspondences which are claimed in this theorem are given
explicitly. Here, the resolving subcategories of CΦ(R) mean the resolving subcategories ofmodR contained
in CΦ(R). The thick subcategories of CΦ(R), modΦ R, Db

Φ(R) and Dsg
Φ (R) mean the thick subcategories

of C(R), modR, Db(R) and Dsg(R) contained in CΦ(R), modΦ R, Db
Φ(R) and Dsg

Φ (R), respectively. The
specialization-closed subsets of Φ mean the specialization-closed subsets of SpecR contained in Φ.

Theorem 1.2 (and its consequence, Corollary 10.17) recovers all the known classification theorems of
the same type, which are the ones proved in [22, 46, 57, 59, 60]. Furthermore, Theorem 1.2 considerably
extends/refines them and discovers other classes of local rings R for which such a broad range of resolving
subcategories of modR and thick subcategories of Db(R), Dsg(R) are classified completely in terms of
specialization-closed subsets of SpecR. In particular, it is worth noting that all the known classification
theorems mentioned above assume that the local ring R is Cohen–Macaulay, while Theorem 1.2 does not
assume so. As far as the author knows, this is the first time classifying resolving/thick subcategories over
a commutative noetherian local ring which is not necessarily Cohen–Macaulay.

We close the section by stating our convention adopted throughout the paper.
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Convention. All rings are commutative and noetherian. All modules are finitely generated. All subcate-
gories are nonempty, full and strict. The zero (sub)category is denoted by 0. Each object X of a category
C may be identified with the subcategory {X} of C. Let R be a (commutative noetherian) ring. Denote
by modR the category of (finitely generated) R-modules. We use N for the set of nonnegative integers.

2. Preliminaries

This section provides a list of basic definitions and fundamental properties used in the later sections.

Definition 2.1. Let (R,m) be a local ring. We denote by R̂ the completion of R in the m-adic topology,
and by edimR the embedding dimension of R. We define the (embedding) codimension and the (embed-
ding) codepth of R by codimR = edimR−dimR and codepthR = edimR−depthR, respectively. For an
R-module M we denote by eR(M), ℓR(M), µR(M) and rR(M) the (Hilbert–Samuel) multiplicity (with
respect to m), the length, the minimal number of generators and the type of M , respectively. We refer
the reader to [16, 44] for the details of these notions about commutative local ring theory.

Definition 2.2. A subset Φ of SpecR is said to be specialization-closed if there is an inclusion V(p) ⊆ Φ
for all p ∈ Φ. Note that a specialization-closed subset is the same thing as a (possibly infinite) union of
closed subsets of SpecR in the Zariski topology. In particular, every closed subset is specialization-closed.
The (Krull) dimension of Φ is defined by dimΦ = sup{n ⩾ 0 | there exists a chain p0 ⊊ · · · ⊊ pn in Φ}.
It holds that dimΦ ⩽ sup{dimR/p | p ∈ Φ} with equality if Φ is specialization-closed.

Definition 2.3. We denote by Spec0 R the set of nonmaximal prime ideals, namely, Spec0 R = SpecR \
MaxR. If R is a local ring with maximal ideal m, then Spec0 R is none other than the punctured spectrum
SpecR \ {m} of R. We denote by SingR the singular locus of R, namely, the set of prime ideals p of
R such that the local ring Rp is singular (i.e., nonregular). It is evident that the singular locus is a
specialization-closed subset of SpecR. Note also that when (R,m) is a local ring, R is singular if and
only if SingR is nonempty, if and only if m ∈ SingR. For a property P of local rings (resp. modules
over local rings) and a set Φ of prime ideals of R, we say that R (resp. an R-module M) locally satisfies
P on Φ if the local ring Rp (resp. the Rp-module Mp) satisfies P for all p ∈ Φ. A local ring R is said
to have an isolated singularity if it is locally regular on Spec0 R, or equivalently, if dimSingR ⩽ 0 (i.e.,
dimSingR ∈ {0,−∞}). Note by definition that a regular local ring has an isolated singularity; see
[65, Definition (3.1)] and [41, Definition 7.8 and the paragraph following it]. We denote by mod0 R the
subcategory of modR consisting of modules which are locally free on Spec0 R.

Definition 2.4. For each positive integer n we denote by ΩnM the nth syzygy of M , that is to say, the
image of the nth differential map in a projective resolution of M in modR. We set Ω0M = M . Note
that ΩnM is uniquely determined up to projective summands. Whenever the ring R is local, we define
ΩnM by using a minimal free resolution of M , so that it is uniquely determined up to isomorphism.

Definition 2.5. An R-module M is said to be maximal Cohen–Macaulay if depthMp ⩾ dimRp for every
p ∈ SpecR, namely, if one has either M = 0 or M ̸= 0 and depthMp = dimRp for every p ∈ SuppM .
(Note by definition that the zero module is the only module having depth ∞.) We denote by CM(R) the
subcategory of modR consisting of maximal Cohen–Macaulay R-modules. Clearly, R is Cohen–Macaulay
if and only if R ∈ CM(R). We say that R has finite CM-representation type if there exist only finitely
many isomorphism classes of indecomposable modules in CM(R). We set CM0(R) = CM(R)∩mod0 R. A
Cohen–Macaulay local ring R has an isolated singularity if and only if CM0(R) = CM(R).

Definition 2.6. A subcategory X of modR is called closed under extensions (resp. kernels of epimor-
phisms) if for each exact sequence 0 → L → M → N → 0 in modR with L,N ∈ X (resp. M,N ∈ X )
one has M ∈ X (resp. L ∈ X ). We say that X is resolving if it contains the projective R-modules and
is closed under direct summands, extensions and kernels of epimorphisms. Clearly, the condition that
X contains the projective modules can be replaced with the condition that X contains R. Also, being
closed under kernels of epimorphisms can be replaced with being closed under syzygies; see [66, Lemma
3.2(2)]. It is straightforward to verify that any intersection of resolving subcategories is again resolving.

Definition 2.7. Let X be a subcategory of modR. For each p ∈ SpecR we denote by Xp the subcategory
of modRp consisting of modules of the form Xp with X ∈ X . The additive closure addR X of X is defined
as the subcategory of modR consisting of direct summands of finite direct sums of modules in X . The
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resolving closure resR X of X is defined to be the smallest resolving subcategory of modR containing
X . The subcategories addR and mod0 R of modR are resolving, and so is CM(R) if (and only if) R is
Cohen–Macaulay. For a resolving subcategory X of modR and a prime ideal p of R, the subcategory
addRp

Xp of modRp is resolving; see [24, Lemma 3.2(1)].

Definition 2.8. For an R-module M , we denote by NF(M) the nonfree locus of M , that is, the set of
prime ideals p of R such that Mp is nonfree as a module over Rp. This is a closed subset of SpecR in the

Zariski topology, since the equality NF(M) = SuppExt1(M,ΩM) holds in general; see [56, Proposition
2.10]. For a subcategory X of modR, we put NF(X ) =

∪
X∈X NF(X). This is a specialization-closed

subset of SpecR. For a subset Φ of SpecR, we denote by NF−1(Φ) the subcategory of modR consisting
of modules M with NF(M) ⊆ Φ. This is a resolving subcategory of modR; see [57, Proposition 1.15(3)].
Note that there are equalities mod0 R = NF−1(MaxR) and addR = NF−1(∅), the latter of which follows
from the fact that an R-module M is projective if and only if the Rp-module Mp is free for all p ∈ SpecR.

Definition 2.9. Let T be a triangulated category. A thick subcategory of T is by definition a triangulated
subcategory of T closed under direct summands. For a subcategory X of T we denote by thickX the
thick closure of X in T , that is, the smallest thick subcategory of T containing X .

Definition 2.10. Let R be a Gorenstein local ring. We denote by CM(R) the stable category of CM(R),
that is, the objects of CM(R) are the maximal Cohen–Macaulay R-modules, and HomCM(R)(M,N) is
the quotient HomR(M,N) of HomR(M,N) by the homomorphisms M → N factoring through some
projective R-modules. The stable category CM(R) is a triangulated category by [31, Theorem 2.6].

Definition 2.11. We denote by Db(R) the bounded derived category of modR, and by Dperf(R) the
subcategory of Db(R) consisting of perfect complexes; recall that a perfect complex means a bounded
complex of (finitely generated) projective modules. Note that the inclusion modR ⊆ Db(R) and the
equality Dperf(R) = thickDb(R) R hold. The singularity category of R is by definition the Verdier quotient

Dsg(R) = Db(R)/Dperf(R). If R is a Gorenstein local ring, then the assignment M 7→ M with M ∈ CM(R)
gives a triangle equivalence CM(R) → Dsg(R); we refer the reader to [18, Theorem 4.4.1] for the proof.

3. Structure of modules in C(R)

First of all, we emphasize that throughout this section R is a (commutative and noetherian) ring. In
this section, we introduce the subcategory C(R) of modR and investigate modules in it. The main result
of this section plays a key role in later sections. We start with recalling restricted flat dimension.

Definition 3.1. For each R-module M , we set RfdRM = supp∈SpecR{depthRp − depthMp}. This
invariant is called the (large) restricted flat dimension of M . We always have RfdRM ∈ N ∪ {−∞}, and
RfdRM = −∞ if and only if M = 0; see [8, Theorem 1.1] and [21, Proposition (2.2) and Theorem (2.4)].

We make the definition of the subcategory C(R) of modR and state basic properties.

Definition 3.2. We denote by C(R) the subcategory of modR consisting of modules M which satisfy the
inequality RfdRM ⩽ 0, that is to say, modules M such that depthMp ⩾ depthRp for all p ∈ SpecR. For

each subset Φ of SpecR, we set CΦ(R) = C(R)∩NF−1(Φ). We put C0(R) = C(R)∩mod0 R = CMaxR(R).

Remark 3.3. (1) For every M ∈ C(R) and every p ∈ SpecR, one has Mp ∈ C(Rp).
(2) By the depth lemma, C(R) is a resolving subcategory of modR, and so is CΦ(R) for each Φ ⊆ SpecR.
(3) One has C(R) ⊇ CM(R). The equality holds if and only if R is Cohen–Macaulay (as R ∈ C(R)).
(4) One has NF(C(R)) ⊆ SingR, or in other words, CSingR(R) = C(R). Indeed, let p ∈ NF(C(R)). Then

Mp is not Rp-free for some M ∈ C(R). There is an inequality depthMp ⩾ depthRp. If Rp is regular,
then pdRp

Mp < ∞ and by the Auslander–Buchsbaum formula Mp is Rp-free, a contradiction.

(5) For an R-module M ̸= 0 one has ΩrM ∈ C(R), where r = RfdM . This is seen by the depth lemma
(see [16, Proposition 1.2.9]).

(6) One has C(R) = addR if and only if R is regular. In fact, the “if” part follows from (3). As for the
“only if” part, by (5) one has pdM < ∞ for all M ∈ modR, which implies that R is regular.

(7) If the ring R is local, then there is an equality C0(R) = {M ∈ mod0 R | depthM ⩾ depthR}.
(8) For a local ring (R,m, k) of depth t, one has C0(R) = resΩtk. Indeed, using (7) and the depth lemma

shows Ωtk ∈ C0(R). Since C0(R) is a resolving subcategory of modR by (2), we have resΩtk ⊆ C0(R).
Pick M ∈ C0(R). Then depthM ⩾ depthR = t, and M belongs to resΩtk by [63, Proposition 3.4].
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We consider extensions of modules in a given subcategory of modR.

Definition 3.4. For two subcategories X ,Y of modR, we denote by X ◦ Y the subcategory of modR
consisting of modules E having an exact sequence 0 → X → E → Y → 0 with X ∈ X and Y ∈ Y.

Remark 3.5. For subcategories X ,Y,Z of modR it holds that (X ◦ Y) ◦ Z = X ◦ (Y ◦ Z). In fact, let

M be an R-module in (X ◦ Y) ◦ Z. There is an exact sequence 0 → N
v−→ M → Z → 0 with N ∈ X ◦ Y

and Z ∈ Z. There is an exact sequence 0 → X → N
w−→ Y → 0 with X ∈ X and Y ∈ Y. The pushout

diagram of v, w yields exact sequences 0 → X → M → L → 0 and 0 → Y → L → Z → 0. Therefore
M ∈ X ◦(Y ◦Z), and thus (X ◦Y)◦Z ⊆ X ◦(Y ◦Z). The opposite inclusion is shown by a dual argument.

Definition 3.6. Let X be a subcategory of modR. We set X ◦0 = 0, X ◦1 = X and X◦n = X ◦(n−1) ◦ X
for each n ⩾ 2. Taking Remark 3.5 into account, with no ambiguity we may write X ◦n = X ◦ X ◦ · · · ◦ X︸ ︷︷ ︸

n

.

We state a lemma on localization of a subcategory of modules at a prime ideal, which comes from [57].

Lemma 3.7. Let X be a subcategory of modR which contains R and is closed under finite direct sums.
Let M be an R-module. Then the following two statements hold true.

(1) Let p be a prime ideal of R. Then the localization Mp belongs to addXp if and only if there exists an
exact sequence 0 → N → X → M → 0 of R-modules with X ∈ X whose localization at p splits.

(2) Let Φ be a nonempty finite set of prime ideals of R. Assume that for each p ∈ Φ the Rp-module Mp

belongs to addXp. Then there exists an exact sequence 0 → L → M ⊕ N → X → 0 of R-modules
such that X ∈ X , N ∈ res{M,X}, NF(L) ⊆ NF(M) and NF(L) ∩ Φ = ∅.

Proof. (1) The proof of [57, Lemma 4.6] actually shows the assertion; [57, Lemma 4.6] concerns a resolving
subcategory of modR for a local ring R, but the proof does work for a commutative noetherian ring R
and a subcategory of modR containing R and closed under finite direct sums.

(2) The proof of [57, Proposition 4.7] essentially shows the assertion. We only give an outline. Write

Φ = {p1, . . . , pn}. By (1), for each 1 ⩽ i ⩽ n we get an exact sequence 0 → Ki → Xi
ϕi−→ M → 0 which

locally splits at pi. There is an exact sequence σ : 0 → K
ψ−→ X

ϕ−→ M → 0, where X = X1⊕· · ·⊕Xn ∈ X
and ϕ = (ϕ1, . . . , ϕn). As each σpi splits, we can choose1 an element f ∈ annR σ such that f /∈ pi for all
i. Then σf splits, and we find a homomorphism ν : M → X such that νf is a splitting of ϕf . Choosing

a surjection ε : F → X with F ∈ addR, we get an exact sequence 0 → L → M ⊕K ⊕ F
(ν,ψ,ε)−−−−→ X → 0.

Putting N = K ⊕ F , we can verify that N ∈ res{M,X}, NF(L) ⊆ NF(M) and NF(L) ∩ Φ = ∅. ■
Now we state and prove the main result of this section concerning the structure of modules in C(R).

This is used to prove the main results of Sections 4 and 10; it plays a key role in their proofs.

Theorem 3.8. Let R be a local ring with maximal ideal m. Let X be a subcategory of modR closed under
finite direct sums and such that R ∈ X ⊆ C(R). Let Φ be a subset of SingR such that C0(Rp) ⊆ add(Xp)
for every p ∈ Φ \ {m}. Then, for each nonfree R-module M ∈ CΦ(R), there exists an exact sequence
0 → C → M ⊕N → Y → 0 of R-modules in C(R) with C ∈ C0(R), Y ∈ X ◦n and n = dimNF(M).

Proof. Since M is nonfree, we have n ⩾ 0. We prove the proposition by using induction on n. Let n = 0.
Then X ◦n = 0 by definition. We have NF(M) = {m}, whence M ∈ C0(R). Thus the assertion follows
by taking the trivial exact sequence 0 → M → M ⊕ 0 → 0 → 0. Let n ⩾ 1. Put Ψ = minNF(M).
Note that the set Ψ is nonempty and finite. Also, we have that Ψ ⊆ Φ and m /∈ Ψ. Fix any prime
ideal p ∈ Ψ. Then p ∈ Φ \ {m}, and C0(Rp) ⊆ addXp by assumption. It is seen that NF(Mp) = {pRp},
and we get Mp ∈ mod0 Rp. Hence Mp ∈ C(Rp) ∩ mod0 Rp = C0(Rp) ⊆ addXp. Lemma 3.7(2) gives
rise to an exact sequence α : 0 → L → M ⊕ H → X → 0 of R-modules with X ∈ X , H ∈ res{M,X},
NF(L) ⊆ NF(M) and NF(L)∩Ψ = ∅. As X is contained in X ◦n, the exact sequence is a desired one if L
is free. So, let us assume that L is nonfree. It is observed that H,L ∈ C(R), NF(L) ⊆ NF(M) ⊆ Φ and
t := dimNF(L) < dimNF(M) = n. Applying the induction hypothesis to L, we obtain an exact sequence

0 → C → L ⊕ K
v−→ Z → 0 of R-modules with C ∈ C0(R) and Z ∈ X ◦t. Taking the direct sum of α

and the trivial exact sequence 0 → K → K → 0 → 0 and putting N = H ⊕K ∈ C(R), we get an exact

1There is an obvious error in choosing such an element f in the proof of [57, Proposition 4.7], and the way of choice

presented here is what was supposed to be given in [57].
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sequence 0 → L ⊕K
w−→ M ⊕ N → X → 0. The pushout diagram of v, w gives rise to exact sequences

β : 0 → Z → Y → X → 0 and γ : 0 → C → M ⊕ N → Y → 0. Since Z ∈ X ◦t and X ∈ X , the exact
sequence β shows Y ∈ X ◦(t+1). As t + 1 ⩽ n, we have Y ∈ X ◦n. Since C(R) is a resolving subcategory
of modR, it contains X ◦n and hence Y ∈ C(R). Thus γ is such an exact sequence as we want. ■

Remark 3.9. For n ⩾ 0, we denote by Sn(R) the subcategory of modR consisting of modules satisfying
Serre’s condition (Sn), i.e., depthMp ⩾ inf{n, ht p} for all p ∈ SpecR. Put SΦn (R) = Sn(R) ∩ NF−1(Φ)
for each subset Φ of SpecR, and set S0n(R) = Sn(R) ∩ mod0 R = SMaxR

n (R). For every M ∈ Sn(R)
and p ∈ SpecR, one has Mp ∈ Sn(Rp). Whenever R satisfies (Sn), the subcategory Sn(R) of modR is
resolving and so is S0n(R). The assertion of Theorem 3.8 with C,C0,CΦ replaced by Sn, S

0
n, S

Φ
n respectively

holds. More precisely, the statement below follows along the same lines as in the proof of Theorem 3.8.

Let R be a local ring with maximal ideal m, and let n be a nonnegative integer. Let X be a
subcategory of modR closed under finite direct sums and such that R ∈ X ⊆ Sn(R). Let
Φ be a subset of SingR such that S0n(Rp) ⊆ add(Xp) for all p ∈ Φ \ {m}. Then, for each
nonfree R-module M ∈ SΦn (R), there exists an exact sequence 0 → C → M⊕N → Y → 0
of R-modules such that C ∈ S0n(R) and Y ∈ X ◦h, where h = dimNF(M).

Note that in the case where R is Cohen–Macaulay and n ⩾ dimR, one has Sn(R) = C(R) = CM(R), and
the above statement is identified with Theorem 3.8 in this case.

Here we recall the definition of a notion.

Definition 3.10. Let Φ be a set of prime ideals of R. A resolving subcategory X of modR is said to be
dominant on Φ if for each prime ideal p ∈ Φ there exists an integer n ⩾ 0 such that Ωnκ(p) ∈ addXp.

The notion of a dominant resolving subcategory is introduced in [24], where the inner structure of
each dominant resolving subcategory is described and classification of dominant resolving subcategories
is provided. The above theorem yields the following result on dominant resolving subcategories.

Corollary 3.11. Let (R,m) be a local ring. Let X be a resolving subcategory of modR contained in C(R).
Let Φ be a subset of SingR such that X is dominant on Φ \ {m}. Then, for each R-module M ∈ CΦ(R),
there exists an exact sequence 0 → C → M ⊕N → X → 0 of R-modules with C ∈ C0(R) and X ∈ X .

Proof. The exact sequence 0 → M → M ⊕ 0 → 0 → 0 is a desired one when M is free, so we may assume
that M is nonfree. Let p ∈ Φ \ {m}. By the definition of a dominant resolving subcategory, there exists
an integer n ⩾ 0 such that Ωnκ(p) ∈ addXp. As addXp is a resolving subcategory of modRp, it follows
from [63, Corollary 3.3(1)] that ΩdepthRpκ(p) ∈ addXp. Remark 3.3(8) implies that C0(Rp) is contained
in addXp. As X is resolving, we have X ◦i ⊆ X for all i ⩾ 0. The assertion follows from Theorem 3.8. ■

As another corollary of Theorem 3.8, we obtain decompositions of the subcategory C(R) of modR.

Corollary 3.12. Let (R,m) be a local ring and put n = dimSingR. Let X be a subcategory of modR
closed under finite direct sums and such that R ∈ X ⊆ C(R). If C0(Rp) ⊆ add(Xp) for all p ∈ SingR\{m},
then C(R) = add(C0(R) ◦ X ◦n). If C0(Rp) ⊆ add(Xp) for all p ∈ SingR, then C(R) = add(X ◦(n+1)).

Proof. The first assertion is shown by applying Theorem 3.8 to Φ = SingR and using Remark 3.3(4)
and the inequality dimNF(M) ⩽ dimSingR. In what follows, we show the second assertion. By the
first assertion, C(R) = add(C0(R) ◦ X ◦n). If m is not in SingR, then R is regular, and C0(R) ⊆ C(R) =
addR ⊆ X by Remark 3.3(6). If m is in SingR, then C0(Rm) ⊆ add(Xm) by assumption, which means
C0(R) ⊆ X . Thus X contains C0(R) in either case, and we obtain C(R) = add(X ◦(n+1)). ■

4. Generation of Verdier quotients of Db(R)

In this section, we apply a result obtained in the previous section to explore the structure of some
Verdier quotients of the derived category Db(R). To be more precise, applying Corollary 3.12, we investi-
gate the (Rouquier) dimensions and the ultimate dimensions of the Verdier quotients Db(R)/ thick{R, k}
and Dsg(R) of Db(R). These two notions of dimensions for triangulated categories have been introduced
by Rouquier [50], and Ballard, Favero and Katzarkov [11], respectively. Let us recall their definitions.

Definition 4.1. Let T be a triangulated category.
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(1) Let X ,Y be subcategories of T . We denote by ⟨X ⟩ the subcategory of T containing X and closed
under finite direct sums, direct summands and shifts, by X ∗ Y the subcategory of T consisting of
objects E ∈ T having an exact triangle X → E → Y → X[1] in T with X ∈ X and Y ∈ Y, and put
X ⋄ Y = ⟨X ∗ Y⟩. Set ⟨X ⟩0 = 0, ⟨X ⟩1 = ⟨X ⟩ and ⟨X ⟩n = ⟨X ⟩n−1 ⋄ ⟨X ⟩ for n ⩾ 2. We write ⟨X ⟩Tn for
⟨X ⟩n when we specify the ambient triangulated category T .

(2) Let G ∈ T . The generation time gtT (G) of G in T is defined as the infimum of integers n ⩾ 0 with
T = ⟨G⟩n+1. Note that gtT (G) ∈ N∪{∞}. We say that G is a strong generator of T if gtT (G) < ∞.

(3) The (Rouquier) dimension dim T of T is defined to be the infimum of the Orlov spectrum OSpec T =
{gtT (G) | G is a strong generator of T } of T . One then has dim T ∈ N ∪ {∞}. Note that dim T =
inf{n ⩾ 0 | T = ⟨G⟩n+1 for some G ∈ T } holds, and that dim T = 0 if there exist only finitely many
isomorphism classes of indecomposable objects in T and each object of T is isomorphic to a finite
direct sum of indecomposable objects. The ultimate dimension udim T of T is defined as follows.

udim T =

{
sup(OSpec T ) if OSpec T ̸= ∅,
∞ if OSpec T = ∅.

One has udim T ∈ N ∪ {∞}.

We need to establish the following general lemma on triangle functors of triangulated categories. The
latter assertion of (2) follows from [49, Lemma 1.2]; for the convenience of the reader we give a proof.

Lemma 4.2. Let F : T → U be a triangle functor of triangulated categories.

(1) There is an inclusion relation F (thickT X ) ⊆ thickU F (X ) for each subcategory X of T .
(2) Let X be a thick subcategory of U . Then F−1(X ) = {T ∈ T | F (T ) ∈ X} is a thick subcategory of T ,

and F induces a triangle functor F : T /F−1(X ) → U/X . If F is an equivalence, then so is F .

Proof. (1) Let Y be the subcategory of T consisting of objects Y with F (Y ) ∈ thickU F (X ). As F is a
triangle functor, Y is seen to be a thick subcategory of T containing X . Hence Y contains thickT X .

(2) It is easy to deduce the thickness of F−1(X ) from the thickness of X and F being a triangle
functor. Let α : U → U/X be the canonical functor. The composition αF is a triangle functor and
(αF )(F−1(X )) = 0. By [48, Theorem 2.1.8] there exists a unique triangle functor F : T /F−1(X ) → U/X
such that Fβ = αF , where β : T → T /F−1(X ) is the canonical functor.

Suppose that F is an equivalence, and let G : U → T be a quasi-inverse to F . Similarly as above,
there exists a unique triangle functor G : U/G−1(F−1(X )) → T /F−1(X ) such that Gγ = βG, where
γ : U → U/G−1(F−1(X )). We easily see G−1(F−1(X )) = X and γ = α. Using uniqueness, we observe
that G · F = GF and F · G = FG. As GF and FG are isomorphic to the identity functors, so are GF
and FG. Hence F is an equivalence to which G is a quasi-inverse. ■

We introduce a certain subcategory of the stable category of maximal Cohen–Macaulay modules.

Definition 4.3. Let R be a Gorenstein local ring. Let π : CM(R) → CM(R) be the canonical functor,
and set CM0(R) = π(CM0(R)). (Here, note by our convention that if M ∈ CM(R) and M ∼= π(X) for
some X ∈ CM0(R), then M ∈ π(CM0(R)) = CM0(R).) Hence CM0(R) is none other than the subcategory
of CM(R) consisting of the maximal Cohen–Macaulay R-modules M such that Mp

∼= 0 in CM(Rp) for all
p ∈ Spec0 R. Note that CM0(R) is a thick subcategory of CM(R).

We record a triangle equivalence induced from the one CM(R) ∼= Dsg(R) stated in Definition 2.11.

Proposition 4.4. Let R be a Gorenstein local ring with residue field k. Then the assignment M 7→ M ,
where M is a maximal Cohen–Macaulay R-module, gives a triangle equivalence

CM(R)/CM0(R) ∼= Db(R)/ thick{R, k}.

Proof. As R is a Gorenstein local ring, there is a triangle equivalence F : CM(R) → Dsg(R), which is given
by F (M) = M for eachM ∈ CM(R). It is seen by [61, Corollary 4.3(3)] that F−1(thickDsg(R) k) = CM0(R).

Lemma 4.2(2) yields a triangle equivalence F : CM(R)/CM0(R) → Dsg(R)/ thick k with F (M) = M for
each maximal Cohen–Macaulay R-module M . Let α : Db(R) → Dsg(R), β : Dsg(R) → Dsg(R)/ thick k
and γ : Db(R) → Db(R)/ thick{R, k} be the natural functors. As γ(thickR) = 0, by [48, Theorem 2.1.8]
there exists a triangle functor δ : Dsg(R) = Db(R)/ thickR → Db(R)/ thick{R, k} with γ = δα. Lemma
4.2(1) implies βα(thick{R, k}) ⊆ thickβα{R, k} = 0 and δ(thick k) ⊆ thick δ(k) = 0. By [48, Theorem



8 RYO TAKAHASHI

2.1.8] again, we get triangle functors σ : Db(R)/ thick{R, k} → Dsg(R)/ thick k and τ : Dsg(R)/ thick k →
Db(R)/ thick{R, k} such that βα = σγ and δ = τβ. We then have equalities γ = (τσ)γ and βα = (στ)βα.
We see from [48, Theorem 2.1.8] again that τσ and στ are identity functors. Thus τ is an equivalence.
Now the composition τF : CM(R)/CM0(R) → Db(R)/ thick{R, k} is a desired triangle equivalence. ■

We establish a lemma which describes maximal Cohen–Macaulay modules over the localizations of R
at prime ideals in terms of localizations of maximal Cohen–Macaulay modules over R.

Lemma 4.5. (1) Let R be a Cohen–Macaulay local ring with a canonical module ω. Let p be a prime ideal
of R. For any maximal Cohen–Macaulay Rp-module M there exists an isomorphism M ⊕ω⊕n

p
∼= Xp

such that n is a nonnegative integer and X is a maximal Cohen–Macaulay R-module. In particular,
there is an equality CM(Rp) = add(CM(R)p) of subcategories of modRp.

(2) Let R be a Gorenstein local ring. Let G ∈ CM(R), p ∈ SpecR and n ∈ N. Then for every M ∈
⟨Gp⟩CM(Rp)

n there exists N ∈ ⟨G⟩CM(R)
n such that M is a direct summand of Np in CM(Rp).

Proof. (1) Write M = Np with some R-module N . As R has a canonical module, N admits a Cohen–
Macaulay approximation, that is, an exact sequence 0 → Y → X → N → 0 of R-modules such that X is
maximal Cohen–Macaulay and Y has finite injective dimension; see [4, Theorem 1.1]. Since Np = M is
maximal Cohen–Macaulay and Yp has finite injective dimension, the localized exact sequence 0 → Yp →
Xp → Np → 0 splits (see [16, Exercises 3.1.24]). Hence M ⊕Yp

∼= Xp. This also says that the Rp-module
Yp is maximal Cohen–Macaulay, and we get Yp

∼= ω⊕n
p for some n ⩾ 0 by [16, Exercises 3.3.28(a)].

(2) We use induction on n. When n = 0, we have ⟨Gp⟩n = 0, whence M = 0 and we can take N = 0.

Let n = 1. Then in CM(Rp) the object M is a direct summand of
⊕a

i=1 G
⊕bi
p [ci] for some a, bi, ci ⩾ 0. Set

N =
⊕a

i=1 G
⊕bi [ci] ∈ CM(R). Then N belongs to ⟨G⟩CM(R)

1 and M is a direct summand of Np in CM(Rp).
Let n ⩾ 2. There exists an exact triangle A → B → C → A[1] in CM(Rp) such that A ∈ ⟨Gp⟩n−1,
C ∈ ⟨Gp⟩1 and M is a direct summand of B; see [25, Remark 3.2(1)]. The induction hypothesis gives rise
to objects A′ ∈ ⟨G⟩n−1 and C ′ ∈ ⟨G⟩1 such that in CM(Rp) the objects A and C are direct summands of
A′

p and C ′
p, respectively. There are isomorphisms A⊕X ∼= A′

p and C ⊕ Y ∼= C ′
p in CM(Rp). Taking the

direct sums with the trivial exact triagles X → X → 0 → X[1] and 0 → Y → Y → 0[1], we obtain an

exact triangle A′
p → D → C ′

p
f−→ A′

p[1] in CM(Rp) such that M is a direct summand of D = B ⊕X ⊕ Y .
The morphism f belongs to HomRp

(C ′
p, A

′
p[1]), which is isomorphic to HomR(C

′, A′[1])p. There exist

elements g ∈ HomR(C
′, A′[1]) and s ∈ R \ p such that f = 1

s · gp. Extend the morphism g to an exact

triangle A′ → N → C ′ g−→ A′[1] in CM(R), and then we have N ∈ ⟨G⟩n. We get a commutative diagram

A′
p

// Np
//

h

��

C ′
p

gp //

s∼=
��

A′[1]

A′
p

// D // C ′
p

f // A′
p[1]

of exact triangles in CM(Rp). Then h is an isomorphism, andM is a direct summand ofNp in CM(Rp). ■

Definition 4.6. Following [36], we say that R has finite CM+-representation type if there exist only a
finite number of nonisomorphic indecomposable modules that belong to

CM+(R) := CM(R) \ CM0(R) = {M ∈ CM(R) | dimNF(M) > 0}.
If R is a Cohen–Macaulay local ring with an isolated singularity, then it has finite CM+-representation
type as CM+(R) is empty. If R is a hypersurface of type (A∞) or (D∞), then it does not have an isolated
singularity but has finite CM+-representation type; see [2, Theorem 1.1(1)] for the details.

Denote by Dsg
0 (R) the subcategory of Dsg(R) consisting of R-complexes X such that Xp

∼= 0 in Dsg(Rp)
for all p ∈ Spec0 R. Now we can achieve our purpose of stating an application of Corollary 3.12.

Corollary 4.7. Let R be a Gorenstein local ring with maximal ideal m and residue field k.

(1) If the singular locus SingR has dimension at most one, then there is an inequality

dimDb(R)/ thick{R, k} ⩽ sup{dimDsg(Rp) | p ∈ SingR \ {m}}.
(2) If R has finite CM+-representation type, then it holds that dimDb(R)/ thick{R, k} ⩽ 0.
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(3) There is an inequality

udimDsg(R) ⩽ (s+ 1)(dimSingR+ 1)− 1,

where s is the supremum of nonnegative integers n such that Dsg
0 (Rp) ⊆ ⟨Gp⟩D

sg(Rp)
n+1 for every strong

generator G of Dsg(R) and every p ∈ SingR. In particular, udimDsg(R) < ∞ if s < ∞.

Proof. Since R is Gorenstein, the singularity categories of R and its localization Rp at a prime ideal p may
be replaced with the stable categories of maximal Cohen–Macaulay modules over R and Rp, respectively.

(1) By [61, Corollary 4.3(3)], we may assume dimSingR = 1. We can write SingR = {p1, . . . , pn,m}
with n ⩾ 1. We may assume dimCM(Rpi) =: ri < ∞ for all 1 ⩽ i ⩽ n. We find a maximal Cohen–
Macaulay Rpi-module Gi such that CM(Rpi) = ⟨Gi⟩ri+1. By Lemma 4.5(1), we may assume Gi = (Ci)pi ,
where Ci is a maximal Cohen–Macaulay R-module. Put r = max{r1, . . . , rn} ∈ N and C = C1⊕· · ·⊕Cn ∈
CM(R). Let X be the subcategory of modR consisting of maximal Cohen–Macaulay R-modules that

belong to ⟨C⟩CM(R)
r+1 . Then X is closed under finite direct sums and satisfies R ∈ X ⊆ CM(R).

We claim that CM(Rpi) is contained in addXpi for all 1 ⩽ i ⩽ n. In fact, pick any objectM ∈ CM(Rpi).

Then M ∈ CM(Rpi) = ⟨Gi⟩ri+1 ⊆ ⟨Cpi⟩r+1. By Lemma 4.5(2), there exists an object N ∈ ⟨C⟩CM(R)
r+1 such

that M is a direct summand of Npi in CM(Rpi). As N belongs to X , we see that M belongs to addXpi .
Applying Corollary 3.12, we obtain CM(R)/CM0(R) = ⟨X ⟩1 = ⟨C⟩r+1. It follows from Proposition

4.4 that Db(R)/ thick{R, k} = ⟨C⟩r+1, which yields the inequality dimDb(R)/ thick{R, k} ⩽ r.
(2) According to [36, Theorems 1.2(1) and 1.3], the singular locus SingR of R has dimension at most

one and Rp has finite CM-representation type for every p ∈ SingR \ {m}. The assertion follows from (1).
(3) We may assume s < ∞. Fix a strong generator G of CM(R). Let X be the subcategory of modR

consisting of modules X which belong to ⟨G⟩CM(R)
s+1 . Then X is closed under finite direct sums and satisfies

R ∈ X ⊆ CM(R). Fix p ∈ SingR. Then CM0(Rp) ⊆ ⟨Gp⟩CM(Rp)
s+1 . A similar argument as in the claim

in the proof of (1) deduces the inclusion CM0(Rp) ⊆ addXp. Corollary 3.12 yields CM(R) = add(X ◦r),
where r = dimSingR+1. We get CM(R) = ⟨X ⟩r = ⟨G⟩(s+1)r, and obtain udimCM(R) ⩽ (s+1)r−1. ■

5. Basic properties of dominant local rings

Theorem 3.8 and its consequences lead us to get interested in studying local rings R such that the
resolving subcategories X of modR with addR ̸= X ⊆ C(R) contain C0(R). Taking Corollary 3.11 into
account, we call such local rings dominant. To be precise, we have the following definition and proposition.

Definition 5.1. Let R be a local ring with residue field k. Put t = depthR. We say that R is dominant if
for each R-module M of infinite projective dimension, the R-module Ωtk belongs to the resolving closure
resM of M . Note that if R is a regular local ring, then it is dominant since Ωtk is a free R-module (or
since there is no R-module of infinite projective dimension).

Remark 5.2. We will later obtain an equivalent homological characterization of dominant local rings;
see Remark 10.9.

Proposition 5.3. Let R be a local ring. The following three statements are equivalent.
(1) The local ring R is dominant. (2) For every R-module M with pdM = ∞ one has C0(R) ⊆ resM .
(3) For each resolving subcategory X of modR with addR ̸= X ⊆ C(R), it holds that C0(R) ⊆ X .

Proof. It is a direct consequence of Remark 3.3(8) that (1) and (2) are equivalent.
Let X be a resolving subcategory of modR such that addR ̸= X ⊆ C(R). Then there exists a nonfree

R-module X ∈ X . Since X belongs to C(R), we observe from the Auslander–Buchsbaum formula that
X has infinite projective dimension. If (2) holds, then we have C0(R) ⊆ resX ⊆ X , and hence (3) holds.

Let M be an R-module with pdM = ∞. Put r = RfdM and X = resΩrM . We see from Remark
3.3(5) that ΩrM belongs to C(R), and therefore X is contained in C(R). Since ΩrM is not R-free, we
have X ≠ addR. If (3) holds, then there are inclusions C0(R) ⊆ X ⊆ resM , and thus (2) holds. ■

The corollary below is an immediate consequence of the above proposition.

Corollary 5.4. Let R be an artinian local ring. Then R is dominant if and only if there exist only trivial
resolving subcategories of modR, that is, addR and modR are the only resolving subcategories of modR.

Proof. As R is artinian, we have C0(R) = C(R) = modR. The assertion follows from Proposition 5.3. ■
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In this section, we explore basic properties of dominant local rings. To be more precise, we investigate
the relationship of dominance with several fundamental operations of local rings. We first consider how
dominance is related to modding out by a regular element, and for this we establish a lemma.

Lemma 5.5. Let M be an R-module. Let x be an element of R which is regular on R and M . Let N be an
R-module with N ∈ resRM . Then the element x is regular on N and one has N/xN ∈ resR/(x) M/xM .

Proof. Let X be the subcategory of modR consisting of modules X such that x is X-regular and X/xX ∈
resR/(x) M/xM . By assumption, R and M belong to X . Let 0 → A → B → C → 0 be an exact sequence
of R-modules with C ∈ X . By the snake lemma, the induced sequence 0 → A/xA → B/xB → C/xC → 0
is exact. We observe that A ∈ X if and only if B ∈ X . Hence X is closed under extensions and kernels of
epimorphisms. It is easy to check that X is closed under direct summands. Therefore, X is a resolving
subcategory of modR containing M , and thus it contains resRM . The assertion now follows. ■

Now we prove the following theorem, which tells us that dominance has a good relationship with taking
the quotient by a regular element. This theorem plays an important role in the remainder of the paper.

Theorem 5.6. Let R be a local ring with maximal ideal m. Let x ∈ m be an R-regular element. If R/(x)
is a dominant local ring, then so is R. The converse is also true if x /∈ m2.

Proof. Put t = depthR. Since x is a regular element of R, we have t ⩾ 1.
We show the first assertion. Let M be an R-module with pdRM = ∞. Then x is ΩM -regular, and

pdR/(x) ΩM/xΩM = ∞ by [16, Lemma 1.3.5]. Since R/(x) is a dominant local ring of depth t − 1, the

R/(x)-module Ωt−1
R/(x)k is in resR/(x) ΩM/xΩM . The R-module ΩRΩ

t−1
R/(x)k is in resΩM by [57, Lemma

5.8], and hence it is in resM . It follows by [46, Lemma 4.2] that Ωtk is in resM . Thus R is dominant.
Now we prove the second assertion. Let M be an R/(x)-module of infinite projective dimension. Since

x is not in m2, it is seen from [7, Theorem 2.2.3] that M has infinite projective dimension as an R-module,
and so does ΩM . Since R is dominant, Ωtk belongs to resΩM . The element x is regular on both R
and ΩM . Lemma 5.5 implies that Ωtk/xΩtk is in resR/(x) ΩM/xΩM . Thanks to the assumption x /∈ m2

again, Ωtk/xΩtk is isomorphic to ΩtR/(x)k ⊕Ωt−1
R/(x)k; see [54, Corollary 5.3] for instance. Hence Ωt−1

R/(x)k

belongs to resR/(x) ΩM/xΩM . There is a commutative diagram

0 // ΩM //

x

��

R⊕n //

x

��

M //

x 0

��

0

0 // ΩM // R⊕n // M // 0

with exact rows, where the vertical arrows are multiplication maps by x. The snake lemma gives rise to
an exact sequence 0 → M → ΩM/xΩM → (R/(x))⊕n → M → 0. It is easy to see that ΩM/xΩM is in
resR/(x) M . Consequently, Ωt−1

R/(x)k belongs to resR/(x) M , and thus R/(x) is a dominant local ring. ■

To get an application of Theorem 5.6, we establish an elementary lemma.

Lemma 5.7. Let (R,m, k) be a local ring. Let a1, . . . , an ∈ m and e1, . . . , en > 0. Let S = R[[x1, . . . , xn]]
be a formal power series ring. For each integer 1 ⩽ i ⩽ n, let Si = S/(xe11 − a1, . . . , x

ei−1

i−1 − ai−1) be a
quotient of S. Then the element xeii − ai is Si-regular, and does not belong to the square of the maximal
ideal of the local ring Si if ei = 1. Therefore, the sequence xe11 − a1, . . . , x

en
n − an is S-regular.

Proof. Fix 1 ⩽ i ⩽ n, and set Ti = R[[x1, . . . , xi−1, xi+1, . . . , xn]]/(x
e1
1 − a1, . . . , x

ei−1

i−1 − ai−1). Then the
ring Ti is local, ai is a nonunit of Ti and Si = Ti[[xi]]. Denote by n the maximal ideal of the local ring Ti.

The element xi − ai is not in the square of the maximal ideal of the local ring Si. In fact, otherwise,
the natural surjection Si → Si/nSi ∼= (Ti/n)[[xi]] ∼= k[[xi]] would give xi ∈ x2

i k[[xi]], a contradiction.
We prove that xeii −ai is Si-regular. It suffices to show that for a local ring A, a nonunit a ∈ A and an

integer e > 0, the element te− a is regular on the formal power series ring A[[t]]. Assume (te− a)f = 0 in
A[[t]] with f ∈ A[[t]]. Writing f = c0 + c1t+ c2t

2 + · · · , we see that for each h ⩾ 0 the (e+ h)th coefficient
of (te−a)f is ch−ace+h. Hence ch = ajcje+h for all j > 0, and ch ∈

∩
j>0(a

j) = 0 by Krull’s intersection

theorem (recall the assumption that a ∈ A is a nonunit). It follows that f = 0, and we are done. ■
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The following result is a corollary of Theorem 5.6, which says that dominance also has good relation-
ships with taking a formal power series extension and taking the completion. Thanks to this corollary,
when we deal with dominance, we can reduce to the case of a complete local ring.

Corollary 5.8. Let R be a local ring with maximal ideal m. Then R is dominant if and only if so is the

formal power series ring R[[x]] over R, if and only if so is the completion R̂ of R.

Proof. We have R ∼= R[[x]]/(x), and x is an R[[x]]-regular element with x ∈ n\n2, where n = mR[[x]]+xR[[x]]
is the maximal ideal of R[[x]]. By Theorem 5.6 we see that R is dominant if and only if so is R[[x]].

We write m = (a1, . . . , an). We have R̂ ∼= R[[x1, . . . , xn]]/(x1 − a1, . . . , xn − an) by [44, Theorem 8.12].
By what we showed at the beginning of this proof, R is dominant if and only if so is R[[x1, . . . , xn]].
Using Lemma 5.7 and Theorem 5.6, we inductively see that R[[x1, . . . , xn]] is dominant if and only so is

R[[x1, . . . , xn]]/(x1 − a1, . . . , xn − an). As a consequence, R is dominant if and only if so is R̂. ■

Making use of the results which we have obtained in this section so far, we can find out several classes of
local rings that are included in that of dominant local rings. In what follows, we first recall the definitions
of those local rings, and then show that they are actually dominant.

Definition 5.9. Let R be a d-dimensional local ring with maximal ideal m and residue field k.

(1) We say that R is a hypersurface if codepthR ⩽ 1. This is equivalent to saying that the completion R̂
of R is isomorphic to the quotient of a regular local ring by a nonzero nonunit element; see [7, §5.1].

(2) Suppose that R is Cohen–Macaulay. Then there is an inequality e(R) ⩾ codimR+1. We say that R
has minimal multiplicity if the equality e(R) = codimR+1 holds. If k is infinite, this is equivalent to
saying that m2 = xm for some system of parameters x = x1, . . . , xd of R; see [16, Exercises 4.6.14].

(3) We say that m is quasi-decomposable if there exists a regular sequence x = x1, . . . , xn on R such
that m/(x) is decomposable as a module over R/(x) (or equivalently, over R). A local ring with
quasi-decomposable maximal ideal is such a local ring that deforms to a fiber product of local rings
with common residue field; see [46] for details, where quasi-decomposability has been introduced.

(4) We say that R is Burch if there exist a maximal regular sequence x = x1, . . . , xn on the completion

R̂, a regular local ring (S, n) and an ideal I of S such that n(I : n) ̸= nI and R̂/(x) ∼= S/I. For the
details of Burch rings, we refer the reader to [22], which gives various observations on Burch rings.

Proposition 5.10. A local ring (R,m, k) is dominant in each of the following four cases.
(1) R is a hypersurface. (2) R is Cohen–Macaulay and has minimal multiplicity, and k is infinite.
(3) m is quasi-decomposable. (4) R is Burch.

Proof. It is shown in [22, Propositions 5.1 and 5.2] that if either (1) or (2) holds, then so does (4). We
observe from [22, Proposition 7.6] that if R is Burch, then it is dominant.

It remains to show that R is dominant when m is quasi-decomposable. Let x = x1, . . . , xn be an
R-regular sequence such that m/(x) is decomposable. According to Theorem 5.6, it suffices to show that
R/(x) is dominant. Replacing R with R/(x), we may assume m is decomposable. Let M be an R-module
with pdM = ∞. By [46, Theorem A], the module Ωk = m is a direct summand of Ω3M ⊕Ω4M ⊕Ω5M .
Hence Ωk belongs to resM . Using [63, Proposition 3.2], we obtain ΩdepthRk ∈ res(R⊕Ωk) ⊆ resM . ■

Remark 5.11. As we saw in the above proposition, the class of dominant local rings include that of
Burch rings. An advantage of dominant local rings to Burch rings is the fact that dominant local rings
satisfy the property given in Theorem 5.6, while Burch rings do not. More precisely, it is true by the
definition of Burch rings that a local ring (R,m) is Burch if so is the quotient R/(x) by an R-regular
element x ∈ m, but the converse does not necessarily hold even when x /∈ m2; see [22, Example 5.8].

6. Tor/Ext-friendliness, Tor/Ext-persistence and dominance

Recently, the notions of Tor/Ext-friendly rings and of Tor/Ext-persistent rings have been introduced
and studied in [9]. In this section, we compare dominant local rings with those rings. We begin with
recalling the definition of cores.

Definition 6.1. (1) We denote by fpdR the subcategory of modR consisting of those R-modules which
have finite projective dimension.
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(2) The (resolving) core coreR of modR is defined as the intersection of the resolving subcategories of
modR that are not contained in fpdR.

We provide a way of interpreting the dominance of a given local ring R in terms of coreR, and
characterize the dominant local rings which are complete intersections.

Proposition 6.2. (1) If a local ring R is singular, then the inclusion coreR ⊆ C0(R) holds.
(2) Let R be a singular local ring. Then the equality coreR = C0(R) holds if and only if R is dominant.
(3) Let R be a complete intersection local ring. Then R is dominant if and only if R is a hypersurface.

Proof. (1) Remark 3.3(8) implies that C0(R) is not contained in fpdR. Hence C0(R) contains coreR.
(2) Let M be an R-module of infinite projective dimension. Then resM is not contained in fpdR, so

that resM contains coreR. Hence, if we have coreR = C0(R), then R is dominant by Proposition 5.3.
Now assume that R is dominant. Let X be a resolving subcategory of modR not contained in fpdR.

Then X contains an R-module X of infinite projective dimension. As R is dominant, we have C0(R) ⊆
resX ⊆ X by Proposition 5.3. Hence C0(R) ⊆ coreR, and we get the equality coreR = C0(R) by (1).

(3) The “if” part follows from Proposition 5.10(1). To show the “only if” part, assume R is singular
and dominant. Then coreR = C0(R) ∋ Ωdk by (2) and Remark 3.3(8), where d = dimR and k is the
residue field. As pd(Ωdk) = ∞, we have coreR ⊈ fpdR. Thus R is a hypersurface by [62, Theorem
1.1]. ■

Now we recall the definitions of Tor/Ext-persistent rings and of Tor/Ext-friendly rings. In [42], Cohen–
Macaulay local rings that are Tor-friendly (resp. Ext-friendly) are studied, which are called Cohen–
Macaulay local rings that satisfy trivial Tor-vanishing (resp. trivial Ext-vanishing).

Definition 6.3. (1) We say that R is Tor-persistent if every R-module M such that TorR≫0(M,M) = 0
has finite projective dimension.

(2) We say that R is Tor-friendly provided that if M and N are R-modules with TorR≫0(M,N) = 0, then
either M or N has finite projective dimension.

(3) We say that R is Ext-persistent if every R-module M such that Ext≫0
R (M,M) = 0 has either finite

projective dimension or finite injective dimension.
(4) We say that R is Ext-friendly provided that if M are N are R-modules with Ext≫0

R (M,N) = 0, then
either M has finite projective dimension or N has finite injective dimension.

Next we recall the definition of a Golod local ring.

Definition 6.4. Let R be a local ring with maximal ideal m and residue field k. Then R is called Golod
if the Poincaré series PRk (t) of k over R has the description

PRk (t) =
(1 + t)edimR

1−
∑codepthR
i=1 dimk Hi(K)ti+1

,

where K is the Koszul complex on a minimal system of generators of m. For the details of Golod rings,
we refer the reader to [7, Chapter 5].

Here we compare Tor/Ext-friendly rings and Tor/Ext-persistent rings with complete intersections,
hypersurfaces and Golod rings.

Remark 6.5. Let R be a local ring. Then the following implications hold, as is shown in [9, Example
1.8 and Corollary 6.4] and (the proof of) [62, Proposition 4.9].

R is Golod +3 R is Tor-friendly +3

��

R is Ext-friendly

��
R is a hypersurface

KS

'/WWW
WWWWW

WWWWW
WWWWW

W

WWWWW
WWWWW

WWWWW
WWWW

R is Tor-persistent R is Ext-persistent.

R is a complete intersection

KS /7ggggggggggggggggggg

ggggggggggggggggggg

We should also mention that it is asked in [9] whether every commutative noetherian ring is Tor-persistent.
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Now we interpret the main theorems of [62] in terms of dominance. Here, # ind CM(R) stands for the
number of isomorphism classes of indecomposable maximal Cohen–Macaulay R-modules.

Proposition 6.6. Let R be a Cohen–Macaulay local ring with residue field k.

(1) Suppose that R is henselian and singular, has finite CM-representation type and admits a canonical
module. If R is either Ext-persistent or Tor-persistent with coreR ̸= addR, then R is dominant.

(2) Suppose that R is complete and that k is algebraically closed and has characteristic zero. If either
# ind CM(R) ⩽ 5 or # ind CM(R) ⩽ 7 and R is Tor-persistent, then R is dominant.

Proof. In either of the cases (1) and (2), the Cohen–Macaulay local ring R has an isolated singularity by
[35, Corollary 2], and hence the equality CM(R) = CM0(R) holds. By [62, Theorem 4.16(2)] for (1) and
by [62, Theorem 6.5] for (2) we get coreR = CM(R). Proposition 6.2(2) shows that R is dominant. ■

Here we recall a celebrated conjecture: the Auslander–Reiten conjecture asserts that any R-module M
with Ext>0

R (M,M ⊕R) = 0 is projective. This conjecture has been presented in the 1970s [5], and is still
open. Now we show that each dominant local ring is Tor-friendly, and satisfies that conjecture.

Theorem 6.7. A dominant local ring is Tor-friendly, and hence it is Ext-friendly, Tor-persistent and
Ext-persistent. In particular, the Auslander–Reiten conjecture holds for a dominant local ring.

Proof. The latter assertion follows from the former and [9, Theorem 7.2]. To show the former assertion,
let R be a dominant local ring. In view of Remark 6.5, it suffices to show that R is Tor-friendly. Let
M,N be R-modules. Suppose that there is an integer n ⩾ 0 with TorRi (M,N) = 0 for all integers i > n,
and that M has infinite projective dimension. As R is dominant, Ωtk is in resM , where t = depthR. Let
X be the subcategory of modR consisting of modules X such that TorRi (X,N) = 0 for all i > n. It is
easy to verify that X is a resolving subcategory of modR containing M . We have Ωtk ∈ resM ⊆ X , and
0 = TorRi (Ω

tk,N) = TorRi+t(k,N) for all i > n. It follows that N has finite projective dimension. ■
For a matrix A with entries in R and an integer r, we denote by In(A) the ideal of R generated by

the n × n minors of A. As an application of the above theorem, we observe that the Auslander–Reiten
conjecture holds true for determinantal rings with respect to maximal minors.

Corollary 6.8. Let X = (Xij) be an m × n generic matrix over a field k such that m ⩽ n. Let R =
k[X]/Im(X) be a determinantal ring. Let m be the irrelevant maximal ideal of R. Then the Auslander–

Reiten conjecture holds for the localization Rm and the completion R̂m = k[[X]]/Im(X).

Proof. Note in general that the Auslander–Reiten conjecture holds for a local ring L if it holds for some
faithfully flat extension of L. Thus, it suffices to prove that the Auslander–Reiten conjecture holds for

S = R̂m = k[[X]]/Im(X). Let ℓ be an infinite field containing k (e.g., the algebraic closure of k). Put
T = ℓ⊗k R = ℓ[X]/Im(X) and U = ℓ[[X]]/Im(X). Then U/miU = T/miT = T ⊗R R/mi = ℓ⊗k R/mi is
faithfully flat over S/miS = R/mi for each i > 0, as ℓ is faithfully flat over k. Since mS is the maximal
ideal of the local ring S, we see from [44, Theorem 22.3] that U is faithfully flat over S. Thus, replacing
k with ℓ, we may assume that k is infinite. By [22, Proposition 5.6 and Example 5.7] the localization

Rm is a Burch ring. Proposition 5.10(4) implies that Rm is dominant, and so is R̂m by Corollary 5.8. It

follows from Theorem 6.7 that the Auslander–Reiten conjecture holds for R̂m. ■
Remark 6.9. Let R be a Gorenstein ring such that Rp is a complete intersection for all p ∈ SpecR with
ht p ⩽ 1. Let X = (Xij) be an m×n generix matrix with m ⩽ n. It is asserted in [39, Theorem 1.2] that
the Auslander–Reiten conjecture holds for R[X]/Im(X) if 2m ⩽ n+1. Compare this with Corollary 6.8.

Here we need to recall a couple of definitions.

Definition 6.10. (1) An R-module C is said to be semidualizing if the natural map R → HomR(C,C)
is an isomorphism and Ext>0

R (C,C) = 0. The R-module R is an obvious example of a semidualizing
module. If R is a Cohen–Macaulay local ring with a canonical module ω, then ω is a semidualizing
R-module. We refer the reader to [20, 29] for the details of semidualizing modules.

(2) An R-module G is said to be totally reflexive if G is reflexive and satisfies Ext>0
R (G ⊕ G∗, R) = 0,

where (−)∗ = HomR(−, R). Evidently, every projective module is totally reflexive. If R is Cohen–
Macaulay, then any totally reflexive R-module is maximal Cohen–Macaulay. If R is Gorenstein, then
total reflexivity is equivalent to maximal Cohen–Macaulayness. For more details of totally reflexive
modules, we refer the reader to [3, 19].
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(3) Following [55], we say that R is G-regular if every totally reflexive R-module is projective.

Applying the theorem stated above, we obtain the following corollary, where we compare dominant
local rings with G-regular local rings, and consider semidualizing modules over dominant local rings.

Corollary 6.11. Let R be a dominant local ring. Then the following two statements hold true.

(1) If R is not a Gorenstein ring, then it is G-regular.
(2) Let C be a semidualizing R-module, and suppose that C is not isomorphic to R. Then R is a Cohen–

Macaulay ring and C is a canonical module of R.

Proof. First of all, note from Theorem 6.7 that the ring R is Ext-friendly.
(1) Let G be a totally reflexive R-module. Then Ext>0

R (G,R) = 0. Ext-friendliness implies pdG < ∞
or idR < ∞. As R is non-Gorenstein, we get pdG < ∞. It is observed from [19, (1.2.10)] that G is free.

(2) Since Ext>0
R (C,C) = 0, Ext-friendliness shows that pdC < ∞ or idC < ∞. In the former case, we

have pdC = depthR− depthC = 0 by [29, Page 68, Item 8], whence C ∼= R, a contradiction. Therefore
idC < ∞. Thus C is a dualizing module, so that R is Cohen–Macaulay and C is a canonical module;
see [16, Theorem 3.3.10 and Remarks 9.6.4(a)(ii)] and [19, (3.4.1) and (A.8.5)]. ■

Below we provide another application of Theorem 6.7. Compare this result with Theorem 5.6.

Corollary 6.12. Let (R,m) be a local ring. Then the following statements hold true.

(1) Suppose that there exist a local ring (S, n) and an S-regular element f ∈ n2 with R̂ ∼= S/(f). Then R
is dominant if and only if S is regular. In particular, R is dominant if and only if it is a hypersurface.

(2) If the local ring R is singular, then R/(x) is not dominant for all R-regular elements x ∈ m2.

Proof. (1) The latter assertion is deduced by the former and Proposition 5.10(1). If R is dominant,
then it is Tor-friendly by Theorem 6.7, and S is regular by [9, Proposition 3.8(2)]. The former assertion
follows.

(2) Set A = R/(x). Then the completion Â of the local ring A is isomorphic to R̂/xR̂. The local ring

R̂ is singular, and x is R̂-regular and belongs to (mR̂)2. It follows from (1) that A is not dominant. ■

Remark 6.13. In the case where the local ring R is not Gorenstein, Corollary 6.12(2) can also be
deduced from Corollary 6.11(1) and [10, Example 3.5(3)].

7. Inheritance of dominance

In this section, we study how dominance is inherited by standard operations of local rings. First of all,
we consider the relationship of dominance with localization at prime ideals in the following two remarks.
It turns out that dominance is not compatible with localization.

Remark 7.1. Let R be a local ring. Then the following implication does not necessarily hold true.

(7.1.1) R is dominant =⇒ Rp is dominant for all prime ideals p of R.

In fact, let R = k[[x, y, z, w]]/(x2, xyz, y2, zw) with k a field. Then R is a 1-dimensional Cohen–Macaulay
complete local ring with a parameter z−w. There is an isomorphismR/(z−w) ∼= S/I, where S = k[[x, y, z]]
is a regular local ring and I = (x2, xyz, y2, z2) is an ideal of S. Let n be the maximal ideal of S. We have
I : n = n2 and n(I : n) = n3 ̸= nI (as xyz ∈ n3 \ nI). Therefore R is Burch, and dominant by Proposition
5.10(4). However, for the prime ideal p = (x, y, z) of R we have Rp

∼= k[[x, y, w]](x,y)/(x
2, y2), so that Rp

is a complete intersection which is not a hypersurface. Proposition 6.2(3) shows that Rp is not dominant.
Another example which does not satisfy the implication (7.1.1) is given in [45, Theorem B]. Indeed,

let R be a local ring and p a prime ideal of R as in [45, Theorem B]. Then, since the maximal ideal of
R is decomposable, R is a dominant local ring by Proposition 5.10(3). Since there exists a semidualizing
Rp-module which is neither free nor dualizing, Rp is not a dominant local ring by Corollary 6.11(2).

The converse of (7.1.1) trivially holds, as one can take p to be the maximal ideal of R. The following
observation says that the converse is not true in general if we remove the case of the maximal ideal.

Remark 7.2. Let R be a local ring. Then the implication below does not necessarily hold true.

Rp is dominant for all nonmaximal prime ideals p of R =⇒ R is dominant.
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In fact, let (R,m) be a local complete intersection that is not a hypersurface but has an isolated singularity
(e.g., k[x, y]/(x2, y2), k[[t4, t5, t6]] etc., where k is a field). Then R is not dominant by Proposition 6.2(3).
However, for each p ∈ SpecR \ {m} the local ring Rp is regular, and hence it is dominant.

Next we investigate how dominance is transferred along a flat local homomorphism.

Remark 7.3. Let (R,m) → (S, n) be a flat local homomorphism of local rings. Then the implications
below do not necessarily hold true.

R and S/mS are dominant =⇒ S is dominant.(7.3.1)

R and S are dominant =⇒ S/mS is dominant.(7.3.2)

Indeed, let k be a field. As to (7.3.1), we consider the ring extension R = k[x]/(x2) ⊆ k[x, t]/(x2, t2) = S
of artinian local complete intersections. Then S is a free R-module with {1, t} a basis. The rings R and
S/mS ∼= k[t]/(t2) are dominant by Proposition 5.10(1), while S is not dominant by Proposition 6.2(3).

One can also construct a non-Gorenstein example. Consider the extension R = k[x, y]/(x2, xy, y2) ⊆
k[x, y, t]/(x2, xy, y2, t2) = S. Then R,S are non-Gorenstein, and S is a free R-module with {1, t} a basis.
The rings R and S/mS are Burch by [22, Remark 7.15], whence they are dominant by Proposition 5.10(4).
By [22, Remark 7.15] again, S is not G-regular. Hence S is not dominant by Corollary 6.11(1).

As for (7.3.2), let S = k[[x, y, t]]/(x2, xy, y2), and consider the subring R = k[[t2]] of S. Then S is a
free R-module with {1, x, y, t, xt, yt} a basis. The ring R is regular, and the maximal ideal n of S is
quasi-decomposable; one has n/(t) ∼= (x) ⊕ (y). The local rings R and S are dominant by Proposition
5.10(3). The ring S/mS is isomorphic to k[x, y, t]/(x2, xy, y2, t2), which is not dominant as we saw above.

Thus, dominance is not compatible with local flat extensions in full generality. However, the following
proposition says that the implication (7.3.1) does hold if we impose the assumption that R is regular.
This proposition is regarded as a dominant version of [55, Corollary 4.5] concerning G-regularity.

Proposition 7.4. Let ϕ : R → S be a flat local homomorphism of local rings. Denote by m the maximal
ideal of R. If R is regular and S/mS is dominant, then S is dominant.

Proof. Let x = x1, . . . , xd be a regular system of parameters of the regular local ring R. Then x is an R-
regular sequence. As ϕ is local and flat, x is an S-regular sequence as well. By assumption, S/xS = S/mS
is dominant. Repeated application of Theorem 5.6 yields that S is dominant. ■

The following question is natural to ask. We have neither a proof nor a counterexample.

Question 7.5. Let R → S be a flat local homomorphism of local rings. If S is dominant, is R dominant?

To prove our next result, we need to generalize [46, Lemma 4.2] and [57, Lemma 5.8].

Lemma 7.6. Let n ⩾ 0 be an integer. Let I be a proper ideal of R such that pdRR/I ⩽ n.

(1) Let M be an R/I-module. For any i ⩾ 0 one has ΩnRΩ
i
R/IM

∼= Ωn+iR M up to projective R-summands.

(2) Let M and N be R/I-modules. If M ∈ resR/I N , then ΩnRM ∈ resR(Ω
n
RN).

Proof. (1) There is an exact sequence 0 → ΩiR/IM → Pi−1 → · · · → P0 → M → 0 in modR/I, where

each Pj is a projective R/I-module. Applying ΩnR(−) to this exact sequence, we obtain an exact sequence
0 → ΩnRΩ

i
R/IM → Qi−1 → · · · → Q0 → ΩnRM → 0 in modR such that each Qj is a projective R-module

since pdRR/I ⩽ n. This exact sequence says that ΩnRΩ
i
R/IM is an i-th syzygy of the R-module ΩnRM ,

which is isomorphic to Ωn+iR M up to projective R-summands.
(2) Put C = resR(Ω

n
RN). Let X be the subcategory of modR/I consisting of modulesX with ΩnRX ∈ C.

Then it is easy to verify that X is a resolving subcategory of modR/I. As ΩnRN is in resR(Ω
n
RN) = C, the

moduleN is in X . As X is resolving, it contains resR/I N . ThusM ∈ X , and ΩnRM ∈ C = resR(Ω
n
RN). ■

In the proposition below, we study dominance of local rings by establishing the same kinds of conditions
as investigated in [39, Theorem 2.3] for the Auslander–Reiten conjecture.

Proposition 7.7. Let (R,m, k) be a local ring. Let x = x1, . . . , xn be a regular sequence on R with
n > 0. Let I be the ideal of R generated by x. Consider the following four statements.

(a) R is dominant. (b) R/Ii is dominant for all i > 0.
(c) R/Ii is dominant for all 1 ⩽ i ⩽ n. (d) R/Ir is dominant for some r > 0.
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Then, the implications (b) ⇒ (c) ⇒ (d) ⇒ (a) always hold true. The implication (a) ⇒ (d) does not
necessarily hold even when n = 1. The implication (a) ⇒ (b) does not necessarily hold even when i = 1.

Proof. We prove the ith assertion of the proposition in the paragraph (i) below for each i ∈ {1, 2, 3}.
(1) It is evident that the implications (b) ⇒ (c) ⇒ (d) hold. To show the implication (d) ⇒ (a),

suppose that R/Ir is dominant for some r > 0. Let M be an R-module of infinite projective dimension,
and put t = depthR. By [17, Proposition (2.14)] (or [16, Exercises 1.4.27]) we have pdRR/Ir = n. The
Auslander–Buchsbaum formula implies depthR/Ir = t− n, which says t ⩾ n. Set N = ΩtRM . Applying
[46, Lemma 5.1] to Ωt−nR M , we see that the sequence x is N -regular. Note that N/xN is an R/Ir-module.

Suppose that pdR/Ir N/xN < ∞. Since pdRR/Ir = n < ∞, we observe that pdRN/xN < ∞. Hence

pdRN < ∞ by [16, Exercises 1.3.6]. As N = ΩtRM , it follows that pdRM < ∞, which is a contradiction.
Thus pdR/Ir N/xN = ∞. Since R/Ir is dominant, Ωt−nR/Irk belongs to resR/Ir N/xN . We obtain

ΩtRk
∼= ΩnR(Ω

t−n
R/Irk) ∈ resR(Ω

n
R(N/xN)) ⊆ resRN = resR(Ω

t
RM) ⊆ resRM,

where the isomorphism is up to free summands. The isomorphism and the containment follow from (1)
and (2) of Lemma 7.6, respectively, while the first inclusion is obtained by [46, Lemma 4.3]. Thus the
local ring R is dominant, that is to say, statement (a) holds.

(2) Suppose that R is not Gorenstein, but dominant and has positive depth. (For example, the quotient
K[[X,Y, Z]](X2, XY, Y 2) withK a field is such a ring by Proposition 5.10(3).) We can choose an R-regular
element x ∈ m2. By [10, Examples 3.5(3)], for all i > 0 the local ring R/(xi) is not G-regular. It follows
from Corollary 6.11(1) that R/(xi) is not dominant. Thus (a) ⇒ (d) is not necessarily true for n = 1.

(3) Suppose that R is regular and has dimension at least 2. Then R is a dominant local ring. We
can choose an R-regular sequence x = x1, . . . , xn in m2 with n ⩾ 2. The quotient ring R/(x) is a
non-hypersurface local complete intersection, and hence it is not dominant by Proposition 6.2(3). This
argument shows that the implication (a) ⇒ (b) does not necessarily hold for i = 1. ■

8. Construction of dominant local rings

This section provides several ways to construct a dominant local ring from another dominant local ring.
By Proposition 5.10(4) a Burch ring is dominant, while a lot of examples of Burch rings are presented in
[22]. Thus, applying the methods developed in this section to those Burch rings, we can get a lot of new
dominant local rings, which may no longer be Burch.

We start by stating a result on Burch rings, producing a Burch ring which seems to be unknown.

Proposition 8.1. Let (R,m) be a local ring with m3 = 0 and edimR = 2. Suppose that R is not a
complete intersection. Then R is Burch. Therefore, R is a dominant local ring.

Proof. As R is artinian, it is complete. We can write R = S/I, where (S, n) is a 2-dimensional (complete)
regular local ring and I is an n-primary ideal of S such that n3 ⊆ I ⊆ n2. Suppose that the equality
n(I : n) = nI holds. Then we have n3 = nn2 ⊆ n(I : n) = nI ⊆ nn2 = n3, and get n3 = nI. If I = n2,
then the equality n(I : n) = nI and Nakayama’s lemma imply n2 = 0, which is a contradiction. Hence
I ̸= n2. Letting x, y be a regular system of parameters of S, we have n = (x, y), n2 = (x2, xy, y2), and
ℓ(n2/n3) = µ(n2) = 3. Hence µ(I) = ℓ(I/nI) = ℓ(n2/n3)− ℓ(n2/I) ⩽ 3− 1 = 2. We must have µ(I) = 2
and I is generated by a system of parameters of the regular local ring S. It follows that R = S/I is a
complete intersection, which contradicts the assumption of the proposition. Thus we obtain n(I : n) ̸= nI,
and therefore R is Burch. By Proposition 5.10(4) the local ring R is dominant. ■

To prove our next proposition, we establish an elementary lemma on intersections of ideals.

Lemma 8.2. (1) For ideals I, J of R there is an isomorphism I∩J/IJ ∼= TorR1 (R/I,R/J) of R-modules.
(2) Let I be an ideal of R. Let S = R[[x1, . . . , xn]]. Then (x1, . . . , xn)S ∩ IS = (x1, . . . , xn)IS.

Proof. (1) Applying −⊗R R/J to the exact sequence 0 → I → R → R/I → 0, we get an exact sequence

0 → TorR1 (R/I,R/J) → I/IJ
α−→ R/J , where α(x) = x for x ∈ I. We have Kerα = (I ∩ J)/IJ .

(2) Put x = x1, . . . , xn. By (1) the quotient (xS ∩ IS)/xIS is isomorphic to TorS1 (S/xS, S/IS). This
is isomorphic to the first Koszul homology H1(x, S/IS), which vanishes since x is a regular sequence on
S/IS ∼= (R/I)[[x]]. Hence (xS ∩ IS)/xIS = 0, and thus xS ∩ IS = xIS. ■

Now we can show the following proposition concerning getting dominant local rings.
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Proposition 8.3. Let R be a 1-dimensional Cohen–Macaulay local ring with maximal ideal m and residue
field k. Let I be an m-primary ideal of R. Suppose that the local ring R/aI is dominant for some parameter
a of R. Then the local ring R/bI is dominant for every parameter b of R.

Proof. Let S = R[[x]]/xIR[[x]]. Lemma 8.2(2) implies that xR[[x]]∩ IR[[x]] = xIR[[x]]. Then it is seen that
xS ∩ IS = 0, and there is an exact sequence 0 → S → S/xS ⊕ S/IS → S/xS + IS → 0 of S-modules.
The local ring S/xS+ IS = R/I is artinian, while S/xS = R and S/IS = (R/I)[[x]] are Cohen–Macaulay
local rings of dimension 1. We observe that S is a 1-dimensional Cohen–Macaulay local ring.

We claim that x − c is S-regular for any parameter c of R. Indeed, as I, cR are m-primary, the ring
R/cI is artinian and hence complete. We have S/(x− c) ∼= (R/cI)[[x]]/(x− c) ∼= R/cI; see [44, Exercise
8.2 and Theorem 8.12]. As S is a Cohen–Macaulay ring of dimension 1, the claim follows.

We also claim that x− c is not in the square of the maximal ideal n of S. In fact, if x− c ∈ n2, then
by using the surjection S → S/mS = k[[x]] we can deduce that x ∈ x2k[[x]], which gives a contradiction.

It follows from the above two claims that x − a and x − b are S-regular elements and x − b is not in
n2. Since S/(x− a) ∼= R/aI is dominant, so is S, and so is S/(x− b) ∼= R/bI by Theorem 5.6. ■

Applying the above proposition, we obtain the corollary below on a quotient ring by a monomial ideal.
In view of this result, the class of dominant local rings would be much larger than that of Burch rings.

Corollary 8.4. Let k be a field. Let a1 > a2 > · · · > an−1 > an = 0 and 0 = b1 < b2 < · · · < bn−1 < bn
be integers with n ⩾ 3. Let R = k[[x, y]]/(xa1 , xa2yb2 , . . . , xan−1ybn−1 , ybn). Then R is a dominant local
ring. The ring R is Burch if and only if ar − ar+1 = 1 or br+1 − br = 1 for some 1 ⩽ r ⩽ n− 1.

Proof. The latter assertion of the corollary is a consequence of [22, Corollaries 2.7 and 6.5]. To show
the former, we consider the 1-dimensional local hypersurface S = k[[x, y]]/(xa1) with maximal ideal
n = (x, y). The ideal I = (xa2 , xa3yb3−b2 , . . . , xan−1ybn−1−b2 , ybn−b2) of S is n-primary. The element y is
a parameter of S. The local ring S/yI = k[[x, y]]/(xa1 , xa2y, xa3yb3−b2+1, . . . , xan−1ybn−1−b2+1, ybn−b2+1)
is Burch by [22, Corollary 6.5], and it is dominant by Proposition 5.10(4). As yb2 is a parameter of
S as well, Proposition 8.3 shows that S/yb2I = k[[x, y]]/(xa1 , xa2yb2 , xa3yb3 , . . . , xan−1ybn−1 , ybn) = R is
dominant. ■

To state our next proposition, we state an elementary fact on substitution in a formal power series.

Remark 8.5. Let I be an ideal of R. Write I = (a1, . . . , an). Suppose that R is I-adically complete.
Let S = R[[x1, . . . , xn]] be a formal power series ring. Take f(x1, . . . , xn) ∈ S, and write f(x1, . . . , xn) =∑∞
i1+···+in=0 ci1···inx

i1
1 · · ·xinn with ci1···in ∈ R. Then one can substitute a1, . . . , an for x1, . . . , xn, that is,

f(a1, . . . , an) :=
∑∞
i1+···+in=0 ci1···ina

i1
1 · · · ainn := limk→∞(

∑k
i1+···+in=0 ci1···ina

i1
1 · · · ainn )

is uniquely defined as an element of R. In fact, putting bk =
∑k
i1+···+in=0 ci1···ina

i1
1 · · · ainn ∈ R, we get

bk−bk−1 =
∑
i1+···+in=k ci1···ina

i1
1 · · · ainn ∈ Ik. Thus {bk}∞k=0 is a Cauchy sequence in the I-adic topology,

and converges in R since R is I-adically complete (see [44, Page 57]). The assignment f(x1, . . . , xn) 7→
f(a1, . . . , an) gives an isomorphism S/(x1 − a1, . . . , xn − an) ∼= R; see [44, Theorem 8.12] and its proof.

The proposition below describes the relationship between the dominance of a quotient of a formal
power series ring and the dominance of another ring given by substitution in the defining ideal.

Proposition 8.6. Let A = k[[x1, . . . , xn]] and B = k[[y1, . . . , ym]] be formal power series rings over a
field k. Let R = A/(f1, . . . , ft), where f1, . . . , ft ∈ (x1, . . . , xn)

2. Let g1, . . . , gn ∈ B be nonunits. Put

f̃i := fi(g1, . . . , gn) ∈ B for each i, and set S = B/(f̃1, . . . , f̃t). Suppose that x1 − g1, . . . , xn − gn is a
regular sequence on R⊗̂kB = R[[y1, . . . , ym]] (this assumption is satisfied if R is Cohen–Macaulay and the

equality ht(f1, . . . , ft) = ht(f̃1, . . . , f̃t) holds). Then R is a dominant local ring if and only if so is S.

Proof. The ring B is (y1, . . . , ym)-adically complete, and it is (g1, . . . , gn)-adically complete as g1, . . . , gn ∈
(y1, . . . , yn). Remark 8.5 says f̃1, . . . , f̃t ∈ B are defined and the assignment h(x1, . . . , xn) 7→ h(g1, . . . , gn)

gives an isomorphism B[[x1, . . . , xn]]/(x1 − g1, . . . , xn − gn) → B, which sends each fi to f̃i. Therefore,

R[[y1, . . . , ym]]/(x1 − g1, . . . , xn − gn)

= B[[x1, . . . , xn]]/(x1 − g1, . . . , xn − gn, f1, . . . , ft) ∼= B/(f̃1, . . . , f̃t) = S.
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We claim that xi − gi is not in the square of the maximal ideal of R[[y1, . . . , ym]]/(x1 − g1, . . . , xi−1 −
gi−1) for each 1 ⩽ i ⩽ n. In fact, suppose that xi − gi ∈ (x1, . . . , xn, y1, . . . , ym)2 + (f1, . . . , ft, x1 −
g1, . . . , xi−1 − gi−1) in k[[x1, . . . , xn, y1, . . . , ym]]. The assumption f1, . . . , ft ∈ (x1, . . . , xn)

2 implies xi −
gi ∈ (x1, . . . , xn, y1, . . . , ym)2 + (x1 − g1, . . . , xi−1 − gi−1). The surjection k[[x1, . . . , xn, y1, . . . , ym]] →
k[[x1, . . . , xn, y1, . . . , ym]]/(y1, . . . , ym) = A shows xi ∈ (x1, . . . , xn)

2+(x1, . . . , xi−1) in A, a contradiction.
When x1 − g1, . . . , xn − gn is a regular sequence on the ring R[[y1, . . . , ym]], by applying Theorem 5.6,

the above claim and Corollary 5.8 repeatedly, it is observed that R is dominant if and only if so is S.
Finally, we verify what is stated in the parentheses in the assertion. Assume that R is Cohen–Macaulay

and ht(f1, . . . , ft) = ht(f̃1, . . . , f̃t). Then R[[y1, . . . , ym]] is Cohen–Macaulay as well. The equalities

grade(x1 − g1, . . . , xn − gn) = dimR[[y1, . . . , ym]]− dim(R[[y1, . . . , ym]]/(x1 − g1, . . . , xn − gn))

= (dimR+m)− dimS = (n− ht(f1, . . . , ft)) +m− (m− ht(f̃1, . . . , f̃t)) = n

hold. By [16, Corollary 1.6.19] the sequence x1 − g1, . . . , xn − gn is regular on R[[y1, . . . , ym]]. ■
As an application of the above proposition, we obtain the following result regarding a quotient ring

by an ideal generated by minors of a matrix.

Corollary 8.7. Let k be a field. Let R = k[[x1, . . . , xn]]/I2

(
f11 ··· f1t
f21 ··· f2t

)
, where each fij is a nonunit of

k[[x1, . . . , xn]]. If dimR = n− t+ 1, then R is dominant.

Proof. Let S = k[y11, . . . , y1t, y21, . . . , y2t]/I2(
y11 ··· y1t
y21 ··· y2t ) be a determinantal ring, and let n be the irrele-

vant maximal ideal of S. Then S is a Cohen–Macaulay ring of dimension t+1 by [16, Theorem 7.3.1(c)].
The local ring Sn is Burch by [22, Proposition 5.6 and Example 5.7], and is dominant by Proposition

5.10(4). Let T = Ŝn = k[[y11, . . . , y1t, y21, . . . , y2t]]/I2(
y11 ··· y1t
y21 ··· y2t ) be the completion of the local ring of Sn.

Then the local ring T is Cohen–Macaulay, and Corollary 5.8 implies that T is dominant. The computation

2t− dimT = 2t− dimS = 2t− (t+ 1) = t− 1 = n− (n− t+ 1) = n− dimR

says that the defining ideals of T,R have the same height. Proposition 8.6 shows that R is dominant. ■
The following result holds, whose context is similar to those of the two propositions stated above.

Proposition 8.8. Let (R,m, k) be a regular local ring. Let x = x1, . . . , xn and y = y1, . . . , ym be
sequences of elements of m with n ⩾ 1 and m ⩾ 0. Suppose that x,y is an R-regular sequence.

(1) If m ⩾ 1, then the residue ring S = R/(xy) is a dominant local ring.
(2) If z ∈ m is an R/(y)-regular element, then the residue ring T = R/(x(y, z)) is a dominant local ring.

Proof. By Corollary 5.8, replacing R,S, T with their completions, we may assume that R is complete.
We begin with proving assertion (2) of the proposition. Let A = R[[X,Y , Z]]/X(Y , Z) be a quotient

of a formal power series ring over R, where X = X1, . . . , Xn and Y = Y1, . . . , Ym. Then A/(X −x,Y −
y, Z−z) is isomorphic to T (as R is m-adically complete; see [44, Theorem 8.12]). As n ⩾ 1, the local ring
B = A/mA = k[[X,Y , Z]]/X(Y , Z) has decomposable maximal ideal (X,Y , Z)B = XB ⊕ (Y , Z)B by
Lemma 8.2(2). Propositions 5.10(3) and 7.4 show that A is dominant. In view of Theorem 5.6, it suffices
to prove that X − x,Y − y, Z − z is a regular sequence on A. The equality X(Y , Z) = (X) ∩ (Y , Z) of
ideals of R[[X,Y , Z]] (following from Lemma 8.2(2)) shows that an exact sequence

0 → A → A/(X)⊕A/(Y , Z) → A/(X,Y , Z) → 0

of A-modules is induced. The sequence X − x is regular on A/(X) ∼= R[[Y , Z]], A/(Y , Z) ∼= R[[X]] and
A/(X,Y , Z) ∼= R, since −x is regular on R and R[[Y , Z]], and X −x is regular on R[[X]] by Lemma 5.7.
Therefore, X − x is a regular sequence on A, and an exact sequence

0 → A/(X − x) → A/(X,x)⊕A/(Y , Z,X − x) → A/(X,Y , Z,x) → 0

is induced. The modules A/(X,x), A/(Y , Z,X − x) and A/(X,Y , Z,x) are respectively isomorphic to
(R/(x))[[Y , Z]], R and R/(x). The sequence Y −y is regular on (R/(x))[[Y , Z]], while the sequence −y is
regular on R and R/(x); note that as the sequence x,y is R-regular and the ring R is local, the sequence
y is R-regular. It is seen that Y − y is a regular sequence on A/(X − x), and an exact sequence

0 → A/(X − x,Y − y) → A/(X,x,Y − y)⊕A/(Y , Z,X − x,y) → A/(X,Y , Z,x,y) → 0

is induced. The modules A/(X,x,Y − y) and A/(Y , Z,X − x,y) are isomorphic to (R/(x))[[Z]] and
R/(y), respectively. Since Z − z and −z are regular on (R/(x))[[Z]] and R/(y) respectively, Z − z is
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regular on A/(X − x,Y − y). We conclude that the sequence X − x,Y − y, Z − z is regular on A, and
thus the proof of the second assertion of the proposition is completed.

Assertion (1) is shown by simply ignoring everything on Z or z in the above argument; we only give an
outline. Let A = R[[X,Y ]]/(XY ) with X = X1, . . . , Xn and Y = Y1, . . . , Ym. Then A/(X−x,Y −y) ∼=
S. As n,m ⩾ 1, the local ring A/mA = k[[X,Y ]]/(XY ) has decomposable maximal ideal, and hence
A is dominant. Exact sequences 0 → A → A/(X) ⊕ A/(Y ) → A/(X,Y ) → 0 and 0 → A/(X − x) →
A/(X,x)⊕A/(Y ,X−x) → A/(X,Y ,x) → 0 are induced, and we see thatX−x,Y −y is A-regular. ■

Applying the above proposition, we can show the following decisive result on dominant local rings.

Corollary 8.9. Let (R,m) be a regular local ring. Let I be a proper ideal of R such that µ(I) ⩽ 2. Then
the residue ring R/I is either a complete intersection of codimension two, or a dominant local ring.

Proof. Proposition 5.10(1) shows that R/I is dominant if µ(I) ⩽ 1. Let µ(I) = 2 and write I = (x, y).
Note that R is factorial. Let g = gcd(x, y). We see that x = gx′, y = gy′ for some x′, y′ ∈ m with
gcd(x′, y′) = 1. We have grade(x′, y′) = ht(x′, y′) = 2, which means that x′, y′ is a regular sequence on
R. If g /∈ m, then the local ring R/I is a complete intersection of codimension 2. If g ∈ m, then we see
by letting m = 0 in Proposition 8.8(2) that R/I is a dominant local ring. ■

We should compare the following example with Corollary 8.4. This example would also say that the
Burch rings form only a small subclass of the dominant local rings. We should also remark that the local
ring R is not Cohen–Macaulay.

Example 8.10. Let R = k[[x, y]]/xa(xb, yc) = k[[x, y]]/(xa+b, xayc) be a quotient of a formal power series
ring over a field k, where a, b, c > 0 are integers. Then, by [22, Corollaries 2.7 and 6.5], the local ring R
is Burch if and only if either b = 1 or c = 1 holds. The local ring R is always dominant by Corollary 8.9.

Remark 8.11. Let R be a regular local ring and I a proper ideal of R with µ(I) ⩽ 2 as in Corollary 8.9.
Then edimR/I ⩽ dimR and dimR/I = dimR − ht I ⩾ dimR − 2, whence codimR/I ⩽ 2. Therefore,
if R/I is Cohen–Macaulay, then it is either a complete intersection or a Golod ring by [7, Proposition
5.3.4]. This may say that there exists some connection between dominance and Golodness.

9. Comparison of dominance with other properties of local rings

In this section, we seek for implications between dominance and several other properties of local
rings. In fact, unfortunately, it turns out that for many of those properties we have no idea whether an
implication exists to/from dominance, and we present questions together with some related information.

We start by considering dominance in relation to finite CM-representation type. In [62, Conjecture 4.2],
it is conjectured that a Cohen–Macaulay singular local ring R of finite CM-representation type satisfies
coreR = CM(R). By Proposition 6.2(2) and [35, Corollary 2], one can interpret it in terms of dominance
as follows. Proposition 6.6(2) supports this conjecture, and so does Proposition 10.15(4) appearing later.

Conjecture 9.1. A Cohen–Macaulay local ring of finite CM-representation type is dominant.

Next, we pose the following question about the relationship of dominance with Tor/Ext-friendliness.
It looks a bit bold but seems to be natural as well. Proposition 6.6(1) gives a partial affirmative answer
to this question, but we do not have a complete answer. It would be very interesting if we could find out
relatively general cases where the question is affirmative.

Question 9.2. Let R be a local ring. Suppose that R is Tor-friendly or Ext-friendly. Is then R dominant?

Now we deal with the Golod property of local rings. For this, we recall the following two facts.

Remark 9.3. (1) A local ring of codimension at most one is Golod by [7, Proposition 5.2.5].
(2) A local ring is a hypersurface if and only if it is Gorenstein and Golod. This fact is stated in [7, Page

49, Remark]; see also [10, Examples 3.5(2)].

We know by Proposition 5.10(1) that a local hypersurface is dominant. Combining this with Remarks
9.3 and 8.11 naturally leads us to the following question.

Question 9.4. Is a Golod local ring necessarily dominant? In particular, is every local ring of codimen-
sion at most one dominant?
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The following example supports Question 9.4 in the affirmative.

Example 9.5. Let R = k[[x, y]]/(xa+b, xayc) be a quotient of a formal power series ring over a field k a
field, where a ⩾ 1 and b, c ⩾ 2. Then dimR = codimR = 1. Remark 9.3(1) shows that R is Golod. As
depthR = 0, the ring R is not Cohen–Macaulay. Example 8.10 says that R is not Burch but dominant.

By Propositions 6.2(3), a local ring is a hypersurface if and only if it is a dominant complete intersection.
It may be natural to ask whether the “if” part can be strengthened as follows.

Question 9.6. Is a Gorenstein dominant local ring a hypersurface?

However, the following statement may lead us to think that the above question has a negative answer.

Remark 9.7. If Question 9.6 has an affirmative answer, then, for example, the artinian Gorenstein local
ring R = k[x, y, z]/(x2 − y2, x2 − z2, xy, xz, yz) with k a field turns out to be non-dominant, and hence
there exists a resolving subcategory X of modR such that addR ̸= X ≠ modR; see Corollary 5.4.

In the following two remarks, we compare dominance with other two properties of local rings.

Remark 9.8. Recall from Corollary 6.11(1) that a non-Gorenstein dominant local ring is G-regular. We
may thus wonder if for a local ring R the implication

R is not Gorenstein but G-regular =⇒ R is dominant

holds, but it does not always. More strongly (see Theorem 6.7), the combination of non-Gorensteinness
and G-regularity does not imply Tor-friendliness. Let R = k[[x, y, z, w]]/(x2, xy, y2, z2, zw,w2) with k a

field. Then R is not Gorenstein. Since TorR>0(R/(x, y), R/(z, w)) = 0, the local ring R is not Tor-friendly.
Suppose that R is not G-regular. Then, since the maximal ideal m of R is such that m3 = 0, it follows
from [65, Theorem 3.1] that the Hilbert series HR(t) of R is 1 + (r+1)t+ rt2, where r = r(R). However,
we have HR(t) = 1 + 4t+ 4t2, which is a contradiction. We conclude that R is a G-regular local ring.

Remark 9.9. An artinian Gorenstein local ring (R,m) is called stretched if mℓ(R)−edimR ̸= 0; we refer
to [51] for details. For an artinian Gorenstein local ring R, the implication below does not always hold.

R is stretched =⇒ R is dominant

Indeed, consider the artinian complete intersection local ring R = k[x, y]/(x2, y2) with k a field. Then
ℓ(R) = 4, edimR = 2 and m2 ̸= 0, so R is stretched. However, R is not dominant by Proposition 6.2(3).

Incidentally, the converse of the above implication holds unless R is a field, provided that Question 9.6
has an affirmative answer. This is because an artinian local hypersurface that is not a field is stretched.

The theorem below discusses various properties of local rings including dominance, and makes a table
showing whether the implication from one of them to another holds. This theorem also plays the role of
a summary of what we have got so far; some of the statements of the theorem have already appeared.

Theorem 9.10. Let (R,m, k) be a local ring. The table below describes the relationships among those
ten properties listed left. Here, the symbol “⃝” (resp. “×”) in the (i, j) entry means that the implication
Pi ⇒ Pj always holds (resp. does not always hold). The symbol “ ? ” means that we do not know if the
corresponding implication always holds or not. The bottom diagram of implications follows by the table.

P1 = R is Cohen–Macaulay,
non-hypersurface, with
minimal multiplicity
and |k| = ∞,

P2 = R is a hypersurface,
P3 = m is quasi-decomposable,
P4 = R is Burch,
P5 = R is Golod,
P6 = R is dominant,
P7 = R is Tor-friendly,
P8 = R is Ext-friendly,
P9 = R is Tor-persistent,
P10 = R is Ext-persistent.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

P1 ⃝ × ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
P2 × ⃝ × ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝
P3 × × ⃝ × × ⃝ ⃝ ⃝ ⃝ ⃝
P4 × × × ⃝ × ⃝ ⃝ ⃝ ⃝ ⃝
P5 × × × × ⃝ ? ⃝ ⃝ ⃝ ⃝
P6 × × × × × ⃝ ⃝ ⃝ ⃝ ⃝
P7 × × × × × ? ⃝ ⃝ ⃝ ⃝
P8 × × × × × ? ? ⃝ ? ⃝
P9 × × × × × × × × ⃝ ×
P10 × × × × × × × × ? ⃝
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Proof. The implication P1 ⇒ P3 holds by [46, Example 4.7], P1 ⇒ P4 ⇐ P2 by [22, Propositions 5.1 and
5.2], P1 ⇒ P5 ⇐ P2 by [7, Example 5.2.8] and Remark 9.3(2), P3 ⇒ P6 ⇐ P4 by Proposition 5.10(3)(4),
P5 ⇒ P7 ⇒ P8 ⇒ P10 and P7 ⇒ P9 by Remark 6.5, and P6 ⇒ P7 by Theorem 6.7, respectively.

We have done with the symbols “⃝” and the symbols “×” remain. In view of the implications we
have got, it suffices to prove “×” in the entries (1,2), (2,3), (3,4), (3,5), (4,5), (5,4), (9,10) and (10,8). In
what follows, we let k be a field, and denote by m the maximal ideal of the local ring R.

(1,2): Assume |k| = ∞, and let R = k[x, y]/(x2, xy, y2). Then R does not satisfy P2 but satisfies P1.
(2,3): Consider the local ring R = k[[x, y]]/(x3). Evidently, R satisfies P2. Suppose that R satisfies P3.

Then there exists an ideal I generated by a regular sequence such that the module m/I is decomposable.
As R/I is Gorenstein, it is a 1-dimensional hypersurface and isomorphic to the fiber product S ×k T of
discrete valuation rings S, T with residue field k; see [45, Corollary 2.7]. We must have I = 0, and get
3 = e(R) = e(S) + e(T ) = 2 by [45, Fact 2.9], a contradiction. Hence the ring R does not satisfy P3.

(3,4) and (3,5): LetR = k[x, y]/(x2, y2)×kk[z, w]/(z2, w2) = k[x, y, z, w]/(x2, y2, z2, w2, xz, xw, yz, yw).
Then m = (x, y)⊕(z, w), and P3 holds for R. The ring k[x, y]/(x2, y2) ∼= k[z, w]/(z2, w2) is neither Burch
nor Golod by [22, Proposition 5.1] and Remark 9.3(2). By [22, Proposition 6.15] and [40, Théorème 4.1]
the ring R is neither Burch nor Golod. Thus neither P4 nor P5 holds for R.

(4,5): Not P5 but P4 holds for R = k[x, y, z, w]/(x, y, z, w)(x2, y2, z2, w2) by [22, Remark 5.3].
(5,4): Let R = k[x, y]/(x4, x2y2, y4). Then R does not satisfy P4 but satisfies P5 by [22, Remark 5.3].
(9,10): Let A = k[x, y]/(x2, xy, y2) and R = A[z, w]/(z2, zw,w2) = k[x, y, z, w]/(x2, xy, y2, z2, zw,w2).

Then m3 = 0, and R satisfies P9 by [43, Theorem A]. As R is A-free, C = HomA(R,A) is a semidualizing
R-module with µR(C) = rR(C) = 2, whence it is not isomorphic to R or the injective hull ER(k) of k;
see [20, (7.8)]. Arguments as in the proof of Corollary 6.11(2) show that the ring R does not satisfy P10.

(10,8): Consider the artinian local ring R = k[x, y]/(x2, y2). Then R is a complete intersection, whence
it satisfies P10 by Remark 6.5. Since Ext>0

R (R/(x), R/(y)) = 0, the local ring R does not satisfy P8. ■

Regrettably, the table displayed in the above theorem contains many question marks. In particular,
those three “ ? ” that appear in the sixth column of the table concern dominance; it would be nice if one
could change some of them into “⃝” or “×”; as to the one in (5,6), some help may be given by Remark
8.11. Below are comments on the other question marks.

Remark 9.11. Each of the symbols “ ? ” in Theorem 9.10 may become “⃝” if we add some assumptions.
For instance, under the assumption that R is Cohen–Macaulay and admits a canonical module, the symbol
“ ? ” in the entry (8, 7), and hence the one in (8, 9), become “⃝” by [42, Theorem 3.2(2)]. On the other
hand, as we mentioned in Remark 6.5, no example is known of a local ring that is not Tor-persistent.
Taking this into account, the symbols “ ? ” in the entries (8, 9) and (10, 9) may be close to “⃝”.

10. Classification of subcategories and dominant local rings

In this section, we consider classifying resolving subcategories of modR, and thick subcategories of
modR, Db(R) and Dsg(R) when certain localizations of R are dominant local rings. We first recall some
notions and their basic properties, which are necessary to state and prove the main results of this section.

Definition 10.1. (1) A subcategory X of modR (resp. C(R)) is called thick provided that X is closed
under direct summands and that for an exact sequence 0 → L → M → N → 0 of modules in modR
(resp. C(R)), if two of L,M,N are in X , then so is the third. For each subcategory X of modR
(resp. C(R)), we denote by thickmodR X (resp. thickC(R) X ) the thick closure of X in modR (resp.
C(R)), that is to say, the smallest thick subcategory of modR (resp. C(R)) which contains X .

(2) For each object C ∈ Db(R) we denote by IPD(C) the infinite projective dimension locus of C, that
is, the set of prime ideals p of R such that the localization Cp has infinite projective dimension as a
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complex over Rp; see [19, (A.3.9)] for the definition of the projective dimension of a complex, and note
that a bounded complex of R-modules has finite projective dimension if and only if it is isomorphic
to a perfect complex in Db(R). For a subcategory X of Db(R) we put IPD(X ) =

∪
X∈X IPD(X). For

each object D ∈ Dsg(R) we denote by Suppsg D the singular support of D, i.e., the set of prime ideals p
of R such that Dp ̸∼= 0 in Dsg(Rp). For a subcategory Y of Dsg(R) we put Suppsg Y =

∪
Y ∈Y Suppsg Y .

For each bounded complex E of R-modules, the infinite projective dimension locus of E as an object
of Db(R) is the same as the singular support of E as an object of Dsg(R); see Remark 10.2(9) below.

(3) Let Φ be a set of prime ideals of R. We denote by modΦ R and Db
Φ(R) the subcategories of modR

and Db(R) consisting of objects C such that IPD(C) ⊆ Φ, respectively. We denote by Dsg
Φ (R) the

subcategories of Dsg(R) consisting of objects C such that Suppsg C ⊆ Φ.

Remark 10.2. (1) A thick subcategory of modR containing R is always a resolving subcategory of
modR. The converse is not true in general. For example, addR is resolving, but not thick if (R,m) is

local and depthR > 0 as there exists x ∈ m such that the sequence 0 → R
x−→ R → R/(x) → 0 is exact

and R/(x) /∈ addR. A thick subcategory of C(R) containing R is always a resolving subcategory of
modR contained in C(R), since C(R) is a resolving subcategory of modR. Again, the converse is not
true in general; see [23, Proposition 6.1 and its preceding part]. Note that thickmodRR coincides with
fpdR, the subcategory of modR consisting of modules of finite projective dimension.

(2) Let Φ be a set of prime ideals of R. Then modΦ R and Db
Φ(R) are thick subcategories of modR and

Db(R) containing R, respectively. The subcategory Dsg
Φ (R) of Dsg(R) is thick as well.

(3) For an R-module M one has IPD(M) ⊆ NF(M), and the equality holds if M ∈ C(R). In particular,
there is an equality CΦ(R) = C(R) ∩modΦ R for each set Φ of prime ideals of R.

(4) By (3) and Remark 3.3(5) one has IPD(M) = NF(ΩrM) for an R-module M ̸= 0, where r = RfdM .
(5) For a bounded complexX of R-modules the subset IPD(X) of SpecR is closed in the Zariski topology.

Indeed, there is an exact triangle P → X → M [n] → P [1] in Db(R) such that P ∈ thickR, M ∈ modR
and n ∈ Z. This implies IPD(X) = IPD(M). By (4), we see that IPD(M) is a closed subset of SpecR.

(6) By (5), the subset IPD(X ) of SpecR is specialization-closed for each subcategory X of Db(R).
(7) For a subcategory X of modR one has IPD(X ) ⊇ NF(X ∩C(R)), and the equality holds if X is closed

under syzygies. In fact, for every module X in X ∩ C(R) one has NF(X) = IPD(X) ⊆ IPD(X ) by
(3). For any nonzero module Y ∈ X with r = RfdY , it follows from (4) that IPD(Y ) = NF(ΩrY ),
and Remark 3.3(5) shows that ΩrY ∈ X ∩ C(R) if X is closed under syzygies.

(8) For a subcategory X of modR one has IPD(thickmodR X ) = IPD(X ). Indeed, the inclusion (⊇) holds
since thickmodR X contains X . The inclusion (⊆) is a consequence of the fact that for Φ = IPD(X )
the subcategory modΦ R of modR is thick and contains X , which follows from (2). In a similar way,
one also observes that the equality IPD(thickDb(R) Y) = IPD(Y) holds for a subcategory Y of Db(R).

(9) Let π : Db(R) → Dsg(R) be the canonical functor. Then Suppsg(π(C)) = IPD(C) for each C ∈
Db(R), and Dsg

Φ (R) = π(Db
Φ(R)). Let X and Y be subcategories of Db(R) and Dsg(R), respectively.

Then IPD(X ) = Suppsg(π(X )) and IPD(π−1(Y)) = Suppsg(Y). If X contains R, then the equality
π(thickDb(R) X ) = thickDsg(R) π(X ) holds. (Hence, if X is a thick subcategory of Db(R) containing
R, then π(X ) is a thick subcategory of Dsg(R).) Indeed, (⊆) follows from Lemma 4.2(1). For any
M,N ∈ Db(R) one has π(M) ∼= π(N) in Dsg(R) if and only if there are exact triangles E → M →
A → E[1] and E → N → B → E[1] in Db(R) with A,B ∈ thickR; see [48, Proposition 2.1.35]. Using
this fact, we see that π(thickDb(R) X ) is a thick subcategory of Dsg(R). The inclusion (⊇) now follows.

(10) Let Φ be a subset of SpecR. The categories CΦ(R), modΦ R, Db
Φ(R) and Dsg

Φ (R) depend only on
Φ ∩ SingR. Therefore, whenever we are concerned with some of these categories, Φ can be taken as
a subset of SingR rather than being just an arbitrary subset of SpecR.

Using an infinite projective dimension locus, we can relate dominance of localizations of R to dominance
of resolving subcategories of modR, whose definition is given in Definition 3.10. Actually, the name
“dominant local ring” comes from this proposition.

Proposition 10.3. Let Φ be a set of prime ideals of R. Then the local ring Rp is dominant for all p ∈ Φ
if and only if every resolving subcategory X of modR is dominant on Φ ∩ IPD(X ).

Proof. The “only if” part: Take any p ∈ Φ ∩ IPD(X ). Then pdRp
Xp = ∞ for some X ∈ X , and Rp is a

dominant local ring by assumption. Hence ΩdepthRpκ(p) is in resXp, and hence it belongs to addXp.
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The “if” part: Fix p ∈ Φ. Let M be an Rp-module of infinite projective dimension. We can choose
an R-module N such that M = Np, and then p ∈ IPD(N). Let X be the resolving closure of N . We see
that p belongs to Φ ∩ IPD(X ), and by assumption we find an integer n ⩾ 0 such that Ωnκ(p) ∈ addXp.
Applying [63, Corollary 3.3(1)], we obtain ΩdepthRpκ(p) ∈ addXp ⊆ resM . ■

Next we recall some notation, which is also necessary to state and prove our main results.

Definition 10.4. We put NF−1
C (W ) = NF−1(W )∩C(R) and IPD−1(W ) = modW R for eachW ⊆ SpecR.

For subcategories V ⊆ C(R), Z ⊆ modR, X ⊆ Db(R) and Y ⊆ Dsg(R) we set

(thickmod)(V) = thickmodR V, (thickDb)(Z) = thickDb(R) Z, (thickDsg)(V) = thickDsg(R) π(V),
(restmod)(X ) = X ∩modR, (restC)(Z) = Z ∩ C(R), (restC)(Y) = π−1(Y) ∩ C(R),

where π : Db(R) → Dsg(R) stands for the canonical functor.

We establish a lemma on bijective correspondences among thick subcategories of modR, Db(R) and
Dsg(R). This is a consequence of a general theorem about exact categories given in [38].

Lemma 10.5. Let π : Db(R) → Dsg(R) be the canonical functor. There are mutually inverse bijections:{
Thick subcategories

of modR containing R

}
thick

Db //
{

Thick subcategories
of Db(R) containing R

}
π //

restmod

oo

{
Thick subcategories

of Dsg(R)

}
.

π−1

oo

Proof. Fix a thick subcategory X of Db(R) containing R, a thick subcategory Y of Dsg(R), and a thick
subcategory Z of modR containing R.

Remark 10.2(9) and Lemma 4.2(2) show that the maps π, π−1 are well-defined. It is seen by the fact
given around the end of Remark 10.2(9) that π−1π(X ) is contained in X . We easily deduce the equalities
π−1π(X ) = X and ππ−1(Y) = Y. Thus we obtain the pair (π, π−1) of mutually inverse bijections.

The latter half of the proof of [38, Theorem 1] shows (thickDb · restmod)(X ) = thickDb(R)(X ∩modR) =
X . We see from the former half of the proof of [38, Theorem 1] that thickDb(R) Z coincides with the

subcategory of Db(R) consisting of bounded complexes of modules in Z, and that (restmod · thickDb)(Z) =
(thickDb(R) Z) ∩modR = Z. Thus we get the pair (thickDb , restmod) of mutually inverse bijections. ■

Applying the above lemma together with a result stated in [63], we obtain one more lemma and a
proposition regarding the residue field and resolving/thick closures.

Lemma 10.6. Let (R,m, k) be a local ring of depth t. The following are equivalent for each C ∈ C(R).

(1) The module Ωtk belongs to resC.
(2) The module Ωtk belongs to thickC(R){R,C}.
(3) The module k belongs to thickmodR{R,C}.
(4) The module k belongs to thickDb(R){R,C}.
(5) The module k belongs to thickDsg(R) C.

Proof. The inclusions resC ⊆ thickC(R){R,C} ⊆ thickmodR{R,C} ⊆ thickDb(R){R,C} hold. The implica-

tions (1) ⇒ (2) ⇒ (3) ⇒ (4) follow from them. Using the canonical functor Db(R) → Dsg(R), we get the
implication (4) ⇒ (5). Applying Lemma 10.5, we obtain the equalities below, which show (5) ⇒ (3).

thickmodR{R,C} = (restmod · thickDb)(thickmodR{R,C}) = thickDb(R){R,C} ∩modR
= π−1π(thickDb(R){R,C}) ∩modR = π−1(thickDsg(R) C) ∩modR.

Let X be the subcategory of modR consisting of modules X such that ΩnX ∈ resC for some n ⩾ 0.
Then X is a thick subcategory of modR containing R and C, whence X contains thickmodR{R,C}. In
fact, for example, let 0 → L → M → N → 0 be an exact sequence of R-modules with ΩnL and ΩnM

being in resC for some n ⩾ 0. Then there are exact sequences 0 → ΩnL → ΩnM⊕R⊕a α−→ ΩnN → 0 and

0 → Ωn+1N → R⊕b β−→ ΩnN → 0 with a, b ⩾ 0. The pullback diagram of α, β yields an exact sequence
0 → Ωn+1N → ΩnL⊕R⊕b → ΩnM ⊕R⊕a → 0, which shows Ωn+1N ∈ resC. If k is in thickmodR{R,C},
then Ωhk ∈ resC for some h ⩾ 0, and Ωtk ∈ resC by [63, Corollary 3.3(1)]. Thus we get (3) ⇒ (1). ■

Proposition 10.7. Let (R,m, k) be a local ring of depth t. Let E ∈ C(R). The following are equivalent.

(1) For every C ∈ C(R) that is a nonfree R-module, one has Ωtk ∈ res{E,C}.
(2) For every C ∈ C(R) that is a nonfree R-module, one has Ωtk ∈ thickC(R){E,R,C}.
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(3) For every M ∈ modR with pdRM = ∞, one has Ωtk ∈ res{E,M}.
(4) For every M ∈ modR with pdRM = ∞, one has k ∈ thickmodR{E,R,M}.
(5) For every X ∈ Db(R) with pdRX = ∞, one has k ∈ thickDb(R){E,R,X}.
(6) For every Y ∈ Dsg(R) that is a nonzero object, one has k ∈ thickDsg(R){E, Y }.

Proof. (1) ⇒ (3): Put r = RfdRM . Then the syzygy ΩrM is a nonfree R-module and belongs to C(R);
see Remark 3.3(5). It follows that Ωtk ∈ res{E,ΩrM} ⊆ res{E,M}.

(3) ⇒ (4): We have Ωtk ∈ res{E,M} ⊆ thickmodR{E,R,M}, and hence k ∈ thickmodR{E,R,M}.
(4) ⇒ (5): There is an exact triangle P → X → M [n] → P [1] with P ∈ thickDb(R) R, M ∈ modR and

n ∈ Z. Then pdRM = ∞, and k ∈ thickmodR{E,R,M} ⊆ thickDb(R){E,R,M} = thickDb(R){E,R,X}.
(5) ⇒ (6): As an object of Db(R) the complex Y has infinite projective dimension. Therefore we have

k ∈ thickDb(R){E,R, Y }. Using the canonical functor Db(R) → Dsg(R), we get k ∈ thickDsg(R){E, Y }.
(6) ⇒ (1): As an object of Dsg(R) the module C is nonzero. It follows that k ∈ thickDsg(R){E,C} =

thickDsg(R)(E ⊕ C). By virtue of Lemma 10.6 we get Ωtk ∈ res(E ⊕ C) = res{E,C}.
(1) ⇔ (2): Applying Lemma 10.6 to E ⊕ C, we observe that the equivalence holds. ■

The following corollary is a direct consequence of the above proposition; in fact, letting E be 0 or R
in the proposition immediately yields the corollary.

Corollary 10.8. Let R be a local ring of depth t and with residue field k. The following are equivalent.

(1) For every C ∈ C(R) that is a nonfree R-module, one has Ωtk ∈ resC.
(2) For every C ∈ C(R) that is a nonfree R-module, one has Ωtk ∈ thickC(R){R,C}.
(3) For every M ∈ modR with pdRM = ∞, one has Ωtk ∈ resM . (Namely, R is dominant.)
(4) For every M ∈ modR with pdRM = ∞, one has k ∈ thickmodR{R,M}.
(5) For every X ∈ Db(R) with pdRX = ∞, one has k ∈ thickDb(R){R,X}.
(6) For every Y ∈ Dsg(R) that is a nonzero object, one has k ∈ thickDsg(R) Y .

Remark 10.9. Thanks to Corollary 10.8, we may say that the dominant local ring R is the local ring R
satisfying one of the six equivalent conditions presented in the corollary.

Now is the time when we state and prove the main result of this section. For the fact that Φ is taken
as a subset of SingR, we should recall Remark 10.2(10).

Theorem 10.10. Let R be a local ring with maximal ideal m and residue field k = R/m. Put t = depthR.
Let Φ be a subset of the singular locus SingR. Denote by π the canonical functor Db(R) → Dsg(R).

(1) Assume that the local ring R is singular. Suppose that the localization Rp is a dominant local ring
for every p ∈ Φ \ {m}. Then there is a commutative diagram of mutually inverse bijections:

{
Resolving subcategories of modR

contained in CΦ(R) and containing Ωtk

}
NF //

{
Nonempty specialization-closed
subsets of SpecR contained in Φ

}
NF−1

C

oo

IPD−1

��{
Thick subcategories of C(R) contained

in CΦ(R) and containing R,Ωtk

}
thickmod //

thickDsg

��

{
Thick subcategories of modR contained

in modΦ R and containing R, k

}
restC

oo

IPD

OO

thick
Db

��{
Thick subcategories of Dsg(R)

contained in Dsg
Φ (R) and containing k

}
π−1

//

restC

OO

{
Thick subcategories of Db(R) contained

in Db
Φ(R) and containing R, k

}
.

π
oo

restmod

OO
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(2) Suppose that the localization Rp is a dominant local ring for every prime ideal p ∈ Φ ∪ {m}. Then
one has the following commutative diagram of mutually inverse bijections.{

Resolving subcategories of modR
contained in CΦ(R)

}
NF //

{
Specialization-closed subsets of SpecR

contained in Φ

}
NF−1

C

oo

IPD−1

��{
Thick subcategories of C(R)

contained in CΦ(R) and containing R

}
thickmod//

thickDsg

��

{
Thick subcategories of modR

contained in modΦ R and containing R

}
restC
oo

IPD

OO

thick
Db

��{
Thick subcategories of Dsg(R)

contained in Dsg
Φ (R)

}
π−1

//

restC

OO

{
Thick subcategories of Db(R)

contained in Db
Φ(R) and containing R

}
.

π
oo

restmod

OO

Proof. (1) We fix a resolving subcategory X of modR with Ωtk ∈ X ⊆ CΦ(R), a thick subcategory Y
of modR with R, k ∈ Y ⊆ modΦ R, a thick subcategory Z of Db(R) with R, k ∈ Z ⊆ Db

Φ(R), a thick
subcategory V of Dsg(R) with k ∈ V ⊆ Dsg

Φ (R), a thick subcategory U of C(R) with R,Ωtk ∈ U ⊆ CΦ(R),
and a specialization-closed subset W of SpecR with ∅ ≠ W ⊆ Φ. We prove the assertion step by step.

(a) The nonfree locus NF(X ) of X is a specialization-closed subset of SpecR contained in Φ, while
NF−1

C (W ) = NF−1(W ) ∩ C(R) is a resolving subcategory of modR contained in NF−1
C (Φ) = CΦ(R).

Since Ωtk belongs to X and R is a singular local ring, we have m ∈ NF(Ωtk) ⊆ NF(X ), which implies
that NF(X ) is nonempty. As W is nonempty and specialization-closed, m is in W and we get Ωtk ∈
NF−1

C ({m}) ⊆ NF−1
C (W ); see Remark 3.3(8). Thus the maps NF,NF−1

C in the diagram are well-defined.

(b) We claim that NF(NF−1
C (W )) = W . Indeed, the inclusion (⊆) is clear. To show (⊇), we pick any

p ∈ W . Put r = RfdRR/p. Then we have NF(Ωr(R/p)) ⊆ V(p) ⊆ W as W is specialization-closed, which
implies Ωr(R/p) ∈ NF−1(W ). Remark 3.3(5) shows that Ωr(R/p) is in C(R), and hence it belongs to
NF−1

C (W ). Since p ∈ W ⊆ Φ ⊆ SingR, we get p ∈ NF(Ωr(R/p)). Thus W is contained in NF(NF−1
C (W )).

(c) Clearly, X is contained in NF−1
C (NF(X )). Let M be an R-module in NF−1

C (NF(X )). To show that
M belongs to X , we may assume that M is nonfree. Fix p ∈ NF(X ) \ {m}. Then p ∈ Φ \ {m} and Rp is
dominant. Since addXp is a resolving subcategory of modRp with addRp ̸= addXp ⊆ C(Rp), Proposition
5.3 implies that addXp contains C0(Rp). Applying Theorem 3.8 to the subset NF(X ) of SingR, we obtain
an exact sequence 0 → C → M ⊕N → Y → 0 with C ∈ C0(R) and Y ∈ X ◦n, where n = dimNF(M). As
X is resolving, X ◦n is contained in X . Also, we have m ∈ NF(M) ⊆ NF(X ), which says X ≠ addR. As
Ωtk ∈ X , we have C0(R) = resΩtk ⊆ X by Remark 3.3(8), and the above exact sequence shows M ∈ X .

(d) By (a), (b) and (c) we obtain the mutually inverse bijections (NF,NF−1
C ) in the diagram.

(e) It is clear that U is a resolving subcategory of modR contained in CΦ(R). Remark 10.2(3) implies
that NF−1

C (W ) consists of those R-modules M which belong to C(R) and satisfies IPD(M) ⊆ W . Thus

NF−1
C (W ) is a thick subcategory of C(R). By virtue of (d), we get the vertical equality in the diagram.

(f) The subset IPD(Y) of SpecR is specialization-closed and contained in Φ, while IPD−1(W ) is a thick
subcategory of modR contained in IPD−1(Φ) = modΦ R and containing R. As k ∈ Y and R is singular,
we have m ∈ IPD(k) ⊆ IPD(Y) and IPD(Y) ̸= ∅. As W is nonempty and specialization-closed, we get
m ∈ W and k ∈ IPD−1({m}) ⊆ IPD−1(W ). So the maps IPD, IPD−1 in the diagram are well-defined.

(g) We claim that IPD(IPD−1(W )) = W . Indeed, (⊆) is clear. To show (⊇), we take p ∈ W . We have
p ∈ W ⊆ Φ ⊆ SingR, whence p ∈ IPD(R/p) ⊆ V(p). The equality IPD(R/p) = V(p) holds, while V(p) ⊆
W as W is specialization-closed. We obtain R/p ∈ IPD−1(W ) and p ∈ IPD(R/p) ⊆ IPD(IPD−1(W )).

(h) It is evident that Y is contained in IPD−1(IPD(Y)) and Y∩C(R) is a resolving subcategory ofmodR.
Remark 10.2(7) shows that NF(Y∩C(R)) = IPD(Y) ⊆ Φ, and hence Y∩C(R) ⊆ CΦ(R). Since Y contains
k and is closed under syzygies, Ωtk belongs to Y ∩C(R) by Remark 3.3(8). Let 0 ̸= M ∈ IPD−1(IPD(Y))
and put r = RfdM . Remarks 3.3(5) and 10.2(4) imply that ΩrM ∈ C(R) and IPD(M) = NF(ΩrM).
Hence ΩrM belongs to NF−1

C (NF(Y∩C(R))). By (d) we get the equality NF−1
C (NF(Y∩C(R))) = Y∩C(R),

and then M is in Y. We thus have Y = IPD−1(IPD(Y)) and (NF−1
C · IPD)(Y) = (restC)(Y).

(i) From (f), (g) and (h) we get the mutually inverse bijections (IPD, IPD−1) in the diagram.
(j) Using (3) and (8) of Remark 10.2, we get Φ ⊇ NF(X ) = IPD(X ) = IPD(thickmodR X ) and observe

that thickmodR X is a thick subcategory of modR contained in modΦ R and containing R. As X contains
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Ωtk, the thick closure thickmodR X contains k. By virtue of (i), there is an equality IPD−1(NF(X )) =
thickmodR X , which means that (IPD−1 ·NF)(X ) = (thickmod)(X ).

(k) By (d), (e), (h), (i) and (j), we observe that the pair (thickmod, restC) in the diagram gives mutually
inverse bijections and that the top square in the diagram is commutative.

(l) The subcategory Db
Φ(R) of Db(R) is thick, while Suppsg π(Z) = IPD(Z) ⊆ Φ and IPD(π−1(V)) =

Suppsg(V) ⊆ Φ by Remark 10.2(9). We get thickDb(R) Y ⊆ Db
Φ(R), π(Z) ⊆ Dsg

Φ (R), Z ∩modR ⊆ modΦ R

and π−1(V) ⊆ Db
Φ(R). Since k belongs to Y, Z and V, it belongs to thickDb(R) Y, π(Z), Z ∩modR and

π−1(V). Lemma 10.5 yields the bijection pairs (thickDb , restmod) and (π, π−1) in the diagram.
(m) Remark 10.2(9) gives (π · thickDb · thickmod)(U) = π(thickDb(R)(thickmodR U)) = π(thickDb(R) U) =

thickDsg(R)(π(U)) = (thickDsg)(U) and (restC · restmod ·π−1)(V) = π−1(V) ∩ C(R) = (restC)(V). By (k) and
(l) we get the bijection pair (thickDsg , restC) and the bottom commutative square given in the diagram.

Finally, combining (d), (e), (i), (k), (l) and (m) completes the proof of the assertion.
(2) First of all, note that addR is both a resolving subcategory of modR contained in CΦ(R) and a

thick subcategory of C(R) contained in CΦ(R) and containing R, fpdR is a thick subcategory of modR
contained in modΦ R and containing R, Dperf(R) is a thick subcategory of Db(R) contained in Db

Φ(R) and
containing R, 0 is a thick subcategory of Dsg(R) contained in Dsg

Φ (R), and ∅ is a specialization-closed
subset of SpecR contained in Φ. We call these six elements the exceptional elements. As is easy to verify,
the exceptional elements correspond by the maps given in the diagram.

Suppose that R is regular. Then Φ = SingR = ∅. It is seen that CΦ(R) = C(R) = addR, modΦ R =
modR = fpdR, Db

Φ(R) = Db(R) = Dperf(R) and Dsg
Φ (R) = Dsg(R) = 0. Each of the six sets in the diagram

given in the assertion is the one-point set consisting of the exceptional element, and we are done.
Next we consider the case where R is singular. Then we can apply assertion (1) to obtain the commu-

tative diagram of mutually inverse bijections in (1). This is actually a commutative diagram of mutually
inverse bijections of all the non-exceptional elements of the six sets in (2), since R = Rm is dominant by
assumption and Corollary 10.8 applies. The diagram is thus complemented to the one in (2). ■

Remark 10.11. Let R be a local ring of depth t with maximal ideal m and residue field k. Here we
consider what Theorem 10.10 asserts in the extreme cases where Φ = ∅, Φ = {m} and Φ = SingR.

(1) Let Φ = ∅. Then the six sets in Theorem 10.10(2) are singletons, while the six sets in Theorem
10.10(1) are empty sets. Thus, the theorem says nothing interesting in the case where Φ = ∅.

(2) Let Φ = {m}. Then ∅ and {m} are the only specialization-closed subsets of SpecR contained in Φ.
The two assertions of Theorem 10.10 say that the following two statements hold.
(a) Suppose that R is dominant. Then addR and C{m}(R)(= C0(R)) are the only resolving subcate-

gories of modR contained in C{m}(R), and the only thick subcategories of C(R) containing R. The
only thick subcategories of modR contained in mod{m} R and containing R are fpdR,mod{m} R.
The only thick subcategories of Dsg(R) contained in Dsg

{m}(R)(= Dsg
0 (R)) are 0,Dsg

{m}(R). The

only thick subcategories of Db(R) contained in Db
{m}(R) and containing R are Dperf(R),Db

{m}(R).

(b) Suppose that R is singular. Then C{m}(R) is the only resolving subcategory of modR contained
in C{m}(R) and containing Ωtk, and the only thick subcategory of C(R) containing R,Ωtk. The
only thick subcategory of modR contained in mod{m} R and containing R, k is mod{m} R. The
only thick subcategory of Dsg(R) contained in Dsg

{m}(R) and containing k is Dsg
{m}(R). The only

thick subcategory of Db(R) contained in Db
{m}(R) and containing R, k is Db

{m}(R).

(3) Let Φ = SingR. Then Theorem 10.10 says that the following two statements hold true.
(a) If Rp is dominant for all prime ideals p of R, then there are one-to-one correspondences among

• the resolving subcategories of modR contained in C(R),
• the thick subcategories of C(R) containing R,
• the thick subcategories of modR containing R,
• the thick subcategories of Db(R) containing R,
• the thick subcategories of Dsg(R), and
• the specialization-closed subsets of SpecR contained in SingR.

(b) Assume that R is singular, and suppose that Rp is dominant for all nonmaximal prime ideals p
of R. Then there are one-to-one correspondences among

• the resolving subcategories of modR contained in C(R) and containing Ωtk,
• the thick subcategories of C(R) containing R and Ωtk,
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• the thick subcategories of modR containing R and k,
• the thick subcategories of Db(R) containing R and k,
• the thick subcategories of Dsg(R) containing k, and
• the nonempty specialization-closed subsets of SpecR contained in SingR.

Remark 10.12. It is definitely worth mentioning that Theorem 10.10 includes all of the known clas-
sification theorems of the same type, and moreover, highly generalizes them. More precisely, applying
Theorem 10.10 to a Cohen–Macaulay local ring R with Φ = SingR and recalling the sufficient conditions
for dominance given in Proposition 5.10 (together with [59, Lemma 5.4]), we immediately and simultane-
ously recover and refine [22, Theorem 7.10(1)], [46, Theorem 4.5(1)], [57, Theorem 6.8], [59, Theorem 5.6]
and [60, Theorem 5.1]. Note that all of those theorems assume that the base ring is a Cohen–Macaulay
local ring. Thus, Theorem 10.10 provides classification in the non-Cohen–Macaulay case for the first
time. We have already got examples of non-Cohen–Macaulay dominant local rings in Example 8.10.

Remark 10.13. It is possible to formulate a non-local version of Theorem 10.10. Let R be a ring which
is not necessarily local. Let Φ be a subset of SingR. Suppose that Rp is a dominant local ring for each
p ∈ Φ∪MaxR. Then one has the same commutative diagram of mutually inverse bijections as in Theorem
10.10(2). Letting Φ = SingR recovers the third one-to-one correspondence in [52, Theorem 6.13].

Indeed, what we should prove is that for every resolving subcategory X of modR contained in CΦ(R) it
holds that X = NF−1

C (NF(X )). For this, it suffices to show that everyR-moduleM ∈ C(R) with NF(M) ⊆
NF(X ) is in X . Fix m ∈ MaxR. Let Φm be the set of prime ideals P of Rm with P ∩ R ∈ Φ. Then Φm

is a subset of SingRm, and the local ring (Rm)P = RP∩R is dominant for all P ∈ Φm ∪ {mRm}. We see
that addXm is a resolving subcategory of modRm contained in CΦm

(Rm) (see [24, Lemma 3.2(1)]). Thus
we can apply Theorem 10.10(2) to get addXm = NF−1

C (NF(addXm)). Note that NF(Mm) is contained in
NF(Xm) = NF(addXm). It follows that Mm ∈ addXm, and by [24, Proposition 3.3] we obtain M ∈ X .

To cover the other similar known classification theorems, we introduce a weaker version of dominance.

Definition 10.14. Let R be a d-dimensional Cohen–Macaulay local ring with residue field k and admit-
ting a canonical module ω. We say that R is quasi-dominant if Ωdk ∈ res{ω,M} for every R-module M
of infinite projective dimension. It is obvious that if R is dominant, then it is quasi-dominant. When R
is Gorenstein, R is dominant if and only if it is quasi-dominant, since ω = R. When R is non-Gorenstein,
R is quasi-dominant if and only if Ωdk ∈ resω, since ω itself has infinite projective dimension.

A Cohen–Macaulay local ring R with a canonical module ω is called almost Gorenstein if there exists
an exact sequence 0 → R → ω → C → 0 of R-modules with µ(C) = e(C). Here are some statements on
quasi-dominance; (1) and (2) correspond to Proposition 5.3 and Corollary 10.8, respectively.

Proposition 10.15. Let R be a d-dimensional Cohen–Macaulay local ring with residue field k. Assume
that R possesses a canonical module ω. Then the following five statements hold true.

(1) The following are equivalent.
(a) R is quasi-dominant. (b) CM0(R) ⊆ res{ω,M} for every R-module M with pdM = ∞.
(c) CM0(R) ⊆ X for every resolving subcategory X of modR with addR ̸= X ⊆ CM(R) and ω ∈ X .

(2) The following are equivalent.
(a) For every C ∈ CM(R) that is a nonfree R-module, one has Ωdk ∈ res{ω,C}.
(b) For every C ∈ CM(R) that is a nonfree R-module, one has Ωdk ∈ thickCM(R){R,ω,C}.
(c) For every M ∈ modR with pdRM = ∞, one has Ωdk ∈ res{ω,M} (i.e., R is quasi-dominant).
(d) For every M ∈ modR with pdRM = ∞, one has k ∈ thickmodR{R,ω,M}.
(e) For every X ∈ Db(R) with pdRX = ∞, one has k ∈ thickDb(R){R,ω,X}.
(f) For every Y ∈ Dsg(R) that is a nonzero object, one has k ∈ thickDsg(R){ω, Y }.

(3) In the case where R is not Gorenstein, the following are equivalent.
(a) Ωdk ∈ resω (i.e., R is quasi-dominant). (b) Ωdk ∈ thickCM(R){R,ω}.
(c) k ∈ thickmodR{R,ω}. (d) k ∈ thickDb(R){R,ω}. (e) k ∈ thickDsg(R) ω.

(4) Suppose that R is excellent and has finite CM-representation type. Then R is quasi-dominant.
(5) Assume k is infinite. Suppose R is not Gorenstein but almost Gorenstein. Then R is quasi-dominant.

Proof. An analogous argument as in the proof of Proposition 5.3 shows (1). Letting E = ω in Proposition
10.7 and C = ω in Lemma 10.6 imply (2) and (3), respectively.
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(4) As R has finite CM-representation type, it has an isolated singularity by [35, Corollary 2]. Since R

is excellent, R̂ also has an isolated singularity. By [59, Corollary 6.9] the only resolving subcategories of
modR contained in CM(R) and containing ω are addR and CM(R). So, if X is a resolving subcategory
of modR with addR ̸= X ⊆ CM(R) and ω ∈ X , then X = CM(R) ⊇ CM0(R). We are done by (1).

(5) By [30, Theorem 4.3] we get k ∈ thickmodR{R,ω}. By (3) the ring R is quasi-dominant. ■

Definition 10.16. We denote by NonGorR the non-Gorenstein locus of R, that is, the set of prime
ideals p of R such that the local ring Rp is non-Gorenstein. Note that if R is a Cohen–Macaulay local
ring with a canonical module ω, then NonGorR = NF(ω) holds.

We obtain a corollary of (the proof of) Theorem 10.10.

Corollary 10.17. Let (R,m, k) be a d-dimensional Cohen–Macaulay local ring with a canonical module
ω. Let Φ be a subset of SingR, and denote by π the canonical functor Db(R) → Dsg(R).

(1) Assume that the local ring R is singular. Suppose that the localization Rp is a quasi-dominant local
ring for every p ∈ Φ \ {m}. Then there is a commutative diagram of mutually inverse bijections:Resolving subcategories of modR

contained in CMΦ(R)
and containing Ωtk, ω

 NF //

 Nonempty specialization-closed
subsets of SpecR contained in Φ

and containing NonGorR

NF−1
CM

oo

IPD−1

��Thick subcategories of CM(R)
contained in CMΦ(R)

and containing R,Ωtk, ω

 thickmod //

thickDsg

��

Thick subcategories of modR
contained in modΦ R
and containing R, k, ω

restCM
oo

IPD

OO

thick
Db

��Thick subcategories of Dsg(R)
contained in Dsg

Φ (R)
and containing k, ω

 π−1
//

restCM

OO

Thick subcategories of Db(R)
contained in Db

Φ(R)
and containing R, k, ω

.
π

oo

restmod

OO

(2) Suppose that the localization Rp is a quasi-dominant local ring for every p ∈ Φ ∪ {m}. Then there is
a commutative diagram of mutually inverse bijections:{

Resolving subcategories of modR
contained in CMΦ(R) and containing ω

}
NF //

{
Specialization-closed subsets of SpecR

contained in Φ and containing NonGorR

}
NF−1

CM

oo

IPD−1

��{
Thick subcategories of CM(R)

contained in CMΦ(R) and containing R,ω

}
thickmod//

thickDsg

��

{
Thick subcategories of modR

contained in modΦ R and containing R,ω

}
restCM
oo

IPD

OO

thick
Db

��{
Thick subcategories of Dsg(R)

contained in Dsg
Φ (R) and containing ω

}
π−1

//

restCM

OO

{
Thick subcategories of Db(R)

contained in Db
Φ(R) and containing R,ω

}
.

π
oo

restmod

OO

Proof. (1) The proof of Theorem 10.10(1) works except (c), which uses the assumption that Rp is dom-
inant for all prime ideals p in Φ \ {m}. We have only to replace in (c) dominance and Proposition 5.3
with quasi-dominance and Proposition 10.15(1), respectively, and apply the same argument to a resolving
subcategory X of modR with ω ∈ X ⊆ CMΦ(R).

(2) Suppose that the ring R is Gorenstein. Then ω = R and NonGorR = ∅, while quasi-dominance is
equivalent to dominance for each localization Rp. The assertion is none other than Theorem 10.10(2).

Suppose that R is non-Gorenstein. Then, in particular, R is a singular local ring, and we get the
commutative diagram of mutually inverse bijections in (1). As NonGorR ̸= ∅, every subset of SpecR
containing NonGorR is nonempty. Since R = Rm is quasi-dominant by assumption, we see from Proposi-
tion 10.15(3) that the six sets in assertion (2) coincide with those in assertion (1). Thus we are done. ■
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Remark 10.18. Applying Corollary 10.17 to the set Φ = SingR and invoking Propositions 5.10 and
10.15(4), we recover [22, Theorem 7.10(2)], [46, Theorem 4.5(2)] and [59, Corollary 6.12].
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