第五回超弦理論と宇宙 2012年2月22日 別府望海

超新星を使ったダークエネルギー測定

東京大学・理・天文学教育研究センター

土居

リ・サンペドロデアタカマよりチャナントール領域を望む

The Nobel Prize in Physics 2011 Saul Perlmutter, Brian P. Schmidt, Adam G. Riess

Supernova Cosmology Project

High-z Supernova Search Team

"for the discovery of the accelerating expansion of the Universe through observations of distant supernovae"

Congratulations!

Contents

- Supernova Cosmology method and "break through" Recent SCP results
- Future prospect
 SNIa property
 NIR observations

Scale factor of the universe ← Redshift

The wavelength of light from the distant object (1+z) is proportional to the scale factor due to Expansion of the Universe

spectroscopy

spectra

(900,000 light years)

(7,000,000 light years)

(23,000,000 light years)

(85,000,000 light years)

(135,000,000 light years)

From "Realm of the Nebulae" (1936)

Wavelength : Longer as distance becomes larger.

ımage

How to measure Distance & Time Ratio of apparent brightness \rightarrow distance \rightarrow time (\div speed of light)

& cosmological expansion, general relativity

Type Ia Supernova

• Standard Candle (Luminosity~constant) a nuclear time bomb, C/O WD

too heavy (~1.4 x M_sun) \rightarrow thermo-nuclear explosion Chandrasekhar 1931

Picture: Single Degenerate model \Leftrightarrow Double Degenerate model

Large Luminosity (~whole galaxy)
 → measurable at cosmological distance

SN luminosity varies SN2002kp(z=0.928)

Luminotity of SNIa:

By N. Takanashi

70

not exactly constant

brighter SNIa

 \rightarrow larger time scale

in light curve

Correction based on light curve is possible.

Error in luminosity ~ 15%

Phillips 1993

(Asymmetric explosion →Maeda et al. 2011)

How we can measure acceleration/deceleration

time

Expanding speed : accelerate(decelerate)

light travels longer (shorter) than constant expansion

→ Distance: large(small) (Distance) = (speed of light) × (time)

You can discriminate different cosmological models by measuring SNeIa

Schmidt +1998

"Break Through Papers" for the Nobel Prize!

SNIa surveys

past 12 years

- redshift Projects imaging
- z~0-0.3 **SDSS**
 - ~1-2.5m Carnegie Supernova Projects
 Nearby Supernova Factory, ... many
- z~0.3-0.8 SN Legacy
 - ~4m Essence
- z~0.5-1.5 SCP 8m, HST Higher-z

Riess+2007 Riess+2004

Distant SN observations with HST SNe become brighter at high-z

SCP HST cluster SN search Dawson+2010

HST repeated imaging (2005-2006)

Targeting 25 high-z clusters (z~0.9-1.46)

SNeIa from cluster elliptical hosts

SCP latest results for supernovae cosmology

580 SNeIa 20 new high-z SNeIa (0.623 < z < 1.415)

Suzuki+2011

Data used

580 SNeIa, 20 new high-z SNeIa (0.623 < z < 1.415)

Spectroscopy of new 20 SNeIa/hosts

14 SNe Subaru/FOCAS (Morokuma+2010)

4 SNe Keck /DEMOS (Meyers+2010) 2 Sne VLT/FORS1,2 (Barbary+2011)

CMB Fluctuations has typical scale "Standard Lod"

→ We can measure "Light Path"
 Light propagates "straight" from z~1000
 not 凸 lens nor 凹 lens
 → Geometry of Universe 「FLAT」

Spergel et al. 2003, Komatsu et al. 2011

Acoustic peak in Galaxy Distributions

Dark energy:time variation?

Various Fitting cases

Table 7

Fit results on cosmological parameters Ω_m , w_0 , w_a and Ω_k . The parameter values are followed by their statistical (first column) and statistical and systematic (secon column) 1σ ($\Delta\chi^2 = 1$) uncertainties. For the fits including curvature and time-varying w, the confidence intervals can be quite non-gaussian and we also show $\Delta\chi^2 =$ confidence intervals (with and without systematics) for comparison.

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Fit	Ω_m	Ω_m w/ Sys	Ω_k	Ω_k w/ Sys	w_0	w_0 w/ Sys	w_a	$w_a \le w_b$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	АСДМ										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SNe	$0.277^{+0.022}_{-0.021}$	$0.295^{+0.043}_{-0.040}$	0 (fixed)	0 (fixed)	-1 (fixed)	-1 (fixed)	0 (fixed)	0 (fix		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SNe+BAO+CMB	$0.278^{+0.014}_{-0.013}$	$0.282^{+0.017}_{-0.016}$	0 (fixed)	0 (fixed)	-1 (fixed)	-1 (fixed)	0 (fixed)	0 (fix		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$SNe+BAO+CMB+H_0$	$0.271_{-0.012}^{+0.012}$	$0.271\substack{+0.014\\-0.014}$	0 (fixed)	0 (fixed)	-1 (fixed)	-1 (fixed)	0 (fixed)	0 (fix		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	σΔCDΜ										
$ \frac{\text{SNe+BAO+CMB}+H_0}{\text{SNe+BAO+CMB}+H_0} = 0.271 \pm 0.012^{+0.014} = 0.272 \pm 0.014^{+0.005} = 0.002 \pm 0.005^{+0.005} = 0.002 \pm 0.005^{+0.005} = -1 \text{ (fixed)} = -1 \text{ (fixed)} = 0 (fix$	SNe+BAO+CMB	$0.282^{+0.015}_{-0.014}$	$0.286\substack{+0.018\\-0.017}$	$-0.004^{+0.006}_{-0.006}$	$-0.004^{+0.006}_{-0.007}$	-1 (fixed)	-1 (fixed)	0 (fixed)	0 (fix		
$\frac{w\text{CDM}}{\frac{\text{SNe} & 0.281 + 0.067}{0.092} & 0.296 + 0.102}{0.400} & 0 \text{ (fixed)} & 0 \text{ (fixed)} & -1.011 + 0.298}{0.231} & -1.001 + 0.348}{-1.001 + 0.348} & 0 \text{ (fixed)} & 0 \text{ (fixed)} \\ \text{SNe+BAO+}H_0 & 0.309 + 0.029}{0.309 + 0.029} & 0.320 + 0.035}{0.320 + 0.039} & 0 \text{ (fixed)} & 0 \text{ (fixed)} & -1.097 + 0.011}{0.017} & -1.076 + 0.117} & 0 \text{ (fixed)} & 0 \text{ (fixed)} \\ \text{SNe+CMB} & 0.271 + 0.017}{0.017} & 0.279 + 0.023} & 0 \text{ (fixed)} & 0 \text{ (fixed)} & -0.983 + 0.065}{0.061} & -0.983 + 0.065}{0.0615} & 0 \text{ (fixed)} & 0 \text{ (fixed)} & 0 \text{ (fixed)} \\ \text{SNe+BAO+CMB} & 0.278 + 0.014}{0.272 + 0.013} & 0.271 + 0.014} & 0 \text{ (fixed)} & 0 \text{ (fixed)} & -1.008 + 0.055}{0.051} & -0.951 + 0.075}{0.0650} & 0 \text{ (fixed)} & 0 \text{ (fixed)} \\ \text{SNe+BAO+CMB} & 0.272 + 0.013}{0.272 + 0.013} & 0.271 + 0.014} & 0 \text{ (fixed)} & 0 \text{ (fixed)} & -1.008 + 0.054}{0.055} & -1.013 + 0.085}{0.067} & 0 \text{ (fixed)} & 0 \text{ (fixed)} \\ \text{SNe+BAO+CMB} & 0.281 + 0.069}{0.283 + 0.016} & 0.295 + 0.017}{0.028 + 0.016} & -0.003 + 0.002 + 0.005}{0.002 + 0.007} & -0.002 + 0.008}{0.002 + 0.007} & -0.002 + 0.008}{0.002 + 0.007} & -0.002 + 0.008}{0.002 + 0.007} & -0.002 + 0.008}{0.002 + 0.007} & -0.002 + 0.008}{0.002 + 0.007} & -0.002 + 0.008}{0.002 + 0.007} & -0.002 + 0.008}{0.002 + 0.007} & -0.002 + 0.008}{0.002 + 0.007} & -0.002 + 0.008}{0.002 + 0.007} & -0.002 + 0.008}{0.002 + 0.007}{0.002 + 0.007} & -0.002 + 0.008}{0.002 + 0.007} & -0.002 + 0.008}{0.002 + 0.007}{0.002 + 0.007}{0.002 + 0.007}{0.002 + 0.007}{0.002 + 0.007} & -0.002 + 0.008}{0.002 + 0.007}{0.002 + 0.007}{0.002 + 0.007}{0.002 + 0.007}{0.002 + 0.007}{0.002 + 0.007}{0.002 + 0.007}{0.002 + 0.007}{0.002 + 0.007}{0.007 + 0.006}{0.002 + 0.007}{0.002 + 0.007}{0.002 + 0.007}{0.002 + 0.007}{0.007 + 0.006}{0.002 + 0.007}{0.007 + 0.006}{0.002 + 0.007}{0.007 + 0.006}{0.002 + 0.007}{0.007 + 0.006}{0.002 + 0.007}{0.007 + 0.006}{0.002 + 0.007}{0.007 + 0.006}{0.002 + 0.007}{0.007 + 0.006}{0.002 + 0.007}{0.007 + 0.006}{0.002 + 0.007}{0.007 + 0.006}{0.002 + 0.007}{0.007 + 0.006}{0.002 + 0.007$	$SNe+BAO+CMB+H_0$	$0.271^{+0.01\$}_{-0.012}$	$0.272\substack{+0.014\\-0.014}$	$0.002\substack{+0.005\\-0.005}$	$0.002\substack{+0.005\\-0.005}$	-1 (fixed)	-1 (fixed)	0 (fixed)	0 (fix		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	wCDM										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SNe	$0.281\substack{+0.067\\-0.092}$	$0.296\substack{+0.102\\-0.180}$	0 (fixed)	0 (fixed)	$-1.011\substack{+0.208\\-0.231}$	$-1.001\substack{+0.348\\-0.398}$	0 (fixed)	0 (fix		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$SNe+BAO+H_0$	$0.309\substack{+0.029\\-0.028}$	$0.320\substack{+0.035\\-0.033}$	0 (fixed)	0 (fixed)	$-1.097\substack{+0.091\\-0.106}$	$-1.076^{+0.117}_{-0.133}$	0 (fixed)	0 (fix		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SNc+CMB	$0.271^{+0.018}_{-0.017}$	$0.279\substack{+0.025\\-0.023}$	0 (fixed)	0 (fixed)	$-0.983\substack{+0.051\\-0.056}$	$-0.955^{+0.075}_{-0.079}$	0 (fixed)	0 (fix		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SNe+BAO+CMB	$0.278\substack{+0.014\\-0.014}$	$0.285\substack{+0.018\\-0.017}$	0 (fixed)	0 (fixed)	$-0.993\substack{+0.052\\-0.055}$	$-0.951^{+0.075}_{-0.081}$	0 (fixed)	0 (fix		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SNe+BAO+CMB+H0	$0.272^{+0.013}_{-0.013}$	$0.271\substack{+0.014\\-0.014}$	0 (fixed)	0 (fixed)	$-1.008\substack{+0.050\\-0.054}$	$-1.013^{+0.068}_{-0.073}$	0 (fixed)	0 (fix		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	owCDM										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SNe+CMB	$0.281\substack{+0.069\\-0.087}$	$0.295\substack{+0.109\\-0.161}$	$-0.003^{+0.034}_{-0.027}$	$-0.005\substack{+0.067\\-0.041}$	$-1.007\substack{+0.179\\-0.194}$	$-0.993^{+0.299}_{-0.331}$	0 (fixed)	0 (fix		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SNe+BAO+CMB	$0.283^{+0.016}_{-0.015}$	$0.287\substack{+0.018\\-0.017}$	$-0.004^{+0.007}_{-0.007}$	$-0.002^{+0.008}_{-0.008}$	$-1.012\substack{+0.058\\-0.062}$	$-0.975^{+0.094}_{-0.098}$	0 (fixed)	0 (fix		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$SNe+BAO+CMB+H_0$	$0.272^{+0.013}_{-0.013}$	$0.272^{+0.015}_{-0.014}$	$0.002\substack{+0.006\\-0.006}$	$0.002\substack{+0.007\\-0.007}$	$-1.006\substack{+0.056\\-0.060}$	$-1.003^{+0.091}_{-0.095}$	0 (fixed)	0 (fix		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	w _z CDM										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SNe+CMB	$0.273^{+0.022}_{-0.020}$	$0.281\substack{+0.043\\-0.028}$	0 (fixed)	0 (fixed)	$-1.006\substack{+0.165\\-0.182}$	$-0.993^{+0.263}_{-0.307}$	$0.11^{+0.75}_{-0.77}$	0.17^{+}		
$\text{SNe+BAO+CMB+}H_0 \qquad 0.271_{-0.013}^{+0.013} 0.270_{-0.014}^{+0.015} 0 \text{ (fixed)} \qquad 0 \text{ (fixed)} \qquad -1.021_{-0.117}^{+0.123} -1.046_{-0.170}^{+0.179} 0.07_{-0.60}^{+0.49} 0.14_{-0.170}^{+0.123} 0.14_{-0.170$	SNe+BAO+CMB	$0.278\substack{+0.014\\-0.014}$	$0.284\substack{+0.018\\-0.017}$	0 (fixed)	0 (fixed)	$-1.052\substack{+0.126\\-0.120}$	$-1.013\substack{+0.183\\-0.173}$	$0.30 \substack{+0.48 \\ -0.62}$	0.26^{+}		
	$SNe+BAO+CMB+H_0$	$0.271\substack{+0.013\\-0.013}$	$0.270\substack{+0.015\\-0.014}$	0 (fixed)	0 (fixed)	$-1.021\substack{+0.123\\-0.117}$	$-1.046\substack{+0.179\\-0.170}$	$0.07\substack{+0.49\\-0.60}$	0.14^{+}_{-}		
$ow_z ext{CDM}$											
SNe+CMB $0.177^{+0.086}_{-0.093}$ $0.190^{+0.208}_{-0.154}$ $0.075^{+0.065}_{-0.128}$ $0.073^{+0.115}_{-0.141}$ $-0.988^{+0.176}_{-0.202}$ $-0.969^{+0.284}_{-0.345}$ $0.90^{+0.26}_{-3.88}$ $0.89^{+0.26}_{-0.202}$	SNe+CMB	$0.177^{+0.086}_{-0.093}$	$0.190\substack{+0.208\\-0.154}$	$0.075^{+0.065}_{-0.128}$	$0.073\substack{+0.115\\-0.141}$	$-0.988^{+0.176}_{-0.202}$	$-0.969^{+0.284}_{-0.345}$	$0.90^{+0.26}_{-3.88}$	0.89^{+}_{-}		
SNe+BAO+CMB $0.283^{+0.019}_{-0.017}$ $0.286^{+0.022}_{-0.023}$ $-0.004^{+0.017}_{-0.010}$ $-0.001^{+0.057}_{-0.013}$ $-1.010^{+0.169}_{-0.178}$ $-0.997^{+0.266}_{-0.293}$ $-0.01^{+1.04}_{-1.05}$ $0.13^{+0.017}_{-0.013}$	SNe+BAO+CMB	$0.283\substack{+0.019\\-0.017}$	$0.286\substack{+0.022\\-0.023}$	$-0.004_{-0.010}^{+0.017}$	$-0.001^{+0.037}_{-0.013}$	$-1.010^{+0.169}_{-0.178}$	$-0.997^{+0.266}_{-0.293}$	$-0.01^{+1.04}_{-1.05}$	0.13^{+}_{-}		
$\text{SNe+BAO+CMB+}H_0 \qquad 0.270_{-0.013}^{+0.014} 0.274_{-0.015}^{+0.016} 0.025_{-0.008}^{+0.008} 0.027_{-0.011}^{+0.012} -1.218_{-0.072}^{+0.069} -1.198_{-0.112}^{+0.100} 1.21_{-1.14}^{+0.100} 1.19_{-0.112}^{+0.100} 1.21_{-1.14}^{+0$	$SNe+BAO+CMB+H_0$	$0.270^{+0.014}_{-0.013}$	$0.274^{+0.016}_{-0.015}$	$0.025^{+0.008}_{-0.008}$	$0.027^{+0.012}_{-0.011}$	$-1.218^{+0.069}_{-0.072}$	$-1.198^{+0.100}_{-0.112}$	$1.21^{+0.10}_{-1.14}$	1.19^{+}_{-}		
$ \underbrace{ \text{SNe+BAO+CMB+}H_0 \left(\Delta \chi^2 = 4.0 \right) 0.270^{+0.029}_{-0.026} 0.274^{+0.032}_{-0.029} 0.025^{+0.016}_{-0.035} 0.027^{+0.026}_{-0.036} -1.218^{+0.425}_{-0.147} -1.198^{+0.293}_{-0.227} 1.21^{+0.19}_{-2.49} 1.19^{+0.19}_{-2.249} 1.19^{+0.19}_{-2.249} 1.19^{+0.19}_{-2.249} 1.19^{+0.29}_{-2.249$	SNe+BAO+CMB+ H_0 ($\Delta \chi^2 = 4.0$)	$0.270^{+0.029}_{-0.026}$	$0.274^{+0.032}_{-0.029}$	$0.025\substack{+0.016\\-0.035}$	$0.027\substack{+0.026\\-0.036}$	$-1.218\substack{+0.425\\-0.147}$	$-1.198^{+0.293}_{-0.227}$	$1.21^{+0.19}_{-2.49}$	1.19^+		

 H_0 : Cepheid distances <- Riess et al. 2011

. .

Howell et al. 2009 "TYPE IA SUPERNOVA SCIENCE 2010 – 2020"

Figure 5. ACDM model: 68.3%, 95.4%, and 99.7% confidence regions of the $(\Omega_m, \Omega_\Lambda)$ plane from SNe Ia combined with the constraints from BAO and CMB. The left panel shows the SN Ia confidence region only including statistical errors while the right panel shows the SN Ia confidence region with both statistical and systematic errors.

Table 5

Effect on constant w error bars and area of the 95% $w_0 - w_a$ confidence contour (inverse DETF FoM) for each type of systematic error, when SN Ia constraints are combined with constraints from CMB, H₀, and BAO.

Source	Error on Constant w	Inverse DETF FoM
Vega	0.033	0.19
All Instrument Calibration	0.030	0.18
(ACS Zeropoints)	0.003	0.01
(ACS Filter Shift)	0.007	0.04
(NICMOS Zeropoints)	0.007	i0.01
Malmquist Bias	0.020	0.07
Color Correction	0.020	0.07
Mass Correction	0.016	0.08
Contamination	0.016	0.05
Intergalactic Extinction	0.013	0.03
Galactic Extinction Normalization	0.010	0.01
Rest-Frame U-Band Calibration	0.009	i0.01
Lightcurve Shape	0.006	0.01
Quadrature Sum of Errors/Sum of Area (not used)	0.061	0.68
Summed in Covariance Matrix	0.048	0.42

Figure 6. wCDM model: 68.3%, 95.4%, and 99.7% confidence regions in the (Ω_m, w) plane from SNe Ia BAO and CMB. The left panel shows the SN Ia confidence region for statistical uncertainties only, while the right panel shows the confidence region including both statistical and systematic uncertainties. We note that CMB and SN Ia constraints are orthogonal, making this combination of cosmological probes very powerful for investigating the nature of dark energy.

Redshift dependence (Suzuki et al. 2012)

Figure 8. Constraints on w(z), where w(z) is assumed to be constant in each redshift bin, are plotted at the 68% probability level ($\Delta \chi^2 = 1$). Each panel shows different redshift binning. The results were obtained assuming a flat universe for the joint data set of SNe, BAO, CMB, and H_0 , with (dark/orange) and without (light/yellow) SN systematics. The middle panel takes a closer look at the z > 1 constraints, while the right panel shows the effects of w binning at low redshift. In this panel the best fit values of w cross w = -1 twice at low redshift, an unusual feature in dark energy models. We note that the Λ CDM model is consistent with our w(z) constraints for each of these binnings.

Future Prospects

Supernova Cosmology to be more precise ◎ Intrinsic diversity of SNIa the explosion asymmetry velocity-color correlation ☆ environmental effect ?

©dust extinction correction in host galaxies rest frame NIR observations MW Extinction in H band ~5% of extinction in V band

asymmetric explosion of SNIa

Maeda et al. 2010, 2011

Environments of SNIa

Gallagher+2005, Gallagher+2008, Sullivan+2010 Gupta+2011 D'Andrea+2011 Konishi+2011, ...

Delay Time Distribution of SNIa

Totani+2008 Last starburst epoch of passive host galaxies ← SED with SuprimeCam Comparison with SD model Hachisu+2008

SNIa rate

for Precise SN cosmology: NIR photometry

Wood-Vasey+2008 ... σ ~0.15mag without any LC corrections Contreras+ 2010 ... NIR light curves of 25 SNe from CSP MW Extinction in H band ... ~5% of extinction in V band

Examples: uBVgriYJH photometry

Burns+2011

NIR spectra of SNIa : less features

Marionet al. 2009

Future distant SNIa cosmology

• Large imaging surveys

supernovae, gravitational lens, BAO HyperSuprimeCam (HSC), LSST, EUCLID, WFIRST

HSC can find ~500 SNe/ nights

FoV 1.5 degree Φ

too many to follow by spectroscopy photometry NIR very important local calibrators

e.g. CANDLES: HST/MCT ~900orbits : rate studies

The University of Tokyo Atacama Observatory (TAO) Project

July 28,29, 2011 @LBNL Supernova Cosmology Porject collaboration meeting Mamoru Doi, University of Tokyo for TAO project

Chajnantor Summit (5640m) in the Parque Astronómico Atacama

Suitable for NIR template spectra of SNeIa

Observational Supportive Evidences OSNe: slightly fainter OGalaxy Distribution: typical scale slightly smaller OCMB: flat geometry of the universe OGravitational lens: distortion of galaxies slightly larger Onumber of faint galaxies: slightly numerous

Future projects

• Large imaging surveys

gravitational lens, supernovae (, BAO) HyperSuprimeCam(8.2m, 2012), LSST(8.4m ?), EUCLID (1.2m space, 2019?), WFIRST(1.5m?, 2022??)

- Large spectroscopic surveys galaxy distribution (BAO) BOSS (on going) PFS@Subaru(SUMIRE, 2017?) BigBOSS, EUCLID
- CMB fluctuations Planck(on going)

. . . .

Target: σ in w_0 ~5% (HSC)?

Summary

- Supernova Cosmology
 Flat universe ?!
 systematic errors dominate for low and middle z
- Future ... more accurate distance measurements understanding properties of SNIa rest frame NIR measurements

The Nobel Prize in Physics 2011 Saul Perlmutter, Brian P. Schmidt, Adam G. Riess

Supernova Cosmology Project

High-z Supernova Search Team

"for the discovery of the accelerating expansion of the Universe through observations of distant supernovae"

Congratulations!

A Letter from Dr. Brian Schmidt

Dear Mamoru

Thank you for your kind letter of congratulations on the announcement of my 2011 Nobel Prize in Physics. It is a great recognition for all the team that were a part of this discovery, and I am honoured to have been awarded such a prestigious prize.

Please also accept my thanks for the generous gift of your book, written with Dr Matsubara. I am also very grateful for the translation.

With best wishes,

Yours sincerely

Professor Brian P. Schmidt ARC Laureate Fellow ANU Distinguished Professor

Brian Schmidt博士講演会 2012年4月20日午後5時 東大安田講堂にて

Observations of SN candidates by Suprime-Cam at Keck Waimea base with Dr.Saul Perlmutter (2002)

