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♣ Moduli Problem

We consider string theory compactified on CY manifolds. CY manifolds in
general have a number of moduli associated with the freedom of chang-
ing their complex and Kähler structures.

CY manidfols are characterized by the Ricci flatness condition

RIJ(g) = 0, I, J = 1, 2, · · · , 6
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and the existence of a holomorphic 3-form Ωijk, i, j, k = 1, 2, 3. Defor-
mation of the metric obeys the condition

RIJ(g + δg) = 0 =⇒ ∆(g)δg = 0

There are two types of deformations in CY manifolds

δgij̄ : Kähler deformation, (1, 1) type
δgij : complex structure deformation, (1, 2) type

(δgijg
jk̄Ω̄k̄ℓ̄m̄ = δgi,k̄m̄)

These degrees of freedom appear as massless scalar fields in 4 dimen-
sions. Existence of massless scalars is in direct conflict with phenomenol-
ogy. One has to generates a potential V for moduli fields so that they are
fixed at the extremum of the potential.
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In the following we consider type IIB theory and concentrate on stabilizing
the complex structure moduli za (a = 1, . . . , h2,1).

A superpotential becomes generated when RR or NS fluxes are turned on,

HRR ≡ dBRR, HNSNS ≡ dBNSNS, τ = C0 + ie−ϕ

W (za) =

∫
M

(HRR − τHNSNS) ∧ Ω(za)

=
∑

NIXI(za) −
∑

MIFI(za)

where

MI =

∫
AI

(HRR − τHNSNS), NI =

∫
BI

(HRR − τHNSNS)

I = 0, 1, · · · , h2,1

are fluxes through AI and BI cycles. {Aa, Ba} denote a symplectic
basis of 3-cycles

Aa ∪Bb = δab, Aa ∩Ab = Ba ∩Bb = 0
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And their periods are given by

XI(za) =

∫
AI

Ω(za), FI(za) =

∫
BI

Ω(za) =
∂F

∂XI
(za)

Gukov-Vafa-Witten

It is then possible to fix all complex structure moduli.

∂W

∂za
= 0 =⇒ {za} all fixed

• Kähler potential on Calabi-Yau moduli space is given by

K = − log i

∫
M

Ω ∧ Ω̄ = − log i
∑
I

(
XIF̄I − X̄IFI

)
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Freedom of Kähler transformation:

K(za, z̄a) → K(za, z̄a) + f(za) + f̄(z̄a),

Ω(za) → e−f(za)Ω(za), W (za) → e−f(za)W (za)

Periods (XI, FI) are holomorphic sections of a line bundle L. Metric is

invariant under Kähler transformation

gab̄ = ∂a∂b̄K

♣ Number of vacua in string theory

• Fix CY mfd M

• number of 3-cycles: 100∼200
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• Upper bound on fluxes:∫
H1 ∧H2 ≤ const. depending on geometry of M

≈ 1000 − 5000 (tadpole condition)

• possible choice of fluxes:
10100 ∼ 10200

Altogether there exist an enormous number of string vacua O(10100)

♣ Statistical treatment
Douglas, Ashok, Denef, ...

Vacua distribution function on moduli space M

ρ(z) = δ(DaW )δ(Db̄W
∗) ×

∣∣∣∣det

(
∂aDbW ∂aDb̄W

∗

∂āDbW ∂āDb̄W
∗

)∣∣∣∣
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Simplify ⇓

ρ̃(z) = δ(DaW )δ(Db̄W
∗) × det

(
∂aDbW ∂aDb̄W

∗

∂āDbW ∂āDb̄W
∗

)

This is an index counting the number of vacua with ± signs.

Further simplifying assumption:
Fluxes obey Gaussian distribution =⇒ W itself obeys Gaussian distribu-
tion.

It follows

ρ̃(z)
∏
dza ∧ dz̄ā = det

1

2π

(
Ra

b + δa
b ω

)︸ ︷︷ ︸
curvature and Kähler form on M

This depends only on the geometry of CY moduli space and is the Euler
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number of the bundle TM ⊗ L. Flux vacua should be concentrated
around singular points in CY moduli space where the curvature Ra

b is
peaked.
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♣ Singular loci in Calabi-Yau moduli space

String vacua are not distributed uniformly but concentrated around sin-
gular locus of M. We study the distribution of vacua around singular loci
in CY moduli space where interesting non-perturbative phenomena take
place.

Types of singularities:

• conifolds: generation of massless matter multiplets.

• ADE singularities and rigid limit: gauge symmetry enhancements
and decoupling of gravity

• Argyres-Douglas points: massless electrons and monopoles.

• Large complex structure limit: Mirror of the large radius limit.

• · · ·
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Examples: on the Seiberg-Witten u plane.

ρ̃ ∼
1

|u∓ 1|2(log |u∓ 1|)2
near u ∼ ±1
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Near the rigid limit.

ρ̃ ∼
1

|ϵ|2(log |ϵ|)2
near ϵ ∼ 0
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We claim that the vacuum density behaves as

vacuum density ≈
dzdz̄

|z|2log |z|2

around each of these singular points. Note that the integral around z = 0

is finite ∫
d2z

dzdz̄

|z|2log |z|2
< ∞

so that there exist a finite number of vacua around these singular loci.

♣ Special geometry relations

• metric
gij̄ = ∂i∂j̄K
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• Yukawa coupling
Fijk =

∑
I

XI∂i∂j∂kFI − (X ↔ F )

• curvature
Rij̄kℓ̄ = gij̄gkℓ̄ + giℓ̄gkj̄ − e2Kgmn̄FikmF̄j̄ℓ̄n̄

♣ Nilpotent Orbit Theorem

Assemble periods (XI, FI) =⇒ ΩI (I = 1, · · · , h2,1 + 2)

Under monodromy transformation

ΩI → MΩI

eigenvalues ofM are roots of unity (1/k-th power,say). ThenN ≡ Mk−1

becomes a nilpotent matrix and after a change of variable a = zk one
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finds

ΩI = e
N
2πi log a

[
Ω

(0)
I + aΩ

(1)
I + a2Ω

(2)
I + · · ·

]
There is an integer p so that

NpΩI ̸= 0 but Np+1ΩI = 0

Then we find XI, FI ≈ logp a.

♣ Conifolds

singularity at z = 0

z =

∫
A

Ω, ∂zF =

∫
B

Ω

Under monodromy transformation

A → A, B → B +A
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Thus 
Ω1 = z

Ω2 =
1

2πi
z log z

·
·

Hence

K ≈ log(const + |z|2 log |z|) ≈ const′ + |z|2 log |z|
⇓

gzz̄ ≈ log |z|
⇓

Rzz̄ ≈ −∂z∂z̄ log det gzz̄ =
1

|z|2 log2 |z|

One can generalize the discussion to many variable cases and present a
general analysis. Instead we would like to present more specific exam-
ples in the following.
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♣ Large Complex Structure Limit

Ω1 = const
Ω2 ≈ log z

Ω3 ≈ (log z)2

Ω4 ≈ (log z)3

·
·

K ≈ log(log |z|3) =⇒ gzz̄ ≈
1

|z|2 log |z|2
=⇒ Rzz̄ ≈

1

|z|2 log |z|2

We again find the same distribution.

Probably the most interesting cases are the non-compact limit of Calabi-
Yau manifolds where K3 fibration develops ADE singularities. In this limit
gravitational degrees of freedom become decoupled and string theory
is reduced to SUSY gauge theories.
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♣ Decoupling (Rigid) Limit: SU(2) Example

X8[1, 1, 2, 2, 2] :

W =
B

8
x8

1 +
B

8
x8

2 +
1

4
x4

3 +
1

4
x4

4 +
1

4
x4

5 − ψ0x1x2x3x4x5 −
1

4
ψ2(x1x2)

4

By a change of variable x0 = x1x2, ζ = (x1/x2)
4, W may be written as

W (x;B′, ψ0) =
1

4
(B′x4

0 + x4
3 + x4

4 + x4
5) − ψ0x0x3x4x5

with

B′ =
1

2
(Bζ +

B

ζ
− 2ψ2)

This is a K3 fibration over P1. Decoupling limit is given by

B → 0
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When we parametrize

B = ϵΛ2, ψ2 + ψ4
0 = ϵu,

and make a suitable redefinition of variables we obtain an A1 singularity
fibered over P1:

W =
ϵ

2

[
1

2
(ζ +

Λ4

ζ
) + y2

1 + y2
2 + y2

3 − u

]
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Discriminant of CY manifold is given by

∆CY ∝ B2(B2 − ψ2
2)(B

2 − (ψ2 + ψ4
0))

⇓ ⇓ ⇓
decoupling LCS SU(2)

where LCS is the large complex structure limit.

rigid limit,

B=0 & εu=0

conifold locus

B=0

LCS

u=∞

u=1
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♣ Decoupling (Rigid) Limit: SU(3) Example

X24[1, 1, 2, 8, 12] :

W =
B

24
(x24

1 + x24
2 ) −

ψ2

12
(x1x2)

12 +
1

12
x12

3 +
1

3
x3

4 +
1

2
x2

5

−ψ0x1x2x3x4x5 −
1

6
ψ1(x1x2x3)

6

This space again has a K3 fibration. By a change of variable x0 = x1x2, ζ =

(x1/x2)
12 it is rewritten as

W =
B′

12
x12

0 +
1

12
x12

3 +
1

3
x3

4 +
1

2
x2

5 − ψ0x0x3x4x5 −
1

6
ψ1(x0x3)

6

B′ =
1

2
(Bζ +

B

ζ
) − ψ2
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Discriminant is given by

∆CY = B2(B2 − (ψ2
1 + ψ2)

2)(B2 − ((ψ1 + ψ6
0)

2 + ψ2)
2)(B2 − ψ2

2)

⇓ ↘ ↙ ⇓
Decoupling SU(3) LCS

Decoupling limit is taken as

B = ϵΛ3, ψ6
0ψ1 = ϵu3/2, ψ2

1 + ψ2 = ϵ(v − u3/2), ϵ → 0

By a suitable redefinition of variables we obtain an A2 singularity fibered
over P1

W = ϵ

[
1

12
(ζ +

Λ6

ζ
) +

y2
3

2
+
y2
4

2
+
y3
5

3
−
u

4
y5 −

v

12

]

Billó-Denef-Frè-Pesando-Troost-Van Proyen and Zanon, hep-th/9803228
made a detailed analysis of these models: they explicitly constructed
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3-cycles and evaluated the behavior of the periods in the decoupling
limit.

In the X24[1, 1, 2, 8, 12] model there exist 8 cycles(
Vva, Vvb, Vta, Vtb, Tva, Tvb, Tta, Ttb

)
out of which Vva, Vvb, Tva, Tvb are the periods of SU(3) gauge theory.
Other cycles are needed when one embeds gauge theory into super-
gravity. Periods behave as

Vva, Vvb, Tva, Tvb ∼ ϵ1/3 : gauge theory periods

Vta, Vtb, Tta, Ttb ∼ const + const′ · log ϵ : gravity periods

In the case of SU(2) example, gauge theory periods behave as ϵ1/2 and
gravity periods as const+const’· log ϵ.
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• Vacuum density near decoupling point

We have the behavior of periods
Ω1 ≈ log ϵ

Ω2 ≈ ϵ1/N

·
·

and the Kähler potential

K ≈ log
[
log |ϵ| + |ϵ|2/NK(u, u∗, · · · ) + · · ·

]
Here K(u, u∗, · · · ) denotes the Kähler potential of the gauge theory. We
then have the behavior

gϵϵ̄ ≈
1

|ϵ|2 log |ϵ|2
, Rϵϵ̄ ≈

1

|ϵ|2 log |ϵ|2

We again find the same enhancement of vacuum concentration near de-
coupling point.
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• Heterotic Duals and RG Flow

Presence of two length scales |ϵ|2/N , log 1/|ϵ| suggest a ratio of mass
scales Λ of gauge theory and that of ambient supergravity

|ϵ|2/N

log 1/|ϵ|
≈
(

Λgauge

Mpl

)2

On the other hand, it is well-known that the above models have a dual
heterotic description: the model X24[1, 1, 2, 8, 12], for instance, coin-
cides with the (S, T, U) model of heterotic string compactified on K3 ×
T 2.
Here log 1/ϵ corresponds to the variable S where S =

4π

g2
is the heterotic

dilaton and ϵ ≈ e−8π2/g2
. Then the above mass ratio can be written as

Λgauge ≈ e−8π2/Ng2
gMpl
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As compared with the standard (one-loop) RG formula, there exists an
extra factor of g in front of the right-hand-side. This is in fact the length
scale of heterotic string theory and has the form of a proposal by Arkani-
Hamed-Motl-Nicolis-Vafa of an anomalously small mass scale Λ = gM

in field theory embedded in gravity.

Λgauge MplgMpl

Im S ==
4π

g2
is

?
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♠ Cosmological Constants and SUSY Breaking Scales

Scenario of KKLT :
Kachru-Kallosh-Linde-Trivedy

Recall N = 1 local SUSY has a potential

V = eK(gij̄DiWDj̄W̄ − 3WW̄ )

First choose a SUSY vacuum,

DiW = 0

Then

V = −3eK|W |2

This is an AdS space. Then break SUSY by introducing D̄ branes. SUSY
breaking energy is always positive and may convert AdS into a dS space.
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dS space is unstable and eventually tunnel into Minkowski space. One
needs a fine-tuning in converting AdS into dS with a small positive cos-
mological constant.

Most of the vacua in string landscape have comological constants and
SUSY breaking scale of order MPlanck. We need a novel idea in the vac-
uum selection so that one finds a realistic universe from string theory with-
out resourse to anthropic principle.

Concentration of vacua near symmetry enhacement point may help us
in this search.
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