Axion Quintessence in String Theory

Yoske Sumitomo 住友洋介

Tata Institute of Fundamental Research, India In collaboration with Sandip Trivedi (TIFR) and Sudhakar Panda (HRI) atXiv:1011.5877

Motivation

- Time varying dark energy
- A comprehensive survey of axion quintessence in IIB string theory
- Several corrections from warping and nonperturbative effect
- SUSY breaking
- A contribution to the CMB polarization angle

Contents

- General idea
- Detailed setup
- Rotation angle of CMB angle
- Discussions
- Comments on SUSY breaking & anomaly mediation

General Idea

Setup : General ideas

4D Axions

Shift symmetry : good for suppressing several awkward couplings broken by **non-perturbative** effect, or **boundaries** Generating potentials $V(\phi) \sim M_P^4 e^{-S_{\text{inst}}} \cos \frac{\phi}{f_a}$ $V(\phi) \sim \mu^4 \frac{\phi}{f_c}$ by instanton effect

will be explain later

 ϕ : canonically normalized axion, f_a : axion decay constant

Non-perturbative potential

$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$$
 with $V(\phi) \sim M_P^4 e^{-S_{\text{inst}}} \cos \frac{\phi}{f_a}$

Consider the potential from **boundaries**!

Boundary potential

 $\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$ with $V(\phi) \sim \mu^4 \frac{\phi}{f_a}$ linear potential Requiring slowly varying potential: $M_P^2 \frac{V''}{V} \lesssim 1$, $M_P^2 \left(\frac{V'}{V}\right)^2 \lesssim 1$ $\phi \gtrsim M_P$

Pressure density ratio around $\phi \sim \phi_0$

$$w_{\phi} = \frac{p_{\phi}}{\rho_{\phi}} \sim \frac{M_P^2 - 6\phi_0^2}{M_P^2 + 6\phi_0^2} - \frac{24M_P^4}{(M_P^2 + 6\phi_0)^2} \frac{z}{1+z} + \cdots$$

Recent observational bound [10 Komatsu et.al. and others]

$$w_{\mathsf{DE}}(z) = w_0 + w_1 \frac{z}{1+z}, \quad w_0 = -0.93 \pm 0.13, \ w_1 = -0.41^{+0.72}_{-0.71}$$

 $\phi \geq 2.14 M_P$

Comments on linear potential

Small cosmological constant

In string setup, D-branes (boundaries of strings) can sit on highly warped throat.

$$\implies \quad \mu^4 \frac{\phi}{f_a} \sim \Lambda^4 \sim 10^{-123} M_P^4$$

due to warping suppression (We will see more detail later.)

axion density

matter or radiation

8

Coincidence problem?

 $\rho_m \sim \rho_{\mathsf{DE}} \quad \text{at present}$

$$\Gamma \equiv \frac{V''V}{(V')^2} > 1, \ \left| \frac{\Gamma'}{\Gamma(V'/V)} \right| \ll 1 \quad \text{but} \quad \left| \frac{\Gamma'}{\Gamma(V'/V)} \right| = 2(1+\Gamma) \quad \dots$$

Linear potential is sensitive to initial conditions.

Fine-tuning of end of universe may help.

Detailed Setup

IIB string setup

[o6 Svrcek-Witten]

$$C_{2} = \alpha' a^{a} w_{a}, \quad \int_{\Sigma_{a}^{(2)}} w_{b} = \delta_{ab} \qquad a \sim a + (2\pi)^{2}$$
Kinetic term
$$S_{\text{IIB}} = \frac{1}{(2\pi)^{7} g_{s}^{2} \alpha'^{4}} \int \left[R \wedge *1 - \frac{g_{s}^{2}}{2} F_{3} \wedge *F_{3} + \cdots \right]$$

$$= \int d^{4} x \sqrt{-g_{4}} \left[\frac{M_{P}^{2}}{2} R^{(4)} - \frac{f_{a}^{2}}{2} (\partial a)^{2} + \cdots \right]$$
with $M_{P}^{2} \sim L^{6} M_{s}^{2}, \quad f_{a}^{2} \sim \frac{M_{P}^{2}}{L^{4}} \quad \text{where} \quad V_{CY} = L^{6} \alpha'^{3}$
slow-roll condition becomes $a \gtrsim L^{2}/g_{s}$

Constraint from red giant (low-energy physics)

 $f_a > 10^9 \, {
m GeV}$ \longrightarrow $M_s \gtrsim 10^4 \, {
m GeV}, \quad L \lesssim 10^5$

Potentials from brane

NS5-brane at the bottom of a warped throat

 $S_{\text{NS5}} = -\frac{1}{(2\pi)^5 g_s^2 \alpha'^3} \int d^6 x \sqrt{-\det(P[g+g_s C])}$ $ds^2 = e^{2A} dx_4^2 + e^{-2A} dy_6^2$

$$V_0 = \frac{e^{4A_m}}{(2\pi)^5 g_s^2 \alpha'^2} \sqrt{\ell^4 + g_s^2 a^2} \sim \frac{e^{4A_m} M_s^4}{g_s} a$$

For instance, $L \sim 10, g_s \sim 1, a \sim L^2$

e.g. [o1 Giddings-Kachru-Polchinski]

 $\left(a \ll \frac{\ell^2}{a_2} \ll \frac{L^2}{a_2}\right)$

 $e^{A_m} \sim 10^{-28}$

can be stably-positioned at the tip of the smoothed geometry (like warped deformed conifold)

[o8 Silverstein-McAllister-Westphal]

Back reaction and corrections

Back reaction of NS5-brane

 M_P^2

δ

Five form and warp factor are closely related.

$$F_{5} = dC_{4} + C_{2} \wedge H_{3} \qquad \text{(or compactified NS_{5})} \quad \text{effective D}_{3})$$

$$\implies \delta e^{-4A} \sim \frac{g_{s} \alpha'^{2} a}{\pi r^{4}}$$
Volume change due to warping
e.g. Kahler correction [o8 Douglas-Frey-Underwood-Torroba]
$$\frac{K}{2} = -3 \ln \left[T + \bar{T} + \frac{2\tilde{V}_{w}}{2} \right] \quad (\tilde{V}_{w} = \int d^{6} u \sqrt{\tilde{a}\epsilon} e^{-4A}, \quad \tilde{V}_{CV} = \int$$

$$= -3\ln\left[T + \bar{T} + \frac{-\pi w}{\tilde{V}_{CY}}\right] \quad \left(\tilde{V}_w = \int d^6 y \sqrt{\tilde{g}_6} e^{-4A}, \ \tilde{V}_{CY} = \int d^6 y \sqrt{\tilde{g}_6}\right)$$
$$\left(\frac{\tilde{V}_w}{\tilde{V}_{CY}}\right) \sim \frac{g_s \alpha'^2}{\pi r_{\text{cutoff}}^4} a \qquad T \sim L^4$$

12

Moduli stabilization and axion

$$V_{\text{mod}} = e^{\frac{K}{M_P^2}} \left(K^{IJ} D_I W D_{\bar{J}} \bar{W} - \frac{3}{M_P^2} |W|^2 \right) + V_{\text{loc}}$$

$$\bigcup \qquad \text{SUSY min:} \quad D_I W = 0$$

$$\sim m_{3/2}^2 M_P^2 \qquad m_{3/2} \sim e^{\frac{K}{2M_P^2}} \frac{\langle W \rangle}{M_P^2}$$

Together with warping correction in Kahler

$$\delta V \sim V_{\text{mod}} \frac{a}{L^4} \quad \text{taking} \quad g_s \sim 1, \ r_{\text{cutoff}} \sim \sqrt{\alpha'}, \ a \sim L^2$$

e.g. $V_{\text{mod}} \sim \left(\frac{F}{M_P}\right)^2 M_P^2 = F^2 \sim (10 \text{ TeV})^4$
Even Low energy SUSY breaking
 $\delta V \sim \frac{F^2}{L^2} \lesssim \Lambda^4 \implies \begin{array}{c} L \gtrsim 10^{31} \\ \text{too large...} \end{array} \qquad M_{\text{compact}} \sim \frac{1}{L\sqrt{\alpha'}} \sim 10^{-96} \text{ eV}$

(neglecting moduli problem for a moment...)

Brane-anti brane in warped throat

3 Brane-anti 3 brane force $\sim \mathcal{O}\left(\frac{1}{r^4}\right)$ D3-brane warped throat: $e^{-4A} \sim \mathcal{O}\left(\frac{1}{r^4}\right)$

Brane-anti brane backreaction in warped throat [08 DeWolfe-Kachru-Murllgan]

 $\delta e^{-4A} \sim \frac{a \alpha'^2}{r^8} r_*^4$,non-constant dilaton, and non-ISD IR scale of the throat: $\frac{r_*}{\sqrt{\alpha'}} \sim e^{A_m} \sim \frac{2\pi N}{3g_s M^2}$

Contribution from dangerous IR

$$\delta V_w \sim \int_{r_*} dr r^5 \frac{a \alpha'^2}{r^8} r_*^4 \sim a \alpha'^2 r_*^2 \sim a e^{2A_m} \alpha'^3$$
$$\frac{\delta V_w}{V_{CY}} \sim a e^{2A_m} \qquad \text{with} \quad r_{\text{cutoff}} \sim \sqrt{\alpha'}$$

Brane-anti brane in warped throat

Same result from exact IR

[09 McGuirk-Sumitomo-Shiu, Bena-Grana-Halmagyi]

IR D3-anti D3 solution at the tip of deformed conifold

$$ds_{10}^{2} = e^{2A} dx_{4}^{2} + e^{-2A} d\tilde{s}_{6}^{2}$$

$$d\tilde{s}_{6} \sim r_{*}^{2} 2^{2/3} 3^{1/3} \left[\frac{1}{2} d\tau^{2} + d\Omega_{3}^{2} + \tau^{2} d\Omega_{2}^{2} \right] \qquad r^{3} = r_{*}^{3} \cosh \tau$$

$$\delta e^{-4A} \sim r_{*}^{-4} \frac{a \alpha'^{2}}{\tau}$$

Volume change

$$\delta V_w \sim \int_{\tau_{\rm IR}}^{\tau_{\rm UV}} d\tau \sqrt{\tilde{g}_6} \delta e^{-4A} \sim r_*^2 a \alpha'^2 (\tau_{\rm UV}^2 - \tau_{\rm IR}^2) \sim e^{2A_m} a \alpha'^3$$

where cutoff scales $\tau_{\rm UV}^2 - \tau_{IR}^2 \sim \mathcal{O}(1)$ same as before

Brane-anti brane correction in Kahler

Combining brane-anti brane and volume change due to warping

$$V_1 \sim V_{\text{mod}} \frac{a}{L^4} e^{2A_m} \sim \frac{M_{SB}^4}{L^2} e^{2A_m}$$

(even true for superpotential corrections)

The corrected potential dominates.

$$V_{1} \sim \Lambda^{4} \implies e^{A_{m}} \sim \frac{\Lambda^{2}}{M_{SB}}L \sim 10^{-32}L \quad \text{where} \quad a \sim L^{2}$$

Compare with DBI potential
$$V_{0} \sim M_{s}^{4}e^{4A_{m}}L^{2} \sim \frac{\Lambda^{4}}{L^{6}}\frac{\Lambda^{4}M_{P}^{4}}{M_{SB}^{8}} \lesssim \Lambda^{4} \quad \text{If } M_{SB} \gtrsim 1 \text{ TeV}$$

Quintessence should be realized with the potential from brane-anti brane.

Note: Brane-anti brane effect in DBI
$$\delta V \sim M_s^4 \delta e^{4A_m} a \sim M_s^4 e^{8A_m} \frac{a^2 \alpha'^2}{r_{\rm distance}^4}$$

Non-perturbative corrections

avoided if $L \gtrsim \mathcal{O}(10)$

Other corrections

Instanton corrections

Holomorphically allowed superpotential

 $\delta W = Ae^{-cT} + Be^{-cT - c(a - \tau b)/(2\pi)^2}$

Euclidean D₃ Euclidean D₁ correction to Euclidean D₃

> can destabilize the moduli...

We should use the superpotential from D7 gaugino condensation.

[o8 Silverstein-McAllister-Westphal]

Kahler potential

$$\frac{K}{M_P^2} = -3 \ln \left[T + \bar{T} + C \operatorname{Re} e^{-2\pi v_+ - (a - \tau b)/(2\pi)^2} + \cdots \right]$$

$$\delta V \sim V_{\text{mod}} C \frac{a}{L^4} e^{-2\pi L^2} \lesssim \Lambda^4 \quad \Longrightarrow \quad L \gtrsim \mathcal{O}(10)$$

$$(v_+ \sim L^2)$$

Comments on B2 axion

 $B_2 = \alpha' b^a w_a$ can also be axions.

N=1 Calabi-Yau orientifolds with O3/O7-planes

[04 Grimm-Louis]

$$\implies \frac{K}{M_P^2} \sim -3 \ln \left[T + \overline{T} + \frac{3}{2g_s} c^{ij} b_i b_j \right]$$

In general, we have large potential mass term as like η problem.

 $\delta V \sim V_{\rm mod} b^2$

Since there are no C₂ axion dependence in Kahler except for warping corrections, we can use it for string cosmology.

As like, axion monodromy inflation. [08 Silverstein-McAllister-Westphal]

[09 Flauger-McAllister-Pajer-Westphal-Xu]

Comments on C4 axion

Single modulus case (as like KKLT)

$$K = -3M_P^2 \ln \left(T + \overline{T}\right)$$
$$V(T + \overline{T}) = e^{K/M_P^2} \left(K^{ij} D_i W D_{\overline{j}} \overline{W} - \frac{3}{M_p^2} |W|^2\right)$$
$$\implies \text{ no potential generated}$$

Comments on C4 axion

Generating the potential? more complicated setup with multiple moduli $K = -\frac{3M_P^2}{2} \ln\left[(T_1 + \overline{T}_1)(T_2 + \overline{T}_2)\right] + K_X(X, X^{\dagger})$ ^[10 Dine-Festuccia-Kehayias-Wu] $W = W_0 - Ae^{-(T_1 + T_2)/b} + fX$ X : SUSY breaking field $\begin{cases} \text{Heavy moduli multiplet: } \rho = T_1 + T_2 & \implies \text{ integrated out} \\ \text{Light multiplet: } \psi = T_1 - T_2 & \implies \text{ includes axion!} \end{cases}$ Scales of axion: $m_{\psi} \sim e^{-\rho} M_P$ suppressed! However, the potential is nonperturvatively generated...

$$\implies$$
 requires 10⁴ axions (cycles) for quintessence

Instead, applicable to strong CP problem with fine-tuning SUSY breaking scale $\,f\,$

Rotation Angle of CMB Polarization

Rotation of the CMB polarization

[09 Arvanitaki--Dimopoulos--Dubovsky--Kaloper--March-Russell]

Topological coupling

String Axiverse map

$$C_2 \longrightarrow D_5\text{-brane wrapping 2-cycle}$$

$$S_{D5} = -T_{D5}(2\pi\alpha')^2 \int d^6x \sqrt{-\tilde{g}_6} e^{-\phi} \frac{1}{4} F_{\mu\nu}^2 + T_{D5}(2\pi\alpha')^2 \int \frac{1}{2} C_2 \wedge F \wedge F$$

Estimation of angle

$$\frac{\mathcal{L}}{\sqrt{-g_4}} = \frac{1}{2} (\partial \phi)^2 + \frac{\mu^4}{f_a} \phi - \frac{1}{4g^2} \phi + \frac{\phi}{8g^2 L^2 f_a} \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma}$$

Free wave:
$$\vec{D} = \vec{E} + \frac{\phi}{L^2 f_a} \vec{B}, \ \vec{H} = \vec{B} - \frac{\phi}{L^2 f_a} \vec{E}$$

Rotation angle (difference)

$$\Delta \alpha = \frac{1}{L^2 f_a} \int_{\text{recombination}}^{\text{present}} dt \dot{\phi}$$

$$\int \dot{\phi} \sim -\sqrt{\frac{10^{-123}}{3}} \frac{M_P}{\phi}$$

$$\Delta \alpha \lesssim \frac{M_P^2}{\phi_0} \times 10^{-62} \times 10^{33} \ll 10^{-1}$$
Current bound [10 Komatsu et.al.]
$$- 6.6 \times 10^{-2} \le \Delta \alpha \le 7.0 \times 10^{-3} \text{ satisfied if } \phi_0 \sim 100 M_P$$

without violating any other bounds

Discussions

Other comments

Light particles

many light particles

As like in RS II, wave-functions are well-localized on the brane. KK exchange is highly suppressed.

There may be so many constants terms after the compactification.

$$V_{\text{total}} = \mu^4 a + C$$

It is easy to absorb into linear term, if C is not significantly large.

Moduli problems

Reheating for BBN: $T_r \gtrsim 10 \, {
m MeV}$

Boltzmann eq. suggests

$$T_r \sim \sqrt{M_P \Gamma_{\phi}}, \quad \Gamma_{\phi} \sim \frac{m_{3/2}^3}{M_P}$$
 $\longrightarrow \quad m_{3/2} \gtrsim 100 \text{ TeV}$
 $\longrightarrow \quad M_{\text{SB}} \sim \sqrt{m_{3/2} M_P} \sim 10^{11} \text{ GeV}$

In our model, if $M_{SB}\gtrsim$ 1 TeV

the brane-anti brane potential from moduli stabilization dominates

But, SUSY breaking models with lower energy?

requires additional setups, including thermal inflation, extra symmetries, helicity suppression and etc.

QCD axion and U(1) axion

Hierarchy between QCD axion and U(1) axion

U(1) axion: related to C2 and two-cycles

QCD axion: presumably originated from C4 and four-cycles

How to explain the scale hierarchy $m_{\rm QCD}/m_{U(1)} \sim 10^{-23}$?

- Where D7-brane lives?
- GUT model with some other mechanism?

Comments on SUSY Breaking & Anomaly Mediation

SUSY breaking and mediation

Suppression of direct coupling

[07 Kachru-McAllister-Sundrum]

 $c\int d^2\theta d^2\bar\theta \hat{\mathcal{O}}Q^\dagger Q$

 $\hat{\mathcal{O}}$: hidden sector **non-chiral** operator

 $Q\,:$ visible chiral superfield

For instance,

SU(2) x SU(2) invariant non-chiral supermultiplet in Klebanov-Witten (Klevnov-Strassler) theory

 $\longrightarrow \mathcal{O}_8 = W_{\alpha}^2 W_{\dot{\alpha}}^2$ highest component has dimension $\Delta = 8$

$$c \propto \frac{\Lambda_{\rm IR}^4}{\Lambda_{\rm UV}^4} = e^{4A_m} \quad \text{Easily suppressed!}$$

Higher form mediation

[07 Verlinde-Wang-Wijnholt-Yavin]

Our axion brane

SUSY breaking branes

$$C_{\mathbf{A}} = \mathcal{C}_a w^a + \cdots$$

$$\mathcal{L}_{CS} = C_4 \wedge \mathcal{F}_{V,H}$$

$$\Longrightarrow \quad \mathcal{L}_{\mathcal{C}} = \mathcal{C} \wedge d(\mathcal{A}_V + \mathcal{A}_H) + \frac{1}{2m_A^2} |d\mathcal{C}|^2$$

$$\underset{dualizing \ \mathcal{C}}{\longmapsto} \quad \mathcal{L}_{\phi} = \frac{1}{2} m_A^2 |d\phi + \mathcal{A}_V + \mathcal{A}_H|^2 \implies \qquad \begin{array}{c} \text{massless combination} \\ U(1) \quad \mathcal{A}_V - \mathcal{A}_H \end{array}$$

Hypercharged anomaly mediation

[o7 Dermisek-Verlinde-Wang]

Gauge kinetic term

$$\frac{1}{4}\int d^2\theta f_h(\psi_m)W^{\alpha}W_{\alpha}+c.c.$$

SUSY breaking source: $F^m = e^{K/2M_P^2}K^{mn}D_nW$

Gaugino mass: $\tilde{M}_1 = F^m \partial_m \ln[\operatorname{Re} f_h]$

Anomaly mediation

Scalar mass:
$$\delta m_i^2 = -\frac{3}{10\pi^2}g_1^2 Y_i^2 M_1^2 \ln\left[\frac{m_A}{M_*}\right]$$

However...

$$\frac{a}{(2\pi)^3 g_s} \frac{1}{4} F_{\mu\nu}^2 \implies a \sim -\frac{b_0}{16\pi^2} \ln\left[\frac{m_A^2}{M_*^2}\right]$$

negligible!

Bulk anomaly mediation

Anomaly mediation is like scale changing with SUSY breaking

$$\begin{split} \frac{1}{4} \int d^2\theta \left(\frac{1}{g^2} - \frac{b_0}{16\pi^2} \ln\left[\frac{m_A^2}{M_*^2}\right] \right) W_\alpha W^\alpha + c.c. \\ & \text{with} \quad m_A \to m_A e^{\theta^2 F/M_P} \end{split}$$

$$\implies \text{Dilaton change} \quad \frac{1}{g_s} \to \frac{1}{g_s} - \frac{b_0}{4} \ln \left[\frac{m_A e^{\theta^2 F/M_P}}{M_*} \right]$$

Supersymmetrize constant DBI term with spurion field

GKP: $e^{A_m} \sim e^{-\frac{2piM}{3g_sN}}$

 $\int d^4x \sqrt{-g_4} \int d^2\theta d^2\bar{\theta} e^{4A_m} \frac{a}{(2\pi)^5 g_s \alpha'^2} \theta^2 \bar{\theta}^2 \quad \text{[o5 Choi-Falkowski-Niles-Olechowski]}$

doesn't cause serious contributions