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Numerical calculations have been done for the formation process of axisymmetric, rotating
supermassive black holes. Polytropic distribution with N =3 is used as the initial density
distribution. Calculated models are characterized by the total angular momentum (/) and the
rotation law. The two types of the initial rotation law are examined. As the effect of rotation
is the strongest at the center for the differential rotation law case, the matter distribution
becomes disk-like. In this case, if g=(J/M?)<0.92 an apparent horizon is formed. If ¢4=0.92,
the disk-like matter expands toward the lateral direction. For the almost rigidly rotating case,
the oblate shape core is always formed because the effect of rotation at the center is not so
strong as the former case. In this case if ¢<1.05 an apparent horizon is formed. For large g,
for example ¢=1.46, the central core bounces and a jet which expands mainly along the
rotational axis appears. For the collapse of 109M® star, the kinetic energy of the jet becomes
3.6 X10°° ergs, which is comparable to the total energy stored in the radio lobes of the extra-
galactic double radio sources.

§1. Introduction

High spatial and spectral resolution observations of Nell (12.8 #m) emission
by Lacy et al.”’ showed that there is a mass of ~8X10°Mg within the central
1pc of the Galaxy. Young et al.” measured the surface brightness of the
peculiar elliptical radio galaxy M87 and concluded that all of the existing data
are well fitted by a King model containing a central black hole with M=5x10°M .
Similar observation of NGC6251 by Young et al.¥ showed that there may
be a black hole of mass 2.4xX10°Me in the central part of NGC6251. These
observations strongly suggest that the supermassive black holes do exist in the
central part of the galaxies.

As a theoretical model of quasars and active galactic nuclei, Lynden-Bell¥
proposed the accretion disk around the supermassive black hole. This model has
been developed by many authors.” Spitzer and collaborators® proposed the
dense stellar system as a model of quasars. Concerning this model, contrary to the
suggestion that the collisionally liberated gas condenses into a ‘new’ main sequence
stars, Begelman and Rees” have shown that the ultimate fate of the dense stellar
cluster is an amorphous supermassive cloud which will eventually collapse or
undergo a nuclear explosion. The other important model of quasars is a super-
massive star proposed by Hoyle and Fowler.® The binding energy of the spheri-
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cally symmetric supermassive star (~10°Mg) is very small (~1Mgc?). Such
a star begins to collapse by the general relativistic effect for R<3.4X10" cm.
Rotation and/or magnetic fields are needed to stabilize the supermassive
stars. However large rotation causes the rotational instability.” After losing
the angular momentum, the magnetoids'” and the spinars'’ will eventually
collapse. Thus in all of the models of quasars and active galactic nuclei, there
is a phase in which a supermassive cloud, presumably a rotating one, collapses to
a black hole or undergoes a nuclear explosion.

The general relativistic collapse of a non-rotating supermassive star was
studied by Matsuda and Sato.’” As for the rotating case, there were the follow-
ing two works. Wilson'® has simulated collapses of rotating, magnetized super-
massive stars by using a semi-general relativistic code in which the time deriva-
tives of metric tensors are neglected. Fricke'* has examined the dynamical
evolution of rotating supermassive stars using the approximate virial equation.
He found gigantic bounces of stars with M ~10°M g and an energy production up
to 10%°ergs. However, in this case the minimum radius becomes almost the
Schwarzschild one. This means that his approximation is invalid, and a fully
general relativistic treatment is needed.

As for the general relativistic collapse of rotating stars, Nakamura et al.'®
proposed a new method including the [(2+1)+1]-formalism of the Einstein
equations. Using this method, one of the present authors (T.N.)'® has calculated
the general relativistic collapse of rotating stars with 10Mg (Paper I). His
code is a fully general relativistic 2D code. No approximation other than the
finite difference method is used in it. He found that, ¢ being defined by ¢ = [the
total angular momentum/( GM¢*/c)], a black hole is formed if ¢<0.95 and it is not
if g=0.95.

In this paper, we examine the ultimate fate of the collapsing, rotating
supermassive stars using the computer code made by one of the authors(T. N.).
In § 2, we show the initial conditions and the coordinate conditions. We will
show neither the basic equations nor the finite difference method. The former
can be found in Paper I. As for the latter, the basic ideas are written in Paper
I. The details of the finite difference will be published elsewhere.!” In § 3,
numerical results are shown for various values of ¢ and two types of the rotation
law. In §4, we give a few discussions and astrophysical implications of the
numerical results.

§ 2. The initial conditions and the coordinate conditions
We adopt the cylindrical coordinates (R,Z,¢). We assume the system is

axially symmetric and is plane symmetric about Z=0 plane. In this case full
Einstein equations in the [(2+ 1)+ 1]-formalism can be found in Paper I. We use
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z(=R?) and y(=Z?) as in Paper I. For simplicity we neglect a nuclear reaction
and energy loss by photons and neutrinos. Units of mass, length and time are
taken as

M=Ms, L=GMz/c* and T=GMs/c, (2:1)

respectively, where M5 is the total rest mass of baryon.

1) [Initial conditions

In Paper I, we assumed that there is no poloidal motion at #=0. In this
paper we take account of the poloidal motion. If we use the conformal approach
of O'Murchadha and York," we can easily write down the initial value equations,
namely, the constraint equations at /=0. As in Paper I, we assume that the
initial 3-space metric is conformally flat, that is,

?’ij:¢4(7’ij)f1at . (2'2)

The trace and the transverse-traceless part of the extrinsic curvatures are
assumed to be zero. Then the extrinsic curvatures ( K;;) can be expressed by the
3-space vector (WF, W7* W?) as follows:

Ke®=(2/3(w*+ 4x0:00" — w? — 2y0,w?),
KA=(2/3)Quw*+ 4yo,uw? —2w* —2x6,w"),

Ko =(2/3)(w" —2x0w" — w? —2yd,w?), (2-3)
ki’ = K% IR/Z = 2(8yuw™ + 007),
Kf=2Ro0. W?*
and
K =2Z0,W7,
where

wf=WZ*/R and w?’=W7*/Z.

Let ou, Jo, Jr and Jz be the energy density, the angular momentum density,
the momentum density in R-direction and the momentum density in Z-direction
measured by the normal line observer whose four velocity is the normal vector to
the #=constant hypersurface, respectively. The initial value equations become,

a) the Hamiltonian constraint equation,
4(02P + x0220) T 2040 + 4ydyyd

=—27(oup®)p ' — *x{x(0W*)+3(d»W*)*}

BB LR+ (K V(B + 2 (), (2:4)
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b) the angular momentum constraint equation,
(84 24xp ' 02¢) 0 W+ 410 W*
+(2424yp 10y )0y W P +4yd, W =8nJpx ™", (2-5)
¢) the momentum constraint equation,
(16x/3)0xxt0® +4y0uuw® +(32/3+32x¢ ™1 02¢) dxr0®
+(2+24ydp 0y0) Oyu® + 8¢ 'z +(4/3) ydryur®
+(2/3+24y¢ 1 0yp ) 0xw” — 8yd 1 0:pOyw” — 8¢ OrPp”
=87/Jx/R, (2-6)
and
42x022w%+ (16/3) ydywrw” + (4 +24x$ ™ 02¢) 02t”
+(8+32yp " 0y¢) Dy’ + 1667 dypur”®
+(4/3) x0zyw® — 161 ' 0y PO ™ + (4/3+ 24xd ' 02 ) Dy ®
—16¢7 " 0ypuw " =8xJ:/Z. (2-7)

The method of solving Egs. (2-4) and (2-5) is shown in Ref. 15). Equations (2-6)
and (2-7) can be solved easily by the S.0.R. (Successive Over Relaxation) method.

Let os(7) and 7 be the density distribution of N =3 polytrope and an initial
radius of a star, respectively. We use the following initial conditions:

o [03(7) for »=ps (10"°0s(0)),
pud _{10’603(0) for >3 (107%03(0)), (2-8)
ouCyv for »< ro,
= 7 Z: -
J/R=J/ {pquexp(l—(r/ro)z) for »> o, (2:9)
and
Jo = x0u820exp(— Cox/r0%), (2-10)

where Cv, £ and C, are the constants which determine the initial infall velocity,
the initial central angular velocity and the rotation law (the distribution of the
angular momentum), respectively. As we can see from Eq.(2-8), there is a low
density envelope outside the star. However, in the actual numerical calculations,
the total mass of this envelope is smaller than 107*9% of the total mass of the star.
Therefore the contribution of this envelope to the collapse is negligible.

As an equation of state, we use

P=(1/3)pe, (2-11)
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where P, p and ¢ are the pressure, the proper mass density and the internal
energy density per gram, respectively. Initial distribution of ¢ is taken as

E:Kpm. (2_12)

Now, 7, Cv, £0,Ce, and K determine the initial conditions uniquely. In all the
calculated models, 7 is 14.5 and Cv is chosen so that the infall velocity at » = #o
becomes the free fall velocity. Instead of £, and K, we use J and U defined by

] = Erot/‘Egrav| and U= Eint/|Egrav|, (2' 13)

where Erot, Eint and Egrav are the rotational energy, the internal energy and the
gravitational energy of the star, respectively. (See Paper 1.) We use one more
parameter ¢, which corresponds to |a|/M in a Kerr black hole. ¢ is defined by

g =ltotal angular momentum|/( GM:*/c), (2-14)

where M¢ is the gravitational mass.
As the rotation laws, we use two Co,'s as
a) Rotation law A; Ceo=2,
b) Rotation law B; C,=10.
In Fig.1, we show the two rotation laws (the solid lines) and ps:(R) (the dashed
line). We can see that in the rotation law A, the angular frequency (£2) drops
considerably only at very low density region.

2)  Coordinate conditions

The shift vector is taken to be zero. Therefore the coordinate line agrees
with the normal line of {—constant
hypersurface. As for the lapse function,
the maximal slicing condition is used in
almost all of the numerical calculations.
Some of the models have been re-
calculated by using the hypergeometric
slicing condition defined in Paper 1.

1.0

Rotation law A

0.5 Rotation
\ law B
\
\
\\ Fig.1. The rotation laws used in the numerical
\ calculation. The solid lines show the distribu-
tion of angular frequency (£) (defined by £
=exp{— CeR*/n”)) for two values of Co; Co
01r =2 for the rotation law A and C,=10 for the

L R/ro rotation law B. The dashed line shows the
03 06 09 density distribution of N =3 polytrope (ps( R)).
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§ 3. Numerical results

In Table I, the initial parameters of each model are shown. Since the models
are characterized mainly by ¢ and the rotation law, we use them as a name of
each model. For example, Al46 means the collapse of the rotating supermassive
star with ¢=1.46 and the rotation law A. The sixth column () in Table I is the
ratio of the centrifugal force to the gravitational force at the center. All the
calculated models have almost the same internal energy though it is slightly
different because o is given to construct the initial data. The number of grids
is 28x28. The coordinate of the outermost grid point is (25,25). In Paper I,
some of the models were calculated by using 42X 42 grids. However the numeri-
cal results have been found to be almost the same as those by 28 X28 grids.

1) Rotation law A

In this rotation law, the centrifugal force has a maximum value at R =0.35s
where p3(R) is less than 0.10s(0). (See Fig. 1.) This means if the mass shedding
occurs, it will occur from the outer part of the star. In the following, we show
the details of the numerical results of the three typical models.

a) Model A50

Table 1. The initial parameters of each model. The name of each model comes from the value of
¢ and the rotation law. For example, A146 means that the collapse of the rotating supermassive
star with ¢=1.46 and the rotation law A. The sixth column (p) is the ratio of the centrifugal
force to the gravitational force at the center. p is defined by p=3%2¢%/470¢";—0. In the
seventh column whether an apparent horizon is formed or not is shown.

Model Apparent")
Name a4 v 7 < ? Horizon?
Al46 1.46 0.94 0.77 0.32 0.76 NO
A122 1.22 0.86 0.51 0.27 0.50 NO
Al105 1.05 0.84 0.37 0.23 0.36 YES
A 93 0.93 0.82 0.29 0.20 0.29 YES
A7 0.75 0.82 0.19 0.16 0.18 YES
A 50 0.50 0.81 0.08 0.11 0.08 YES
B143 1.43 1.01 1.20 0.76 4.22 NO
Bi21 1.21 0.88 0.76 0.63 2.86 NO
B104 1.04 0.84 0.54 0.54 2.08 NO

B 92 0.92 0.82 0.42 0.48 1.60 YES®
B 74 0.74 0.81 0.27 0.38 1.03 YESb)
B 51 0.51 0.81 0.12 0.25 0.45 YES

a) The method of determining an apparent horizon is shown in Ref.19).

b) If we use the maximal slicing, no apparent horizon is identified. If we use the hypergeometric
slicing defined in Paper I, the apparent horizon is identified. For details see the text.
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In this model, the rotation is very slow. At #=0, J is 0.08 and the centrifugal
force at the center is only 8% of the gravitational force. (See Table 1.) At ¢
=(.287, the matter distribution is almost spherical and the velocity pattern shows
the spherical collapse. (Fig. 2(a)) This feature is kept through the entire time up
to when the apparent horizon is formed.(Fig. 2(b)) Although the matter distribu-

Time =2.87E-01 Time =1.86£ + 01
V4 OMAX=0.162£-01 VELMAX=0.307E+00 Z QMAX=0.125£+01 VELMAX=0.372E + 01
/ LI A | ¥ N 2 “

8. (b)

IS

:040040 LN

8.

6. 8. R

Fig. 2.(a) Contour lines of Q. at =10.287 for A50. The space integral of ©» becomes
Mg, that is, 27/%=/3 QuRdRdZ = Ms. The precise definition of @, can be found in
Paper I. Each line corresponds to @»=QMAX-10""” for n=1,2,---,11. QMAX
is shown in the figure. Arrows show the vector ( J#/Qs, J-/Qs). The maximum
of this vector is shown in the figure as VELMAX.

(b) The contour lines of @, for A50 at t=18.6. The notations are the same as
Fig. 2(a). The dashed line shows the apparent horizon.

tion becomes slightly oblate by the effect of rotation, all the matter will be
swallowed into the slowly rotating black hole.

b) Model A 105

In this model, the star is rather rapidly rotating. At t=11.5 (Fig. 3(a)), the
matter falls vertically for R<2. The collapse in the equatorial plane is con-
siderably suppressed by the effect of rotation. For 2.4<R<7.7, the outflow
velocity reaches up to 0.3c. This outflow is the mass shedding which we expected
before. Finally, the oblate shape core is formed in the central region and an
apparent horizon is formed outside this core. (Fig. 3(b)) The outer envelope
expands along the lateral direction with relativistic velocity. On the Z=1 plane
the outgoing velocity is 0.34 and 0.70 and the lapse function («) is 0.82 and 0.88
at R=5.5and 9.1, respectively. If we consider (1—«) as the gravitational poten-
tial, we can expect that some part of this envelope will return to the central black
hole and the other part will expand to infinity. Thus the ultimate fate of the
collapsing supermassive star in this model is completely different from that in
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Time=1.15£+01 Time=1.70€ +01
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Fig. 3.{(a) The contour lines of Q. for A105 at +=11.5. The notations are the same

as Fig. 2(a).
(b) The contour lines of @, for A105 at /=17.0. The notations are the same as

Fig. 2(b).
Model A50.

c) Model Al46

This model is a rapidly rotating case, that is, /=0.77 and p is 0.76. At ¢
=5.76, the matter in the central part falls almost vertically. For 2<R<6.5, we
can see a strong outflow with the velocity up to 0.5. (Fig. 4(a)) At +=18.8, the
central core bounces and a shock wave is formed. Near the equatorial plane the
outflow extends up to R=9. The outer thin envelope falls vertically to this
outflow and the shock front is formed. (Fig. 4(b)) At #=23.2, we can see the
strong jet along the rotational axis. The central core has almost stopped moving
and the rather dense envelope expands both in the lateral direction and in the Z-
direction. (Fig. 4(c)) Finally the strong jet reaches Z=9. (Fig. 4(d)) The kinetic
and the internal energy of this jet are 2x107° and 1.5x 107% in our units (Eq.(2-1)),
respectively. The total mass of the jet is 5X107°. Thus the mean kinetic energy
per gram of this jet becomes 0.4 (3.6<10?° ergs/g). The energy consideration
similar to that in A105 shows that this jet will expand to infinity. The total mass
and the angular momentum of the relaxed core are 0.21 and 4 X 107?, respectively.
As the core has a rather small value of g(~1.0), it may recollapse eventually and
a black hole may be formed after all.

Let us compare the above results with those in Paper I. In Paper I, for
slowly rotating cases, the density distribution becomes disk-like and the ring-like
singularity appears. However in the present cases of the rotation law A, the den-
sity distribution becomes oblate. This difference seems to come from the initial
density distribution and the equation of state. As the polytrope with N =3 is
more centrally condensed type than the exponential distribution in Paper I, the
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Fig. 4. The contour lines of Qs for A146 at various time. The notations are the
same as Fig. 2(a).

disk will be hardly formed unless the centrifugal force is strong enough in the
central region. In Paper I, the equation of state is very hard for 0= 3X 10" g/cm?,
that is, in the limit of p—o0 the sound velocity becomes the light velocity.
Since the equation of state in this paper is very soft, the gravity is stronger than
the pressure force and the centrifugal force in the lateral direction for slowly
rotating cases.

In Fig. 5, we show the “electric fields” in the [(2+1)+1]-formalism for A105.
The strength of the “electric fields” (|E*?) does not show a ring-like peak. As
the density distribution is not disk-like, the “charge density” (angular momentum
density) in the [(2+1)+1]-formalism does not have a ring-like peak contrary to
the model M80 in Paper 1. (See Fig. 3(b) of Paper L.)
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Time=1.70E+01
z QMA)(:’O-]OS/::*OO VELMAX:O.GQZE—W

8.

Fig.5. The contour lines of the proper density
(p) for A105 at +=17.0. Each line corres-
ponds to 0 =QMAX X107*”* for n=1,2,---,11.
Arrows show the “electric fields” ( £*) in the
[(2+1)+1]-formalism. The maximum of |E*|
is shown in the figure as VELMAX.

2)  Rotation law B

In this rotation law, the centrifugal force is more effective for small R. (See
Fig. 1.) This means that, if the mass

: TR Time =2.16E+01

shedding oc'curs, it will occur f}rom the . QMAX-0753E:00  VELMAX-0.4566+01
central region. In the following, we vy g
show the details of the numerical results
of the three typical models.

a) Model B51

In Fig. 6, we show the density con-
tours and the flow pattern at /=21.6.
Although A50 and B51 have almost the
same angular momentum, we can see
that the central core is deformed rather
strongly in B51. Of course, this is due
to a rapi.dly rotaFing core becaus.e of the Fig6. The contour lines of Qp for B51
differential rotation of the rotation law The notations are the same as Fig. 2(b).
B.

b) Model B92

In this model, the centrifugal force near the center is greater than the
gravitational force at /=0 because p is 1.6. This fact causes the outflow of the
matter from a small R region. As the rotation is very slow for large R, the
matter in the outer part falls almost spherically. (Fig.7(a)) At ¢=11.5, the
inflow in the Z-direction and the outflow in the lateral direction form a disk in the
central region. (Fig.7(b)) At t=17.3, the outgoing velocity of the disk is con-
siderably decelerated. The outer envelope falls into this disk vertically and
forms the almost steady shock. For large R, a very thin envelope expands in the
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ﬁ Fig. 7. The contour lines of Qs for B92.
R

lateral direction. (Fig. 7(c)) In this model, we have tried to identify an apparent
horizon, but in vain. We have recalculated this model using the hypergeometric
slicing® in which the lapse function is spherically symmetric. In this slicing, an
apparent horizon is identified. The reason for this difference is the same as that
in Paper I. If one uses the maximal slicing as a time slice, the proper time of the
co-moving observer, whose four velocity is that of the matter, stops increasing
too soon after the density distribution becomes disk-like.

c) Model B143

In this model, we can see the outflow for small R even at rather early time.
(Fig. 8(a)) At t=11.6, an expanding disk is clearly formed. (Fig. 8(h)) At ¢
=17.5, the expansion velocity of the disk is decelerated in the central part and it
is the fastest at the edge of the disk. (Fig. 8(c)) At #=20.8, the central part of the

*)The definition of the hypergeometric slicing can be found in Paper 1.
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Fig. 8. The contour lines of @» for B143.

disk is almost stopped. The outer thin envelope falls into the disk continuously
and forms the almost steady shock front. As the expansion velocity is very large
in this model, all the matter except the central part will go away from the system.
In this model, no jet is formed contrary to the model A146. (Fig. 8(d))

§ 4. Concluding remarks and discussion

In the models using the rotation law A, the apparent horizons are formed for
¢<1.05. In the rotation law B, they are formed for ¢<0.92. In the models
calculated in Paper I, they are formed for ¢=<0.95. Above three types of the
calculated models are different from each other in the equation of state, the initial
density distribution, the initial internal energy and the rotation law. However,
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it seems that they have almost the same critical value of ¢ for the formation of
black holes. In all the models in which the apparent horizon is formed, we have
found that peculiar events such as formations of naked singularities do not occur
outside the apparent horizon. If we remember that the singularity of the Kerr
black hole?” is hidden by the event horizon for ¢<1, our numerical results of
Paper I and this paper suggest that the Kerr black holes may be formed for wide
ranges of the initial conditions provided that the density and the angular velocity
decrease monotonically with radius. If we take more peculiar initial distributions
for density and angular velocity, the singularities might be formed outside the
horizon as in the Tomimatsu-Sato metrics.*”

In the accretion disk model of quasars and active galactic nuclei, the
mechanism of the supply of the infalling gas has been unclear although the general
infall from the galaxy and/or stellar disruption have been proposed.’” In the
model A105 in this paper, the final result was a rotating black hole plus an
expanding envelope. As we have discussed in § 3(1), some part of this expanding
envelope is bound to the black hole and the other part not. The former part will
return to the system and it may form the accretion disk. If the total mass of this
gas is large enough, we do not worry about the gas supply mechanism. It may
be possible that the gas left behind at the formation stage of the black holes is the
energy source of the quasar activity.

In the model A146, we have seen that the relativistic jet is formed and the
central core will recollapse to form a black hole eventually. If we take the total
mass of the system, say, 10°M, which might be the typical value, the kinetic
energy and the internal energy of the jet become 3.6 X 10°° ergs and 2.7 X 10°° ergs,
respectively. The total mass of the jet is 5X10°Mg. The energy of this jet is
comparable to the total energy stored in the radio lobes of the extragalactic
double radio sources.”” In the single explosion model of the double radio
sources, the mechanism of the explosion itself has been unclear, although the
hydrodynamics after the point explosion have been studied well.?”  The model
A146 can be the explosion mechanism of the double radio sources. As we have
seen in §3(1), the explosion itself is jet-like contrary to the usual assumption of the
spherical explosion. It is now necessary to calculate the expansion of the jets in
the ambient gas.
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