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ABSTRACT. In this paper, we compare annihilators of Tor and Ext modules of finitely generated modules
over a commutative noetherian ring. For local Cohen—-Macaulay rings, one of our results refines a theorem
of Dao and Takahashi.

1. INTRODUCTION

Let R be a d-dimensional Cohen-Macaulay local ring. Let 0 < ¢ < d be an integer. In this paper, we
are mainly interested in the two ideals

tr(R) = ﬂannR Torf (M, N), e, (R) = ﬂannRExt%(M, N)

of R, where n > 0 is an integer and the intersections are taken over the integers ¢ > n, and the maximal

Cohen—Macaulay modules M, N that are locally free in codimension less than ¢. Namely, motivated

by [7, Theorem 1.1] which relates ed(R) and td(R) to the singular locus of R and the dimension of the

subcategory of maximal Cohen—Macaulay R-modules which are locally free on the punctured spectrum of

R, we investigate when ef (R) and t% (R) coincide (at least up to radical) in general. Our first main result

in this direction is the theorem below, which is included in Theorems 3.12(3), 4.6(2) and Corollaries 3.6,

4.4(2).

Theorem 1.1. The following assertions hold true.

(1) If R is either artinian or Gorenstein, then t(R) = €S (R).

(2) If R is either locally Gorenstein in codimension less than ¢ and admits a canonical module or a
complete equicharacteristic local ring with perfect residue field, then \/t%(R) = /5 (R).

Denote by mod R the category of finitely generated R-modules, and by CM¢(R) the full subcategory
of mod R consisting of maximal Cohen—Macaulay modules that are locally free in codimension less than
c. As an application of Theorem 1.1 we obtain the following result, which is the same as Corollary 4.11.

Theorem 1.2. Consider the following conditions.
(i) CM®(R) has finite dimension. (ii) hte¢(R) > c. (iii) ht t¢(R) > c.
(iv) R is locally regular in codimension less than c.
(1) The implications (i) = (ii) < (ili) = (iv) hold when R admits a canonical module.
(2) The implications (i) < (i) < (iii) = (iv) hold when ¢ = d.
(3) The implications (1) < (ii) < (iii) < (iv) hold when R is excellent, equicharacteristic and admits a
canonical module.

When n = 0, the main result of [7] (i.e. [7, Theorem 1.1]) asserts Theorem 1.2(2) minus the implication
(iii) = (ii), and Theorem 1.2(3) for ¢ = d under the assumption that R is complete and has perfect
coefficient field. Thus, Theorem 1.2 highly refines the main result of [7].

The organization of this paper is as follows. In Section 2, we state definitions and properties of
fundamental notions used in this paper. In Section 3, we explore annihilators of Tor and Ext modules
over a general commutative noetherian ring. In Section 4, we focus on annihilators of Tor and Ext
modules over a Cohen—Macaulay local ring.
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2. PRELIMINARIES
What we state in this section is used in the next sections. We begin with our convention.

Convention 2.1. Throughout the present paper, let R be a commutative noetherian ring. We assume
that all modules are finitely generated and all subcategories are strictly full. Denote by mod R the category
of (finitely generated) R-modules, and by CM(R) the subcategory of mod R consisting of maximal Cohen—
Macaulay modules (recall that an R-module M is called mazimal Cohen—Macaulay if deptth M, =
dim R, for all p € Suppyp M). We identify each R-module M with the subcategory {M} of mod R
consisting of M (since we assume all subcategories are strictly full, {M} denotes the full subcategory
of mod R consisting of those modules which are isomorphic to M). We denote by (—)* the algebraic
dual Hompg(—, R). Whenever R is a local ring, (—)" stands for the Matlis dual. Whenever R is a local
Cohen—Macaulay ring with a canonical module w, we denote by (—) the canonical dual Homp(—,w).

From now on, we state the definitions of notions used in the next sections together with a couple of
their basic properties.

Definition 2.2. Let X be a subcategory of mod R.

(1) We denote by add X the subcategory of mod R consisting of direct summands of finite direct sums
of modules in X'. Note that add R equals the subcategory of mod R consisting of projective modules.

(2) We denote by X the subcategory of mod R consisting of modules M such that there is an isomorphism
MeP=XaQ with P,Q € add R and X € X. We say that X is stable if X = X. Note that X = X,
so that X is stable. Also, add R and mod R are stable. o

(3) Suppose that R is a local Cohen—Macaulay ring with a canonical module w and that X is contained in
CM(R). We denote by X the subcategory of CM(R) consisting of maximal Cohen—-Macaulay modules
M such that there is an isomorphism M &1 =2 X & J with I,J € addw and X € X. We say that X
is costable if ¥ = X. Note that addw and CM(R) are costable.

Definition 2.3. For an R-module M, we denote by QM the (first) syzygy of M, that is, the kernel of an
epimorphism from a projective R-module to M. For n > 1 we inductively define the nth syzygy of M by
Q"M = Q(Q""tM), and set Q°M = M. The nth syzygy of M is uniquely determined up to projective
summands. For a subcategory X of mod R and an integer n > 0, we set Q"X = {Q"X | X € X}. We
say that a subcategory X of mod R is closed under syzygies if QX C X. Note that QX = QX = QX.

Definition 2.4. For an R-module M we denote by Tr M the (Auslander) transpose of M. This is defined
as follows. Take a projective presentation Pj ER Py — M — 0. Dualizing this by R, we get an exact

sequence 0 - M* — Fy — P; — Tr M — 0, that is, Tr M is the cokernel of the map f*. The transpose
of M is uniquely determined up to projective summands; see [1] for basic properties. For a subcategory
X of mod R, we set Tr X = {Tr X | X € X'}. We say that X is closed under transposes if Tr X C X. Note
that there are equalities Tr X = Tr X = Tr X.

Definition 2.5. Let ® be a subset of Spec R. We define the (Krull) dimension of ® by dim® =
sup{dim R/p | p € ®}.

Definition 2.6. For an R-module M we denote by NF(M) the nonfree locus of M, that is, the set
of prime ideals p of R such that the Ry,-module M, is nonfree. It is well-known and easy to see that
NF(M) is a closed subset of Spec R in the Zariski topology. We set Speco(R) = Spec R \ Max R and
call it the punctured spectrum of R. Note that an R-module M is locally free on Speco(R) if and only if
dim NF(M) < 0. For each n > 0, we denote by mod,, (R) the subcategory of mod R consisting of modules
M such that dimNF(M) < n. It is easy to see that mod,(R) is stable and closed under syzygies and
transposes. For an integer n > 0 we set CM,,(R) = CM(R) Nmod,(R). Note that CM,,(R) is stable and
closed under syzygies if R is Cohen—Macaulay.

Definition 2.7. An R-module M is said to be totally reflexive if Ext'y (M, R) = Ext’s(Tr M, R) = 0 for
all ¢« > 0. This is equivalent to saying that the canonical map M — M** is an isomorphism (i.e., M
is reflexive) and Ext’ (M, R) = Exth(M*, R) = 0 for all i > 0. Every totally reflexive module is the
syzygy of some totally reflexive module. If R is Cohen—Macaulay, then every totally reflexive R-module
is maximal Cohen—Macaulay. Also, R is Gorenstein if and only if every maximal Cohen—Macaulay R-
module is totally reflexive. For more details of totally reflexive modules, we refer the reader to [1, 4]. We
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denote by G(R) the subcategory of mod R consisting of totally reflexive modules. Note that G(R) is stable
and closed under syzygies and transposes. For an integer n > 0 we set G, (R) = G(R) N mod, (R), which
is stable and closed under syzygies and tranposes as well. If R is Gorenstein, then G,(R) = CM,(R).

Definition 2.8. Let R be a local Cohen—Macaulay ring with a canonical module w.

(1) For a maximal Cohen-Macaulay R-module M, we denote by UM the (first) cosyzygy of M, that
is, the maximal Cohen—Macaulay cokernel of a monomorphism to a module in addw. Cosyzygies
always exist: taking an exact sequence 0 — Q(MT) — R®" — M — 0 and dualizing it by w, one
obtains an exact sequence 0 — M — w®? — (Q(MT))" — 0 of maximal Cohen-Macaulay modules,
and then (Q(MT))T is the cosyzygy of M. For n > 1 we inductively define the nth cosyzygy of M by
UO"M = B(U" M), and set UM = M. Note that the nth cosyzygy of M is uniquely determined
up to direct summands that belong to addw. For a subcategory X of CM(R) and an integer n > 0,
we set "X = {U"X | X € X}. We say that X is closed under cosyzygies if DX C X.

(2) For a subcategory X of CM(R) we set XT = {XT | X € X}. Then

XTCX = XAl = x=2al
We say that X is closed under canonical duals if one of these equivalent conditions holds.

Remark 2.9. (1) Suppose that a subcategory X of mod R is closed under syzygies. Then for an exact
sequence 0 - M — P — X — 0 of R-modules with X € X and P € add R, one has M € X. The
converse holds if A" is stable.

(2) Suppose that a subcategory X of mod R is closed under transposes. Then for an exact sequence

P i) Py — X — 0 of R-modules with X € X and Py, P, € add R, the cokernel of f* belongs to X.
The converse holds if X' is stable.

(3) Let R be alocal Cohen-Macaulay ring with a canonical module w. Let X be a subcategory of CM(R).
Suppose that X is closed under cosyzygies. Then for an exact sequence 0 - X — I — M — 0 of
maximal Cohen—Macaulay R-modules with X € & and I € addw, one has M € X. The converse
holds if & is costable.

Now we recall the following notions from [6].
Definition 2.10. Let R be a local ring
(1) For a subcategory X of mod R, we put
|X| = add X, [X] =add({R}U{Q'X |i>0,X € X}).

(2) For subcategories X', Y of mod R, we denote by X oY the subcategory of mod R consisting of the
R-modules M which fits into an exact sequence 0 - X - M —Y - 0with X e XY andY € ). We
set Xx) =||X]|o]|Y|| and X e Y = [[X] o [V]].

(3) For a subcategory X of mod R and integer r > 1, inductively define |X|, and [X], respectively, as

follows.
0 ifr=0, 0 if r=0,
|X], = < |X) if r =1, [X], = ¢ [X] ifr=1,
| X oy X ifr>2, [X]r—10X if r>2.

(4) Let X be a subcategory of mod R. The radius (resp. dimension) of X, which is denoted by radius X
(resp. dim X&), is by definition the infimum of the integers n > 0 such that X C [G],41 (vesp. X =
[G]n+1) for some G € mod R. Similarly, the size (resp. rank) of X', which is denoted by size X' (resp.
rank X'), is defined to be the infimum of the integers n > 0 such that X C |G|,+1 (resp. X = |Gln41)
for some G € mod R. By definition, the radius, dimension, size and rank take values in N U {oc0}.
Moreover, since |X|, C [X], for all n > 1, it holds that dim X > radius X < size X < rankX. If X
is moreover resolving, then dim X < rank X.

3. ANNIHILATORS OVER A COMMUTATIVE NOETHERIAN RING

In this section we investigate annihilators of Tor and Ext over an arbitrary commutative noetherian
ring R. First of all, we give their definitions.
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Definition 3.1. Let &X', ) be subcategories of mod R, and let n > 0 be an integer. We set

T.(X,0) =P P P Torf(X,Y), E* X)) = P P Exti(X,Y).

i>n XeX YeEY i>n XeX YeY
We define the ideals T,,(X,)) and E"(X,)) of R by

T,.(X,Y) =anng T,(X,Y) = ﬂ ﬂ ﬂ anng Tor?(X,Y),

i>n XeXYey

E"(X,Y) =ampE"(X,Y) = (] [ () anngExty(X,Y).
i>n XeXYe)y
Note that if A" is closed under syzygies, T,,(X,)) = \xcx Nycy annr Torf, | (X,Y) and E"(X,)) =
MNxexNyeyanng Ext’;t(X,Y). We put T, (X) = T, (X, X) and E"(X) = E"(X, X).

Remark 3.2. Let X', ) be subcategories of mod R and n > 0 an integer. Then it is easy to observe that
Suppg(Tr(X,Y)) C V(Ta(X,Y)),  Suppg(E"(X,Y)) € V(E"(X,))).

As we will see in Remark 4.12(3), these inclusions are not necessarily equalities. Thus, it is not sufficient
to investigate the supports of the modules T,,(X,Y) and E"(X,)) to get the structure of (the radicals
of) the ideals T, (X,Y) and E"(X, D).

Let M, N be R-modules. We denote by Hom (M, N) the quotient of Hompg (M, N') by homomorphisms
M — N factoring through projective R-modules. We set Endp (M) = Homp (M, M). The following
lemma yields an isomorphism between Tor and Ext modules.

Lemma 3.3. For R-modules M, N one has an isomorphism Exth(Tr Q Tr QM, N) = Torl(Tr QM, N).

Proof. An exact sequence 0 — Exth(TrQ Tr QM, N) — Tori(Tr QM, N) — Homp(Exth(TrQM, R), N)
exists by [1, Theorem (2.8)]. As QM is 1-torsionfree ([1, Definition (2.15)]), we have Extk(Tr QM, R) = 0.
Thus the isomorphism in the lemma is obtained. |

Remark 3.4. Here is another proof of Lemma 3.3, which may be easier for the reader who is familiar
with Auslander’s approximation theory: There is an exact sequence 0 — QM Lp oM o

such that f is a left (add R)-approximation. An exact sequence Hompg(P, N) EiN Hompg(QM,N) —
Exth(TrQTrQM,N) — 0 is induced. We can verify that the image of f’ coincides with the set
of homomorphisms QM — N factoring through projective modules. We obtain an isomorphism
Exth(Tr Q Tr QM, N) = Hom(QM, N). Combining this with [13, Lemma (3.9)] deduces the lemma.

Using the above lemma, we obtain the following proposition on annihilators.

Proposition 3.5. Let X be a subcategory of mod R. Suppose that X is contained in Q(mod R), and
closed under syzygies and transposes. Then for all integers n > 0 and subcategories ) of mod R one has
Tn(X7y) = En(X7y)

Proof. Note that E"(X,Y) = E"(X,)Y) and T,(X,Y) = T,,(X,)). Replacing X by X, we may assume
X is stable. Any R-module M satisfies Tr'Tr M = M up to projective summands by [1, Proposition
(2.6)], which implies X = TrX. Let X € X. Then X is a syzygy, and hence it is 1-torsionfree by [1,
Theorem (2.17)]. Therefore X = QTrQTr X up to projective summands by [1, Theorem (2.17)] again.
As X is closed under syzygies and transposes, we get TrQTr X € X, and X € QX. Thus X = QX, and
X =Tr X = TrQX. There are equalities

(351) Tn(Xv y) = TO(QnX7 y) = To(X, y) = ﬂXEX,YE)} anng TOI‘{%(X, Y)a
(3.5.2) E"(X,Y) = E*(Q"X,Y) = E*(X,¥) = Nxex.yeyannr Extp(X,Y).
Using the equalities X = Tr QX = Tr Q Tr QX and Lemma 3.3, we observe that the last terms in (3.5.1)
and (3.5.2) coincide. [

The following corollary is a direct consequence of Proposition 3.5, which gives part of Theorem 1.1(1).

Corollary 3.6. Let n,t > 0 be any integers and let C be any subcategory of mod R. Then the equality
T,.(G:(R),C) = E"(G:(R),C) holds. In particular, T,,(CM(R)) =E"(CM(R)) if R is Gorenstein.
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The following example illustrates the usefulness of Corollary 3.6, where it is easy to compute the
annihilator of Tor, and hence we can conclude what is the annihilator of Ext.

Example 3.7. Let k be a field and consider the hypersurface R = k[x,y]/(2?). By virtue of [3, Propo-
sition 4.1], we have that

R, (‘T)v (l',y), (m,y2), (CL’, yg), ce

give a complete list of isomorphism classes of indecomposable maximal Cohen—Macaulay R-modules.
Among these, all the modules except (z) are locally free on punctured spectrum of R. We get

To(CMo(R)) = Mp>o Nar,vecmo(r) A0ER Tor;' (M, N) = Mhij>0 an0R Tory; (i, I;)
= ﬂh>07i2j>0 annp Torf([i7 I;) = ﬂh>0,i2j>0 annp Tor§+1(li7 R/I;),

where we set I; = (x,") for each i > 0. The minimal free resolution of the R-module I; is
py = 85) e G2) ey (G2)

For any integers ¢ > j > 0, a complex

R@Q REBQ

R®? - 0).

F(i)@r R/L; = (--- 5 (R/1})®* % (R/1;)®* % (R/1;)®? — 0)

is induced, which shows that Torf([i, R/I;) 2 H,(F(i) @ R/I;) = (R/I;)®? for all integers p > 0 and
i > 7 > 0. Thus we obtain

To(CMo(R)) = mh>0,i2j>0 annp(R/1;)%? = nj>0 Ij = (),

where the last equality is a consequence of Krull’s intersection theorem. Hence, by Corollary 3.6,
we obtain E°(CMg(R)) = (z). Note that indeed this can be obtained by a direct computation
for Ext without appealing to our Corollary 3.6, but the computation is more complicated; in the
above computation we use the general isomorphism Tory (I, 1;) = Tory, | (I;, R/I;), while in general
Ext}(I;, I;) 2 Extls™ (I, R/T;).

To prove our next proposition, we establish a lemma.
Lemma 3.8. Let M be an R-module. Then
To(M, mod R) = anng End p(M) = anng Ext (M, QM) = E°(M, mod R).

Proof. We call the four ideals (1), (2), (3) and (4) in order. Clearly, (3) contains (4). Let a be an element
of (3). Then the multiplication map M < M factors through a projective module by the proof of [9,
Lemma 2.14]. Hence M % M is zero in End (M), and so is the composition of any endomorphism of
M with M % M. Thus (2) contains (3). Let b be an element of (2). Then b -idy, is zero in End (M),
which means that the multiplication map M b M factors through a projective module. There is a
diagram M Lop 9 Mot homomorphisms of R-modules with P projective such that gf = (M 5 Mm ).
Applying Tor’*(—, N) and Ext’y(—, N) with i > 0 and N € mod R, we see that the multiplication maps
Tor® (M, N) LA Torf (M, N) and Ext’s(M, N) KA Exth (M, N) are zero as Tory (P, N) = Exth(P,N) = 0.
Thus (1) and (4) contain (2). There is an isomorphism End (M) = Tor’(M, Tr M) by [13, Lemma
(3.9)], from which we see that (2) contains (1). |

Now we obtain inclusions among annhilators of Tor and Ext.

Proposition 3.9. Let X, ) be subcategories of mod R. Assume that X is closed under syzygies and that
Y contains X. Then for any integer n > 0 one has

E™(X) = Nyex anng ExtHH (X, QLX)
= mXeX aHHRMR(QnX) = E"(X,y) - Tn(Xay) - Tn(X)~

If moreover Y contains Tr X, then one has the equality T, (X,Y) = E"(X,Y). So in particular, if X is
closed under syzygies and transposes, then E™"(X) = T, (X) holds.
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Proof. As Y contains X, the ideals E"(X') and T, (X) contain E"(X,Y) and T,, (X, ), respectively. Since
X is closed under syzygies, we have an equality E"(X) = [y x/cy anng Ext;T (X, X'), the right-hand
side of which is contained in I := (\y, anng Ext}™ (X, Q"F1X) as Q"+1X € X. Lemma 3.8 implies

I =Nyeranng Endp(Q"X) = Nycr E° (27X, mod R) = E"(X,mod R) C E"(X,)),
I =Nxerannr Endz(Q"X) € Nyer To(2"X, mod R) = T, (X, mod R) C T,,(X,)).
Now the proof of the first assertion of the proposition is completed.

Next we show the last assertion of the proposition. We already know that T,,(X,)) contains E" (X, )).
Let a € T,,(X,Y) and X € X. The assumption implies Q"X € X and Tr Q"X € Y. The isomorphisms

End;(Q"X) = Torf(Tr Q" X, Q"X) = Tor{ (Q"X, Tr Q" X) = Tor’, | (X, Tr Q" X)

hold, where the first isomorphism follows from [13, Lemma (3.9)]. The last term Torf_H(X7 TrQ"X) is
annihilated by the element a, and so is the first term End (2" X). It follows that T, (X,)) is contained
in MNycypanng Endp(Q"X) = E"(X, ). |

Remark 3.10. Proposition 3.9 also deduces Corollary 3.6 for those C which contain G;(R).

To derive our next annihilator relations, we need a lemma, generalizing [7, Propositions 4.5 and 4.6(1)].
Assertions (1) and (2) are shown similarly as in the proof of [7, Proposition 4.5], while (3) is deduced
analogously as in the proof of [7, Proposition 4.6(1)] by using (1) and (2) instead of [7, Proposition 4.5].

Lemma 3.11. Let R be a d-dimensional Cohen—Macaulay local ring. Let n > 0 be an integer.

(1) Let a € T,,(CMy(R)). Then a® Tor (M,N)=0 for alli >n+4d and M, N € mod R.
(2) Let a € E"(CMy(R)). Then a? “(a+1) Exto(M,N) =0 for alli > n+d and M, N € mod R.
(3) It holds that Sing R C V(T,,44(mod R)) N V(E""(mod R)) C V(T,,(CM(R))) N V(E"(CMy(R))).

Now we can prove the following theorem, which gives a Tor version of [7, Proposition 4.8], and contains
part of Theorem 1.1(2).

Theorem 3.12. Let (R,m, k) be a equicharacteristic, local Cohen—Macaulay ring of dimension d. Let
n > 0 be an integer. Let CMy(R) C X C Y be subcategories of mod R, where X is closed under syzygies.
Then Sing R = V(T,,(X,Y)) = V(E"(X,))), if one of the following three conditions is satisfied.

(1) R is excellent and n > 2d. (2) R is complete, k 1is perfect and n > d.
(3) R is complete, k is perfect and X C CM(R).
Proof. Applying Lemma 3.11(3) and Proposition 3.9 gives rise to inclusions Sing R C V(T,,(CMy(R))) C
V(T,(X,))) C V(IE”(X, Y)). It remains to show that V(E"(X,))) is contained in Sing R.
(1) V(E ) is contained in V(E?*?(mod R)), which is equal to Sing R by [9, Theorem 5.3].

(X, D)
(2) (E"( ,Y)) is contained in V(E%(mod R)), which is contained in Sing R by [12, Corollary 5.15].
(3) V(E™(X,))) is contained in V(E°(X,))), which is equal to Sing R by [7, Proposition 4.8]. |

)

4. ANNIHILATORS OVER A COHEN-MACAULAY LOCAL RING

In this section, we consider annihilators of Tor and Ext modules over a Cohen—Macaulay local ring.

Let M be an R-module. The trace ideal of M, denoted tr M, is defined by the image of the canonical
map Homg(M, R) ®g M — R given by f ® z — f(x). To prove the proposition below, we establish a
lemma.

Lemma 4.1. Let R be a d-dimensional Cohen—Macaulay local ring with a canonical module w. Let M, N
be R-modules. Let i > 1 be an integer. Suppose that N is mazximal Cohen—Macaulay.

(1) Lett be an integer with imNF(M) <t < d. Then one has
H;:O anng ExtCIl{j (Torﬁ_j (M, N),w) C anng Extg (M, NT),
[T}y anng Extf, 7 (Ext}™ 7/ (M, N),w) C anng Torf (M, NT).

Ift = 0, then anng Tor[ (M, N) = annp Ext%t (M, NT).
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(2) For any integer r > 0, one has
(trw)” - anng Ext’; ™ (N, Q"M) C anng Extly (N, M) D (trw)” - anng Ext}; (G"N, M).
Proof. (1) We have an isomorphism RHom (M ®% N, w) = RHompg (M, RHompg(N,w)); see [4, (A.4.21)].

Since N is maximal Cohen-Macaulay, we have Ext7;’(N,w) = 0, and RHomg(N,w) = NT. Hence
RHompg(M ®@% N,w) =2 RHomp (M, NT). This induces a spectral sequence

ES? = Exth(Tor} (M, N),w) = HP™ = Ext?"(M, N").

Clearly, EX? = 0 if p < 0 or ¢ < 0. As w has injective dimension d, we have that EY? = 0 if p > d. The
support of Toqu(M, N) is contained in NF(M) if ¢ > 0. Local duality ([2, Corollary 3.5.11(a)]) shows
that EE? =0 if ¢ > 0 and p < d — t. The filtration induced from the spectral sequence is

H = = HH DHYH D DHJY DHI =+ =0
with H4t /Hg+§.+1 = E4 91 for each 0 < j < t. In general, EP? is a subquotient of EP?, for all

p, q,7, and hence annp E2? contains anng EL? for all p, ¢. The filtration shows that Hz':o annp Eg_j’“'j C
Hﬁ':o anng B9 C anng H¥H. The first inclusion in the assertion follows from this. The second
inclusion is deduced by a dual argument. Namely, since w has finite injective dimension, we have an
isomorphism RHompg(RHompg(M, N),w) = M ®% RHompg(N,w); see [4, (A.4.24)]. As N is maximal
Cohen—Macaulay, we get RHompg(N,w) = NT and RHomz(RHompg(M, N),w) & M®@%NT. This induces
a spectral sequence

EbY = Ext? (Ext (M, N),w) = HP* =Tor® _ (M,NT),

andqu—Oif()p<O or (ii) ¢ > 0, or (111)p>d or (iv) ¢ <0 and p < d—t. A filtration H™ f=.. =
H',2H ', ;22 H,;" D HJfH = .- =0 is induced, where Hy* ,/H;" | = = B4/ =4=+J for each
0 < j <t. This shows H 0 annREd Jd=iti H OannREd J=d=iti C anng H".

Now let ¢ = 0. The first spectral sequence yields Ext%(Torf (M, N),w) = ExtG™ (M, NT). As M is
locally free on Speco(R), the R-modules Tor;' (M, N), Ext% (M, Nt) have finite length. By [2, Corollary
3.5.9], we get

Ext& (M, NT)Y = Exth(Torl (M, N),w)" = H% (Tor; (M, N)) = Torf(M, N).
Hence annpg Tor (M, N) is equal to anng Extd“(M NT)V, which coincides with anng EX‘L?‘%M7 NT) by
[2, Proposition 3 2.12(c)].

(2) For each j > 0 there is an exact sequence 0 — Q1M — R®™i — QM — 0, which in-
duces an exact sequence Ext’i’(N, R)@mﬂ — Ext% (N, QM) — Ext 7T (N, Q' M). By [5, The-
orem 2.3], the ideal trw annihilates Extl (X, R) for all I > 0 and X € CM(R). It is observed that
(trw) - anng Exti T (N, Q71 M) C anng Ext'f? (N, Q7 M), and hence

(trw)” - anng Ext>H (N, Q"M) C (trw)"~! - anng Ext,H (N, Q"1 M)
C .- C (trw) - anng Ext' (N, QM) C anng Ext’h (N, M).
It is also seen from [5, Theorem 2.3] that trw annihilates Extly(w, X) for all I > 0 and X € mod R. A

dual argument using this and exact sequences 0 — U/IN — w®% — U/t'N — 0 shows the inclusion
(trw)” - anng Ext’l;™ (0" N, M) C annp Ext (N, M). [

We can now prove the following proposition, which is an essential part of the theorem stated below.

Proposition 4.2. Let R be a d-dimensional Cohen—Macaulay local ring with a canonical module w. Let
X, Y be subcategories of mod R with Y C CM(R). Let n > 0 be an integer.

(1) Let 0 <t <d be an integer. If X is contained in mod¢(R), then
(Tu(X, V) CET (2,00, B (X, ) C T (X, D),

and the equalities hold when t = 0.
(2) For each integer r > 0 one has an inclusion

(trw)" -E (P, Q°X) CE™"(V, X) D (trw)" -E T (U"Y, X).



8 SOUVIK DEY AND RYO TAKAHASHI

Proof. (1) Fixi>n,0<j<t¢ M e X and N € ). Note then that dim NF(M) < .
Take any element a; € T, (X,)). Since i + j > i > n, the element a; belongs to anng Torﬁj (M, N),

which is contained in anng Extf{j (Torﬁj (M,N),w). The first inclusion in Lemma 4.1(1) yields
ag---ap € H?:o anng Ext?{_j(Torﬁ_j (M, N),w) C anng ExtL (M, N1).

Aswefixi>n, M € X and N € Y, we get ag - - - a; € BT (X, Y1), Thus (T, (X, Y))+! € B4 (x, yh.
The other inclusion is similarly deduced. Pick a; € BT/ (X, )). Asd+i—j>d+i—t>d+n—t,
we have a; € annp Extil;z_] (M,N) C annp Ext%_J (Ext;j;z_j (M, N),w). The second inclusion in Lemma
4.1(1) implies
ag---ap € H;:O anng Ext?{j(Extf{H_j (M, N),w) C anng Torl*(M, NT),

and hence aq - - - a; € T,, (X, Y1). Therefore, the inclusion (E*" (X, Y))i+! C T, (X, Y1) follows.
When ¢ = 0, the equality T, (X,)) = E*"™(X, Y1) follows from the last assertion of Lemma 4.1(1).
Replacing Y with YT, we see that the equality T, (X, V) = E4T™ (X, ) also holds'.
(2) The assertion immediately follows from Lemma 4.1(2). [

Here are two immediate consequences of the above proposition.

Corollary 4.3. Let R be a d-dimensional Cohen—Macaulay local ring with a canonical module. Let n > 0
be an integer. Then T, (CMy(R)) = E“T(CMo(R)) if R is locally Gorenstein on Speco(R).

Proof. Since R is locally Gorenstein on the punctured spectrum, CMg(R) is closed under canonical duals,
that is to say, (CMg(R))" = CMy(R). Let t = 0 and X = ) = CMy(R) in Proposition 4.2(1). [

Corollary 4.4. Let R be an artinian local ring. Let n > 0 be an integer.

(1) Let X, be subcategories of mod R. If Y is closed under Matlis duals, then T, (X,Y) = E"(X,)).
(2) There is an equality T, (mod R) = E"(mod R).

Proof. Letting d =t = 0 in Proposition 4.2(1) yields the assertion. |
To state our theorem below, we recall the definition of the non-Gorenstein locus of R.

Definition 4.5. We denote by NonGor(R) the non-Gorenstein locus of R, that is, the set of prime ideals
p of R such that the local ring R, is non-Gorenstein. If R is a Cohen-Macaulay ring with a canonical
module w, it holds that NonGor(R) = NF(w) = V(trw) (see [8, Lemma 2.1]).

Now we can state and prove the theorem below. The second assertion contains part of Theorem 1.1(2).

Theorem 4.6. Let R be a d-dimensional Cohen—Macaulay local ring with a canonical module w. Let
n >0 and 0 <t <d be integers.
(1) Let X be a subcategory of CMy(R). Let Y be a subcategory of CM(R) closed under canonical duals.
Assume either that Y is closed under syzygies or that X is closed under cosyzygies. Then
(trw)® (To (X, 2)F CE"(X,Y),  (E"(X,Y)"" € T (X, ).

(2) If dim NonGor(R) < t and CMy(R) C X C CM,(R), then \/T,(X,CM;(R)) = /E"(X,CM,(R)).

Proof. (1) First of all, since ) is closed under canonical duals, we have Y = )T.
The following argument deduces the first inclusion in the assertion.

(2)
(trw) - (Ta (X, V))* C (trw)? - ET(X, )
(g) (trw)® - E4F"(X, Q%)) if Y is closed under syzygies, (&) E" (X, )
(trw)® - EF™(GX,Y) if X is closed under cosyzygies — o

Here are the reasons why (a)—(c) hold. (a): Applying Proposition 4.2(1), we have an inclusion
(T, (X, ) C E”H'"(X,y). (b): If Y (resp. X) is closed under syzygies (resp. cosyzygies), then

IThese two equalities can also be deduced from the inclusions given in the first part of Proposition 4.2(1). In fact, letting
t = 0 yields Ty, (X,Y) C E¢tn(x, Y1) and B4t (X, V) C T, (X, YT). Then replace Y with V1.
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QY (resp. UX) is contained in Y (resp. X), and hence E**"(X,Y) is contained in E4T"(x, Q%)
(resp. ¥ (059X, Y)). (c): Use Proposition 4.2(2).

Next we show the second inclusion in the assertion. Since d — ¢ > 0, the ideal E"(X,)) is contained
in the ideal E**"~!(X, ), whose (¢ + 1)st power is contained in T, (X, )) by Proposition 4.2(1).

(2) When d = 0, we have t = 0 and X = CM(R) = mod R. By Corollary 4.4(2) the assertion holds.
Hence we assume d > 0, so that we get equalities V((trw)?) = V(trw) = NonGor(R).

We claim that for each maximal Cohen-Macaulay R-module M there is an inclusion

NF(MT) € NF(M) UNonGor(R).

Indeed, if p is a prime ideal of R which does not belong to NF (M) U NonGor(R), then both M, and w,
are Ry-free, and so is (MT),.

Combining this claim with the assumption dim NonGor(R) < t, we observe that CM;(R) is closed
under canonical duals. The subcategory CM;(R) is always closed under syzygies. Applying (1) to X and
Y := CM,(R), we get the first line below, which yields the second.

(trw)? - (To (X, CMy(R)))"™* C E™(X,CM(R)), (E™(X,CM,(R)))** C T, (X,CM,(R)).
V(E™(X,CM,(R))) € NonGor(R) U V(T, (X,CM(R))), V(T,(X,CM;(R)))C V(E"(X,CM(R))).

There are inclusions NonGor(R) C Sing R C V(T,,(CMy(R))) € V(T,(X,CM(R))), where the second
one follows from Lemma 3.11(3). Hence V(E" (X, CM(R))) is contained in V(T,,(X,CM;(R))). Now we
obtain the equality V(E"(X,CM;(R))) = V(T,,(X,CM;(R))), which completes the proof. |

A natural question arises.

Question 4.7. Let R be a Cohen—Macaulay local ring. Does the following equality always hold?
(4.7.1) To(CMo(R)) = E°(CMo(R)).

Theorem 4.6(2) and Corollaries 3.6, 4.4 guarantee that (4.7.1) holds if R is either Gorenstein or
artinian, and holds up to radical when R is locally Gorenstein on the punctured spectrum. Corollary 4.3
says that, when R is locally Gorenstein on the punctured spectrum, (4.7.1) is equivalent to the equality
E°(CMy(R)) = E*(CM(R)), where d = dim R. We do not know any counterexample to (4.7.1). Below,
we give a simple class of examples which supports (4.7.1).

Example 4.8. Let k be a field, and consider the numerical semigroup ring R = k[t",t"1 ... 2"~1]
with n > 1. Then R is a 1-dimensional local domain. In particular, R is Cohen—-Macaulay and satisfies
CMy(R) = CM(R). Also, R is non-Gorenstein if n > 3, and has infinite Cohen-Macaulay representation
type if n > 4 by [10, Theorem 4.10]. The conductor of R clearly coincides with the maximal ideal m of
R, which is contained in E°(CM(R)) by [12, Proposition 3.1]. Note that To(CM(R)) # R unless R is
regular. By Proposition 3.9, we get E°(CM(R)) = To(CM(R)) = m for all n > 2.

We denote by Sing R the singular locus of R, that is, the set of prime ideals p of R such that R, is
singular. Note that R has an isolated singularity if and only if dim Sing R < 0.

To give our final result in this paper, we need to verify that [6, Theorem 5.11(1)] holds for an arbitrary
excellent Cohen—Macaulay local ring containing a field and admitting a canonical module, and that the
implication (b) = (a) in [7, Theorem 1.1(1)] holds even if we replace E?(CMq(R)) with E"(CMg(R)).

Proposition 4.9. (1) Let R be a d-dimensional excellent equicharacteristic local ring.
(a) The subcategory 22¢(mod R) of mod R has finite size and radius.
(b) Suppose that R is Cohen—Macaulay and admits a canonical module. Then the subcategory CM(R)
of mod R has finite rank, size, dimension and radius.
(2) Let (R,m,k) be a d-dimensional local Cohen—Macaulay ring. Let n > 0 be an integer. Suppose that
the ideal E"(CMo(R)) of R contains some power of m. Then R has an isolated singularity, and
CMy(R) = CM(R) has finite rank, size, dimension and radius.

Proof. (1a) We modify the proof of [6, Theorem 5.7]. Replace “d”, “d —1” and “QrM” with “2d”,
“2(d—1)” and ¢ Q%M ” respectively. Then it proves the assertion. Indeed, the assumption of [6, Theorem
5.7] that R is complete and has perfect coefficient field is used only to apply [12, Corollary 5.15] to find
an ideal J of R which satisfies Sing R = V(J) and annihilates Ext%"* (M, N) for all R-modules M, N (in
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the case where R is a singular domain with d > 0). By virtue of [9, Theorem 5.3], there is an ideal J’ of
R which satisfies Sing R = V(.J') and annihilates Ext% (M, N) for all R-modules M, N.

Here is the flow of the proof. We use induction on d, and the case d = 0 follows by the original argument.
Let d > 0. As in the original argument, we may assume that R is a singular domain. Take .J’ as above,
and find an element 0 # x € J'. Put N = Q%M. Then z is N-regular. As in the original argument, N

is a direct summand of Qp(N/zN), and N/zN 2= Q31 (03,M/203M) € O3/ ) (mod R/xR).

(1b) We modify the proof of [6, Corollary 5.9]. Replace “d” with “2d” in it, and apply (1a) instead of
[6, Theorem 5.7]. Then we observe that [6, Corollary 5.9] remains valid for any excellent equicharacteristic
local ring. Combining this with [6, Proposition 5.10] deduces the assertion.

(2) (i) We first deal with the case where R admits a canonical module. Using Lemma 3.11(3), we have
Sing R C V(E"(CMg(R))) C {m}. This particularly says that R has an isolated singularity, and hence
CMy(R) = CM(R). Similarly as in the proof of [7, Proposition 6.1(2a)], we observe that there exists an
integer r > 0 such that Q"(CM(R)) C |Q%],. An analogous argument as in the proof of [6, Corollary
5.9] yields that CM(R) C [Q%k & W |, (1) for some W € CM(R). We obtain CM(R) = [Q%k & W |, (41),
which shows that CM(R) has rank less than r(n + 1).

(ii) Now, let us handle the general case when R may not possess a canonical module. By assumption,
E"(CMg(R)) contains m” for some h > 0. Fix i > n and X,Y € CM, (ﬁ), where R is the completion
of R. By [11, Corollary 3.3], there exist M, N € CMg(R) such that X, Y are direct summands of M,N
respectively. Hence Ext%(X ,Y') is a direct summand of Ext%(l\//f N ), which is annihilated by (mﬁ)h. Thus

E"(CMg(R)) contains (mR)". As R admits a canonical module, it follows from (i) that R has an isolated
singularity, and CMg(R) = CM(R) has finite rank, size, dimension and radius. It is an elementary fact
that having an isolated singularity descends from R to R, and we have CMy(R) = CM(R). An argument
similar to the one done at the end of [6, Theorem 5.11(2)] shows that CM(R) has finite rank. Hence
CM(R) has finite dimension, size and radius as well. [

Remark 4.10. Proposition 4.9(1a) refines the latter statement of [9, Theorem 5.3, which asserts that
the subcategory Q2%¢(mod R) of mod R has finite size.

As an application of Theorem 4.6, one can refine the main results of [7]. More precisely, it is asserted
n [7, Theorem 1.1 and Corollary 7.2] that among the four conditions (a)—(d) given in the corollary below,
(A) the implication (a) = (d) holds,
(B) the implications (a) < (b) = (c) = (d) hold for ¢t = 0, and
(C) the equivalences (a) < (b) < (c) < (d) hold for ¢t = 0 provided that R is complete and has perfect
coeflicient field.

When R admits a canonical module, by using Theorem 4.6(2) we can improve the above statements (A),
(B), (C) as follows.

Corollary 4.11. Let R be a d-dimensional Cohen—Macaulay local ring. Let n > 0 and 0 < t < d be
integers. Consider the following conditions.

(a) dimCM(R) < co. (b) dim V(E"(CM(R)))
(c) dim V(T,(CM(R)))
(1) a) = (b) = (¢) = (d) hold.
(2) The equivalence (b) < (¢) holds when R admits a canonical module.
(3) The implications (a) < (b) < (c) = (d) hold when t = 0.
(4) The equivalences (a) < (b) < (¢) < (d) hold when R is excellent, equicharacteristic and admits a
canonical module.

<t
<t. (d) dimSing R <t.

The implications (
(

Proof. (1) It follows from Proposition 3.9 that (b) implies (c). The assertion that (c¢) implies (d) follows
from the inclusions Sing R C V(T,,(CMy(R))) C V(T,,(CM¢(R))) by Lemma 3.11(3). Let us prove that
(a) implies (b). Note that the set V(E"(CM,(R))) is contained in V(E°(CM;(R))). It suffices to show that

V(E°(CM,(R))) has dimension at most t. We make a similar argument as in the proof of [7, Proposition
6.1(1a)]. Write CM¢(R) = [G], with G € CM(R) and r > 0. We have

V(E°(CM(R))) = V(E°(G,CM(R))) C V(E’(G, mod R)) = NF(G)
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by [7, Lemma 5.3(1) and Proposition 5.1(1)]. It follows that the dimension of V(E°(CM,(R))) is at most
the dimension of NF(G), which is at most ¢ since G € CM(R).
(2) Suppose that (b) (resp. (c)) holds. Then it follows from (1) that (d) holds, i.e., dim Sing R < t.
Since NonGor(R) C Sing R, we get dim NonGor(R) < ¢. Hence (c) (resp. (b)) holds by Theorem 4.6(2).
(3) Let t = 0. Proposition 4.9(2) shows that (b) implies (a). Due to (1), we only need to prove that (c)
implies (b). So assume that (c) holds. Then T, (CM((R)) contains some power of m. A similar argument

~

as in (ii) in the proof of Proposition 4.9(2) done for Tor instead of Ext shows that T,,(CMg(R)) contains a
power of the maximal ideal mR of the completion R of R. Lemma 3.11(3) implies that R has an isolated
singularity, and so does R. Hence CMg(R) = CM(R) and CMy(R) = CM(R). Since R admits a canonical
module, it follows from (2) that E"(CM(R)) contains (mR)" for some h > 0. Then it is easy to observe
that E"(CM(R)) contains m”, and (b) follows.

(4) Suppose that R is excellent and equicharacteristic. Then Proposition 4.9(1b) shows dim CM(R) <
oo. If (d) holds, then CM;(R) = CM(R) and (a) follows. Combining this with (1) completes the proof. W

Remark 4.12. (1) In view of (3) of Corollary 4.11, it is natural to ask whether (b) implies (a) for ¢ > 0.
It seems to be quite nontrivial even in the case t = d > 0. Indeed, in this case, (b) automatically
holds and CM,(R) = CM(R). We do not know in general whether CM(R) has finite dimension when
R is not equicharacteristic, even if we assume that R is complete and has an isolated singularity.

(2) Making an analogous argument as in its proof, one actually obtains a more general statement than
Corollary 4.11(1):

Let X, Y be subcategories of mod R. Suppose that A has finite dimension and is contained
in mod;(R). Then V(To(&,Y)) and V(E°(X,))) have dimension at most .
This is a generalization of [7, Proposition 6.1(1a)]; letting ¢t = 0 recovers it.

(3) Let (R, m) be a local ring not having an isolated singularity, and let n = 0 and X = Y = CMy(R).
Then no nonmaximal prime ideal of R belongs to the supports of the modules T,,(X,Y) and E"(X, ),
while neither T,, (X, V) nor E"(X,Y) is m-primary by Corollary 4.11(1). Hence we get strict inclusions

SuppR(Tn(va)) g V(Tn(xvy))v SuppR(En(X,y)) g V(En<va))
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