

1

Testing the string theory landscape in cosmology

1. Cosmology Today

Big Bang theory has been firmly established

Strong evidence for Inflation

- highly Gaussian fluctuations
- almost scale-invariant spectrum

only to be confirmed (by tensor modes?)

• "standard" cosmological model $= \Lambda CDM$ with scale inv spectrum

cosmological parameters (~ 5% accuracy)

 $\Omega_b h^2$

 $\Omega_c h^2$

 Ω_{Λ}

 n_s

au

r

baryon density **CDM** density vacuum density curvature pert amplitude

 $\Delta^2_{\mathcal{R}}$ spectral index reionzation optical depth tensor/scalar ratio

 $0.02313^{+0.00073}_{-0.00072}$ $0.1068^{+0.0062}_{-0.0063}$ 0.757 ± 0.031 $(2.28 \pm 0.15) \times 10^{-9}$ $0.982^{+0.020}_{-0.019}$ 0.091 ± 0.015 < 0.36 (95% CL)

Larson et al '10

1% accuracy expected by PLANCK

What's next?

2. String theory landscape

Lerche, Lust & Schellekens ('87), Bousso & Pochinski ('00), Susskind, Douglas, KKLT ('03), ...

- > There are ~ 10^{500} vacua in string theory
 - vacuum energy ρ_{v} may be positive or negative
 - typical energy scale ~ M_P^4
 - some of them have $\rho_v <<\!\! M_P{}^4$

Is there any way to know what kind of landscape we live in?

Or at least to know what kind of neighborhood we live in?

distribution function in flux space

may explain the origin of gauge symmetry in our Universe

- > A universe jumps around in the landscape by quantum tunneling
 - it can go up to a vacuum with larger ρ_v (dS space ~ thermal state with $T = H/2\pi$)
 - if it tunnels to a vacuum with negative ρ_v , it collapses within t ~ $M_P/|\rho_v|^{1/2}$.
 - so we may focus on vacua with positive ρ_v : dS vacua

Anthropic landscape

Not all of dS vacua are habitable.

"anthropic" landscape Susskind ('03)

• A universe jumps around in the landscape and settles down to a final vacuum with $\rho_{v,f} \sim M_P^2 H_0^2 \sim (10^{-3} \text{eV})^4$.

 $\rho_{v,f}$ must not be larger than this value in order to account for the formation of stars and galaxies.

 Just before it has arrived the final vacuum (=present universe), it must have gone through an era of (slow-roll) inflation and reheating, to create "matter and radiation."

 $\rho_{vac} \rightarrow \rho_{matter} \sim T^4$: birth of Hot Bigbang Universe

> Most plausible state of the universe before inflation is a dS vacuum with $\rho_v \sim M_P^4$. dS = O(4,1) → O(5) ~ S⁴

false vacuum decay via O(4) symmetric (CDL) instanton Coleman & De Luccia ('80)

 $O(4) \rightarrow O(3,1)$

inside bubble is an open universe

> Natural outcome would be a universe with $\Omega_0 <<1$.

> Anthropic principle suggests that # of e-folds of inflation inside the bubble (N=H Δ t) should be ~ 50 – 60 : just enough to make the universe habitable.

Garriga, Tanaka & Vilenkin ('98), Freivogel et al. ('04)

> Observational data excluded open universe with $\Omega_0 < 1$.

> Nevertheless, the universe may be slightly open:

 $1 - \Omega_0 = 10^{-2} \sim 10^{-3}$ may be tested by PLANCK+BAO

Colombo et al. ('09)

What if $1-\Omega_0$ is actually confirmed to be non-zero:~ $10^{-2} - 10^{-3}$?

revisit open inflation!

see if we can say anything about Landscape

3. Open inflation in the landscape

- constraints from scalar-type perturbations –
- Simplest polynomial potential

•
$$\phi^4$$
 potential: $V = \frac{m^2}{2}\phi^2 - \frac{v}{3}\phi^3 + \frac{\lambda}{4}\phi^4$

• tunneling to a potential maximum ~ stochastic inflation Hawking & Moss ('82) Starobinsky ('84)

Two- (multi-)field model: "quasi-open inflation" Linde, Linde & Mezhlumian ('95)

- "heavy" field σ = false vacuum decay
- "light" field ϕ = inflaton

$$V(\phi,\sigma) = V_{\sigma}(\sigma) + \frac{m_{\phi}^2}{2}\phi^2$$

~ perhaps naturally/easily realized in the landscape

• If N ~< 60, too large supercurvature perturbation of ϕ

$$p^{2} = p_{sc}^{2} \approx -|K|; \quad \begin{bmatrix} 0 \\ \Delta_{K} + p^{2} + |K| \end{bmatrix} Y_{plm}(r,\Omega) = 0$$

 $\delta \phi_{sc} \sim \frac{H_F}{2\pi}? \quad \frac{H_R}{2\pi} \qquad H_F$: Hubble at false vacuum H_R : Hubble after fv decay

MS & Tanaka ('96)

4. Tensor perturbation in open inflation

Yamauchi, Linde, MS, Naruko & Tanaka ('11)

• if $\rho_{fv} \sim M_p^4$, the universe will most likely tunnel to a point where the energy scale is still very high.

```
Linde, MS & Tanaka ('99)
```

 \Rightarrow rapid-roll stage will follow right after tunneling.

• perhaps no strong effect on scalar-type pert's:

but tensor perturbations may not be suppressed at all.

$$h^{TT} \sim \frac{H}{M_P} \quad ?$$

Memory of H_F (Hubble rate in the false vacuum) may remain in the perturbation on the curvature scale

could lead to strong constraints/implications

 $Log_{10}[a(t) H_*]$

20

• two effects from tunneling: bubble wall + rapid roll

- ▶ bubble-nucleation at r_c=0
- C-region: ~ outside the bubble $ds^2 = a_c^2(\eta_c) (d\eta_c^2 - dr_c^2 + \cosh^2 r_c d\Omega^2)$ $\widehat{1}$ time
- R-region: inside the bubble

Euclidean vacuum \Rightarrow C-region \Rightarrow R-region

> Effect of tunneling/bubble wall on $P_T(p)$

high freq continuum + low freq resonance p > 1 $p \sim 0$

wall fluctuation mode

> rapid-roll phase (\mathcal{E}_* -)dependence of $P_T(p)$

CMB anisotropy due to wall fluctuation (W-)mode
 MS, Tanaka & Yakushige ('97)

• CMB anisotropy from rapid roll phase

small ℓ modes enhanced for $\mathcal{E}_* \thicksim 1$

5. Summary

> Open inflation has attracted renewed interest in the context of string theory landscape

anthropic principle + landscape $\implies 1-\Omega_0 \sim 10^{-2} - 10^{-3}$

Landscape is already constrained by observations
If inflation after tunneling is short (N ~ 60):

- simple polynomial potentials $a\phi^2 b\phi^3 + c\phi^4$ lead to HM-transition, and are ruled out
- simple 2-field models, naturally realized in string theory, are ruled out

due to large scalar-type perturbations on curvature scale

> Tensor perturbations may also constrain the landscape "single-field model"

• not easy to implement models with short slow-roll inflation right after tunneling in the string landscape.

if $\varepsilon <<1$, energy scale must have been already very low.

• there will be a rapid-roll phase after tunneling.

 $\varepsilon = \frac{M_P^2}{2} \left(\frac{V'}{V}\right)^2 \gtrsim 1$ right after tunneling

 unless ε>>1, the memory of pre-tunneling stage persists in the IR part of the tensor spectrum

large CMB anisotropy at small $\ell \propto (1 - \Omega_0)^1$

due to either wall fluctuation mode or evolution during rapid-roll phase

We are already testing the landscape!

6. Other signatures?

• CMB cold/hot spots = bubble collision?

Aguirre & Johnson '09, Kleban, Levi & Sigurdson '11,...

Non-Gaussianity from bubbles / NG hot spots?
 Blanco-Pillado & Salem '10, Sugimura et al. in progress

Populating landscape / resonant tunneling?
 Tye & Wohns '09, Brown & Dahlen '11

• Measure problem / etc. etc. ...

Garriga & Vilenkin '08, Freivogel '11, Vilenkin '11,

finally, extrapolating history...

bigbang theory ~ 1940 strong evidence 1965 (+25), confirmation 1990 (+50)

inflation theory ~ 1980 strong evidence 2000 (+20), confirmation 2020? (+40?)

string landscape ~ 2000 strong evidence 2015? (+15?), confirmation 2030? (+30?)