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& Moduli Problem

We consider string theory compactified on CY manifolds. CY manifolds in
general have a number of moduli associated with the freedom of chang-
ing their complex and Kahler structures.

CY manidfols are characterized by the Ricci flathess condition

RIJ(Q):O, I,J=1,2,---,6
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and the existence of a holomorphic 3-form 2;,, ¢, 5,k = 1,2, 3. Defor-
mation of the metric obeys the condition

Ryj(g+dg) = 0= A(g)dg =0
There are two types of deformations in CY manifolds
99,5 Kahler deformation, (1, 1) type
dg;; : complex structure deformation, (1, 2) type

k
(69i597" Qpim, = 59z’,12m)

These degrees of freedom appear as massless scalar fields in 4 dimen-
sions. Existence of massless scalars is in direct conflict with phenomenol-
ogy. One has to generates a potential V' for moduli fields so that they are
fixed at the extremum of the potential.
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In the following we consider type IIB theory and concentrate on stabilizing
the complex structure moduli z4 (a = 1,..., h21).

A superpotential becomes generated when RR or NS fluxes are turned on,

HEE = gl gNSNS = gpNSNS ' 7 — Cy 4 ie™?

9

W (zq) = /M(HRR — 7HNVSNSY A Q(z4)

—_— ZNIXI(ZG) — ZMIFI('ZCL)

where
M = / (HBR _ s gNSNSy N, — / (HER _ pfNSNS)
Ag Br

I=0,1,--- 7h2,1

are fluxes through A; and By cycles. {A,, B,} denote a symplectic
basis of 3-cycles

AqgU By =0,p, AN Ay =BsN B, =0 "
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And their periods are given by

Xi(ea) = [, Qe FiGa) = [0 =5

Gukov-Vafa-Witten

(2a)

It is then possible to fix all complex structure moduli.

151 %%4
0zq

= 0 = {z4} all fixed

e Kahler potential on Calabi-Yau moduli space is given by

K = —logi/ QAQ =—logi» (XpFr— X[Fy)
M
1
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Freedom of Kahler transformation:

Ir(zaaza)'—*I((Zaaza)'+'f(za)‘+.f(za)a

Q(za) — e FEIQ(24), W(za) — e FEIW (24)

Periods (X, Fr) are holomorphic sections of a line bundle L. Metric is

invariant under Kahler transformation

gaE — aaagK
& Number of vacua in string theory

e Fix CY mfd M

e number of 3-cycles: 100~-200
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e Upper bound on fluxes:
/ H, N Hy < const. depending on geometry of M
~ 1000 — 5000 (tadpole condition)

e possible choice of fluxes:
10100 -, 10200

Altogether there exist an enormous number of string vacua ©(101%)

& Statistical treatment
Douglas, Ashok, Denef, ...

Vacua distribution function on moduli space M

det ( daDpyW 8o D;W* >|

_ _ %k
p(z) = 5(DaW)5(DbW ) X 9 Dy W 3aD5W*

6/25



Simplify [}

YAk
p(z) = 6(DaW)3(DEW*) X det ( 0aDyW 8o DgW )

8zDyW 0z DgW*

This is an index counting the humber of vacua with + signs.

Further simplifying assumption:
Fluxes obey Gaussian distribution — W itself obeys Gaussian distribu-
tion.

It follows

- 1
p(z) H dz? N dz?® = det P £ G+ 0% w)/

curvature and Kahler form on M

This depends only on the geometry of CY moduli space and is the E71/12I5er



number of the bundle T ® L. Flux vacua should be concentrated
around singular points in CY moduli space where the curvature R is
peaked.
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& Singular loci in Calabi-Yau moduli space

String vacua are not distributed uniformly but concentrated around sin-
gular locus of M. We study the distribution of vacua around singular loci
in CY moduli space where interesting non-perturbative phenomena take
place.

Types of singularities:

e conifolds: generation of massless matter multiplets.

e ADE singularities and rigid limit: gauge symmefry enhancements
and decoupling of gravity

e Argyres-Douglas points: massless electrons and monopoles.

e Large complex structure limit: Mirror of the large radius limit.
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Examples: on the Seiberg-Witten u plane.
1

near u ~ +1

lu F 1|2(log |u F 1])?

100 ~

NMBEOMN O 2NW AN
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Near the rigid limit.
1

P near e~ 0

|€|2(log |€])?

100

10

0.1

-0.001
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We claim that the vacuum density behaves as

dzdz
|2|21og |2|?

vacuum density ~

around each of these singular points. Note that the integral around z = 0

Is finite
/ 9 dzdz
d“z 5 < 00
|z|?log |z]

so that there exist a finite number of vacua around these singular loci.

& Special geometry relations

e metric
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e Yukawa coupling
Fijp, = Y X19;0;01,Ff — (X — F)
1

e curvature

2K _mn ?
Rike = 9559k + 950915 — € 9 FikmFjz
& Nilpotent Orbit Theorem
Assemble periods (X7, Fr) = Qy (I =1,--- ,ha 1+ 2)
Under monodromy transformation
Qr — MQy

eigenvalues of M are roots of unity (1 /k-th power,say). Then N = M k_1

becomes a nilpotent matrix and after a change of variable a = z™ one
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finds
or = exi8 [0 1 a0l 1+ a20f 4+ ...
There is an integer p so that
NPQr #£0 but NPHlQ; =0

Then we find X, F; = log? a.

& Conifolds

singularity at z = 0

Z:/Q, 8zF:/Q
A B

Under monodromy transformation

A— A, B—-B+ A
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Thus
(1 =z

Ny = —2zlogz
9 2 271 5

Hence

K =~ log(const + |z|?log |z|) = const’ + |z|?log |z|

J
gz =~ log |z|
J
R, =~ —0,0z1logdet g,z = L
2Z 20z 108 gzz |z|2log2|z|

One can generadlize the discussion to many variable cases and present a
general analysis. Instead we would like to present more specific exam-

ples in the following.
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& Large Complex Structure Limit

( Q1 = const
(2 = log z
93 ~ (log Z)2
Q4 ~ (log z)3

/G

\

1 1
K = log(log |2]°) = gz ~ —> R,z =
B0 = 92~ o log 2 T ¥ g 2P

We again find the same distribution.

Probably the most interesting cases are the non-compact limit of Calabi-
Yau manifolds where K3 fibration develops ADE singularities. In this limit
gravitational degrees of freedom become decoupled and string theory

is reduced to SUSY gauge theories.
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& Decoupling (Rigid) Limit: SU(2) Example

Xg[1,1,2,2,2] :

e Bg 1, 1, 1 1 )
W = PR ng + s+ :B4 + w5 YL LILILALE — —1#2(51312132)

By a change of variable xg = x1x2,( = (:1:1/332)4, W may be written as
1
W (z; B',¢0) = Z(B'ﬂl?f)l + 25 + x4 + T5) — PoTOTITATS
with

—lB B 2
—5( C‘F?— ¢2)

This is a K3 fibration over P. Decoupling limit is given by

B —0
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When we parametrize

B = (3A&27 )2 'F'lpé%::: €u,

and make a suitable redefinition of variables we obtain an A singularity
fibered over P!:

€

1 A? 2 2 2
5 §(C+?)+y1+y2+y3—u
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Discriminant of CY manifold is given by

Acy o BY(B* —y3) (B — (2 + ()
4 4 4
decoupling LCS SU (2)

where LCS is the large complex structure limit.

rigid limit, conifold locus
B=0 & au=0\A \
/LCS u=1

{\
—»
(

=00
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& Decoupling (Rigid) Limit: SU (3) Example

Xo4[1,1,2,8,12] :
B 9 1 1 1
W (x4 g2 Y2 o2 Lo bos Lo
24(1 ) 12(12) 573 T 3%+ 575
1
—YPoT1T2LITATE — 8101(5131&*32-’133)6

This space again has a K3 fibration. By a change of variable g = 122, ¢ =

(x1/x2)'? it is rewritten as
B’ 1 1 1 1
W= _"g12 4 — 12 4 "3 "2 _ TOLALALE — — roxa)d
120+123‘|‘34‘|‘25 YOTOTITLTs 6101(03)

B’—lB B
—5( C+E)—¢2
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Discriminant is given by

Acy = B¥(B? — (%7 + v2)*)(B” — ((¥1 + 45)* + 12))(B? — 43)
Y N e J
Decoupling SU(3) LCS

Decoupling limit is taken as

B = €A39 ":b(G)":bl — €u3/2, 'l,b% + P2 = 6(’0 - u3/2)7 e —0

By a suitable redefinition of variables we obtain an A, singularity fibered
over P1

6 2 2 3 U v

1 A Y3 Yy Y
W=e| (C+—)+234724, 75 T
c 12(C+c)+2+2+3 14757 12

Billo-Denef-Fre-Pesando-Troost-Van Proyen and Zanon, hep-th/9803228

made a detailed analysis of these models: they explicitly construc2:;r/e2g



3-cycles and evaluated the behavior of the periods in the decoupling
limit.

In the X54[1, 1, 2, 8, 12] model there exist 8 cycles

(V’Uaa V’Uba ‘/;50,7 Wba T’Uaa T’Uba Ttaa Ttb)

out of which Vv, , V,, , Ty, , Ty, are the periods of SU(3) gauge theory.
Other cycles are needed when one embeds gauge theory into super-
gravity. Periods behave as

Voas Vops Tvgs Toy, ~ el/3 . gauge theory periods

Viar Viys Tty Tt, ~ const + const’ - log e :  gravity periods

In the case of SU (2) example, gauge theory periods behave as €1/2 and
gravity periods as const+const’- log €.
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e Vacuum density near decoupling point

We have the behavior of periods

( Q1 =~ loge
Qz ~ El/N

and the Kahler potential
K =~ log |log |e| + |e|* N K (u,u*,--+) + ]

Here K (u,u™,---) denotes the Kahler potential of the gauge theory. We
then have the behavior

N 1 N 1

Jee ~ |€|210g|€|27 REEN

We again find the same enhancement of vacuum concentration near de-
coupling point.

|€|? log |€|?
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e Heterotic Duals and RG Flow

Presence of two length scales |e|2/ N log1/|e| suggest a ratio of mass
scales A of gauge theory and that of ambient supergravity

2
e]2/N (Agauge>

log 1/|€| My

On the other hand, it is well-known that the above models have a dual
heterotic description: the model X24[1,1, 2, 8,12], for instance, coin-
cides with the (S, T, U) model of heterotic string compactified on K3 X
T?.
4
Here log 1 /€ corresponds to the variable S where S = —;T is the heterotic
g
dilaton and € =~ e_8“2/ g° . Then the above mass ratio can be written as

~ ,—8m?/Ng?
Agauge = € ™/Ng gMpl
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As compared with the standard (one-loop) RG formula, there exists an
extra factor of g in front of the right-hand-side. This is in fact the length
scale of heterotic string theory and has the form of a proposal by Arkani-
Hamed-Motl-Nicolis-Vafa of an anomalously small mass scale A = gM
in field theory embedded in gravity.

47 L
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& Cosmological Constants and SUSY Breaking Scales

Scenario of KKLT :
Kachru-Kallosh-Linde-Trivedy

Recall N/ = 1 local SUSY has a potential
V = X(g9D,WD;W — 3WW)
First choose a SUSY vacuum,
D;,W =0
Then
vV = =38 |\w)?

This is an AdS space. Then break SUSY by introducing D branes. SUSY

breaking energy is always positive and may convert AdS into a dS spgéc/:2e5.



dS space is unstable and eventually tunnel into Minkowski space. One
needs a fine-tuning in converting AdS into dS with a small positive cos-
mological constant.

Most of the vacua in string landscape have comological constants and
SUSY breaking scale of order Mp;ynck- We need a novel idea in the vac-
uum selection so that one finds a realistic universe from string theory with-
out resourse to anthropic principle.

Concentration of vacua near symmeiry enhacement point may help us
in this search.
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