Exotic Branes

Masaki Shigemori

(KMI Nagoya)

Hakone, I7 February 20II

Jan de Boer \& MS: I004.252I
Iosif Bena, Jan de Boer, Nick Warner \& MS: I IOx.nnnn

Gauge Theory, Gravity, and String Theory

Date: March 21-24, 2011
Place: School of Science, Nagoya University
Web: site:http://www.gcoe.phys.nagoya-u.ac.jp/ggs2011/

[^0]
Register by: March 7

Apply for travel support by: Feb 20

Oren Bergman: On M2-branes

Sumit Das:

Time-dependent processes in AdS/CFT

Nadav Drukker:

Wilson loops in gauge and string theory

Romuald Janik: QGP and AdS/CFT — hydrodynamics and beyond

I M Ir $_{\text {I }}$
KM I Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

Introduction

Duality in string/M-theory

- Relates various objects in string / M-theory

$$
\begin{aligned}
& T: \mathrm{D} p \leftrightarrow \mathrm{D}(p+1), \mathrm{F} 1 \leftrightarrow \mathrm{P}, \mathrm{NS} 5 \leftrightarrow \mathrm{KKM}, \ldots \\
& S: \mathrm{F} 1 \leftrightarrow \mathrm{D} 1, \mathrm{NS} 5 \leftrightarrow \mathrm{D} 5, \ldots
\end{aligned}
$$

U-duality

- Enhances in lower dims.
, M-theory on $T^{k}: E_{k(k)}(\mathbb{Z})$ [Cremmer+Julia, \& others] [Hull+Townsend]

k	D	$G(\mathbb{Z})$
1	10	1
2	9	$S L(2, \mathbb{Z}) \times \mathbb{Z}_{2}$
3	8	$S L(3, \mathbb{Z}) \times S L(2, \mathbb{Z})$
4	7	$O(5,5, \mathbb{Z})$
5	6	$S L(5, \mathbb{Z})$
6	5	$E_{6(6)}(\mathbb{Z})$
7	4	$E_{7(7)}(\mathbb{Z})$
8	3	$E_{8(8)}(\mathbb{Z})$

Codim-2 objects and U-duality

- U-duality on codim-2 objects produces exotic states

Known IOD/IID object wrapped on internal torus

They can have mass $\sim g_{s}^{-3}, g_{s}^{-4}$

[^1]
Codim-2 objects: example

- Example: Type II on T^{2}

	1	2	3	4	5	6	7	8	9
NS5	\cdot	\cdot	O	O	O	O	O	\sim	\sim

T-duality along x^{8}, x^{9}
${ }^{\prime} 5_{2}^{2, \prime}$
We will see that
this is a "T-fold".

Supertube effect

- Codim-2 object problematic
- Log divergences

$$
V \sim \frac{1}{r^{d-2}} \stackrel{d=2}{ } V \sim \log \left(\frac{\mu}{r}\right)
$$

- Are they relevant? Why care?
- Supertube effect $=$ spontaneous polarization [Mateos+Townsend]

Importance of exotic branes

- Non-exotic branes can puff up to produce exotic dipole charges
standard brane

\rightarrow No log divergence
\rightarrow Exotic branes are relevant to non-exotic physics; More common than previously thought!
- Black holes: bound states of branes
\rightarrow Generic microstates involve exotic charges
\rightarrow Microstate (non-)geometries?

Outline

- Introduction
- Exotic states \& their higher-D origin
- Sugra description
- Supertube effect
- Black hole microstates

Conclusion

Exotic states and their higher-D origin

Compactification to 3D

- M on T^{8} or Type II on T^{7}
$\rightarrow 3 \mathrm{D} \mathcal{N}=16$ sugra
\rightarrow U-duality group $E_{8(8)}(\mathbb{Z})$: generated by T- and S-dualities
\rightarrow I28 moduli scalars (in 3D, scalar = vector) $\in S O(16) \backslash E_{8(8)}(\mathbb{R}) / E_{8(8)}(\mathbb{Z})$
- Particle multiplet:
\rightarrow Start from a point-like object
e.g. D7(3456789) wrapped on T^{7}
\rightarrow Take T- and S-dualities to get other states

Exotic states in 3D

- Particle multiplet:
[9707217 Elitzur+Giveon+Kutasov+Rabinovici]
[97I2047 Blau+O'Loughlin]
[9809039 Obers+Pioline]

Type IIA	$\mathrm{P}(\mathbf{7}), \mathrm{F} 1(\mathbf{7}), \mathrm{D} 0(\mathbf{1}), \mathrm{D} 2(\mathbf{2 1}), \mathrm{D} 4(\mathbf{3 5}), \mathrm{D} 6(\mathbf{7})$,
	$\mathrm{NS5}(\mathbf{2 1}), \mathrm{KKM}(\mathbf{4 2}), 5_{2}^{2}(\mathbf{2 1}), 0_{3}^{7}(\mathbf{1}), 2_{3}^{5}(\mathbf{2 1})$,
	$4_{3}^{2}(\mathbf{3 5}), 6_{3}^{1}(\mathbf{7}), 0_{4}^{(1,6)}(\mathbf{7}), 1_{4}^{6}(\mathbf{7})$
Type IIB	$\mathrm{P}(\mathbf{7}), \mathrm{F} 1(\mathbf{7}), \mathrm{D} 1(\mathbf{7}), \mathrm{D} 3(\mathbf{3 5}), \mathrm{D} 5(\mathbf{2 1}), \mathrm{D} 7(\mathbf{1})$,
	$\mathrm{NS} 5(\mathbf{2 1}), \mathrm{KKM}(\mathbf{4 2}), 5_{2}^{2}(\mathbf{2 1}), 1_{3}^{6}(\mathbf{7}), 3_{3}^{4}(\mathbf{3 5})$,
	$5_{3}^{2}(\mathbf{2 1}), 7_{3}(\mathbf{1}), 0_{4}^{(1,6)}(\mathbf{7}), 1_{4}^{6}(\mathbf{7})$
M-theory	$\mathrm{P}(\mathbf{8}), \mathrm{M} 2(\mathbf{2 8}), \mathrm{M} 5(\mathbf{5 6}), \mathrm{KKM}(\mathbf{5 6})$,
	$5^{3}(\mathbf{5 6}), 2^{6}(\mathbf{2 8}), 0^{(1,7)}(\mathbf{8})$

- Notation for exotic states
$b_{n}^{c}: M=\frac{R^{b}\left(R^{c}\right)^{2}}{g_{s}^{n}} \quad b_{n}^{(d, c)}: M=\frac{R^{b}\left(R^{c}\right)^{2}\left(R^{d}\right)^{3}}{g_{s}^{n}}$
Example: $\quad 5_{2}^{2}(34567,89): \quad M=\frac{R_{3} \cdots R_{7}\left(R_{8} R_{9}\right)^{2}}{g_{s}^{2} l_{s}^{8}}$

Duality rules

- Duality rules can be read off from:

$$
T_{y}: \quad R_{y} \rightarrow \frac{l_{2}^{2}}{R_{y}}, g_{s} \rightarrow \frac{l_{s}}{R_{y}} g_{s} \quad S: \quad g_{s} \rightarrow \frac{1}{g_{s}}, \quad l_{s} \rightarrow g_{s}^{1 / 2} l_{s}
$$

- Example:

$$
\begin{aligned}
\operatorname{NS5}(34567) \xrightarrow{\mathrm{T}_{8}} & \mathrm{KKM}(34567,8) \xrightarrow{\mathrm{T}_{9}} 5_{2}^{2}(34567,89) \\
M=\frac{R_{3} \cdots R_{7}}{g_{s}^{2} l_{s}^{6}} & \xrightarrow{\mathrm{~T}_{8}} \frac{R_{3} \cdots R_{7}}{\left(g_{s} l_{s} / R_{8}\right)^{2} l_{s}^{6}}=\frac{R_{3} \cdots R_{7} R_{8}^{2}}{g_{s}^{2} l_{s}^{8}}: 5 \frac{1}{2}=\mathrm{KKM} \\
& \xrightarrow{\mathrm{~T}_{9}} \frac{R_{3} \cdots R_{7} R_{8}^{2}}{\left(g_{s} l_{s} / R_{9}\right)^{2} l_{s}^{8}}=\frac{R_{3} \cdots R_{7}\left(R_{8} R_{9}\right)^{2}}{g_{s}^{2} l_{s}^{10}}: 5_{2}^{2}
\end{aligned}
$$

Higher D origin = U-folds (1)

- Claim: higher D origin is

U-fold = non-geometric background

E.g. D7 on T^{7}

- (Magnetically) coupled to RR 0-form C_{0}
- 3D scalar $\phi=C_{0}$
- Monodromy: $\phi \rightarrow \phi+1$ shift (part of $S L(2, \mathbb{Z})$ duality of IIB)

Higher D origin = U-folds (2)

- ϕ gets combined with other scalars to form moduli matrix

$$
M \in \mathcal{M}=S O(16) \backslash E_{8(8)}(\mathbb{R}) / E_{8(8)}(\mathbb{Z})
$$

, Shifting symmetry + S, T-dualities $\longrightarrow E_{8(8)}(\mathbb{Z})$

- Can consider a particle with general U-duality monodromy

$$
q \in E_{8(8)}(\mathbb{Z}) \equiv G(\mathbb{Z})
$$

Higher D origin = U-folds (3)

- In IOD/IID, we have a non-geometric U-fold

Cf. F-theory, U-branes \& non-geom bg
[Greene+Shapere+Vafa+Yau] [Vafa] F-theory
[Kumar+Vafa] [Liu+Minasian] [Hellerman+McGreevy+Williams] contractible U-branes
[Dabholkar+Hull] [Flournoy+Wecht+Williams] ... non-contractible U-branes \& moduli stabl'n

Lesson I:

Exotic branes
 = Non-geometric U-folds

Sugra description of exotic states

Sugra solution for 5_{2}^{2} (1)

Want to make use of $\operatorname{KKM}(56789,4) \underset{T_{3}}{\Rightarrow} 5_{2}^{2}(56789,34)$
KKM(56789,4):

$$
\begin{aligned}
d s^{2}= & -d t^{2}+H d \vec{x}^{2} \\
& +H^{-1}\left(d x_{4}+\omega\right)^{2}+d x_{56789}^{2} \\
e^{2 \Phi}= & 1, \quad d \omega=*_{3} d H \\
H=1 & +\sum_{p} H_{p}, \quad H_{p}=\frac{R_{4}}{2\left|\vec{x}-\vec{x}_{p}\right|}
\end{aligned}
$$

$$
x_{5 . . .9}: T^{6}
$$

Sugra solution for $5_{2}^{2}(1)$

compactify $x_{3}=$ array centers along x_{3}

$$
H(r)=\sum_{p} \frac{R_{4}}{2\left|\vec{x}-\vec{x}_{p}\right|} \approx h+\sigma \log \left(\frac{\mu}{r}\right)
$$

T-dualize along x_{3} (Buscher rule)

Sugra solution for 52 (2)

$5_{2}^{2}(56789,34)$ metric:

$$
\begin{aligned}
& d s^{2}=-d t^{2}+H\left(d r^{2}+r^{2} d \theta^{2}\right)+H K^{-1} d x_{34}^{2}+d x_{56789}^{2} \\
& B_{34}=-K^{-1} \theta \sigma, \quad e^{2 \Phi}=H K^{-1}, \quad K \equiv H^{2}+\sigma^{2} \theta^{2}
\end{aligned}
$$

$$
\begin{gathered}
r, \theta: \mathbb{R}^{2} \\
x^{3,4}: T^{2} \\
x^{5 \ldots 9}: T^{6}
\end{gathered}
$$

$$
H(r)=h+\sigma \log \left(\frac{\mu}{r}\right) \quad \sigma=\frac{R_{3} R_{4}}{2 \pi \alpha^{\prime}} \quad \text { Cf. [Blau+O'Loughlin]: 6/ }
$$

- T-fold structure:

$$
\begin{aligned}
& \theta=0: \quad G_{33}=G_{44}=H^{-1}, \\
& \theta=2 \pi: \quad G_{33}=G_{44}=\frac{H}{H^{2}+(2 \pi \sigma)^{2}}
\end{aligned}
$$

$\rightarrow x_{3}-x_{4}$ torus size doesn't come back to itself!

T-fold structure of 5_{2}^{2}

- Package 3-4 part of G, B:

$$
M=\left(\begin{array}{cc}
G^{-1} & G^{-1} B \\
-B G^{-1} & G-B G^{-1} B
\end{array}\right)
$$

T-duality acts as

$$
M \rightarrow M^{\prime}=\Omega^{t} M \Omega, \quad \Omega \in S O(2,2, \mathbb{R})
$$

T-duality monodromy around 52 :

$$
\Omega=\left(\begin{array}{cc}
1 & 0 \\
2 \pi \sigma & 1
\end{array}\right): \quad M(\theta=0) \rightarrow M(\theta=2 \pi)
$$

Comments

- Not well-defined as stand-alone objects
- Log divergence
\rightarrow Superpositions (cf. F-theory 7-branes)
\rightarrow Configs with higher codims. (next topic!)
- Easy to get sugra metric for other exotic branes
, Questionable for states with $M \sim g_{s}^{-3}, g_{s}^{-4}$

Supertube effect and exotic branes

Supertube effect

"puffs up"

[Mateos+Townsend]

- Spontaneous polarization effect (cf. Myers effect)
- Produces new dipole charge
- Cross section = arbitrary curve
- Fluctuations of curve \rightarrow large degeneracy $\sim e^{\# \sqrt{N_{F 1} N_{D 0}}}$

Dualizing supertube effect

Original supertube effect:

$$
\mathrm{D} 0+\mathrm{F} 1(1) \rightarrow \mathrm{D} 2(1 \psi)
$$

dualize!

Various other known puff-ups:

$$
\begin{aligned}
\mathrm{F} 1(1)+\mathrm{P}(1) & \rightarrow \mathrm{F} 1(\psi) & & \mathrm{FP} \text { sys } \\
\mathrm{D} 1(1)+\mathrm{D} 5(12345) & \rightarrow \mathrm{KKM}(2345 \psi, 1) & & \text { LM geom } \\
\mathrm{M} 2(12)+\mathrm{M} 2(34) & \rightarrow \mathrm{M} 5(1234 \psi) & & \text { black ring }
\end{aligned}
$$

"Exotic" puff-ups

$$
\mathrm{D} 0+\mathrm{F} 1(1) \rightarrow \mathrm{D} 2(1 \psi)
$$

\checkmarkdualize
Exotic puff-up:

$$
\mathrm{D} 4(6789)+\mathrm{D} 4(4589) \rightarrow 5_{2}^{2}(4567 \psi, 89)
$$

More exotic:

$$
\text { D3 }(589)+\operatorname{NS5}(46789) \rightarrow 5_{3}^{2}(4567 \psi, 89)
$$

Still more exotic:

$$
\operatorname{NS5}(46789)+\operatorname{KKM}(46789,5) \rightarrow 1_{4}^{6}(\psi, 456789)
$$

(Standard branes can polarize into exotic branes
) Only dipoles \rightarrow no log divergence

Lesson 2:

Exotic branes are important for generic physics of string theory

Example: D4+D4 $\rightarrow 5_{2}^{2}$

- Basic sugra supertube

dualize
- Exotic 2-charge solution

Metric for D4+D4 $\rightarrow 5_{2}^{2}$

D4(6789)+D4(4589) $\rightarrow \mathbf{5}_{2}^{2}(4567 \boldsymbol{4}, 89)$

$$
d s^{2}=-\frac{1}{\sqrt{f_{1} f_{2}}}(d t-A)^{2}+\sqrt{f_{1} f_{5}} d x_{123}^{2}+\sqrt{\frac{f_{1}}{f_{2}}} d x_{45}^{2}+\sqrt{\frac{f_{2}}{f_{1}}} d x_{67}^{2}+\frac{\sqrt{f_{1} f_{2}}}{f_{1} f_{2}+\gamma^{2}} d x_{89}^{2},
$$

f_{i}, A : sourced along curve

$$
\begin{aligned}
& f_{1}=1+\frac{Q_{1}}{L} \int_{0}^{L} \frac{d v}{|\vec{x}-\vec{F}(v)|}, \quad f_{2}=1+\frac{Q_{1}}{L} \int_{0}^{L} \frac{|\overrightarrow{\vec{F}}(v)|^{2}}{|\vec{x}-\vec{F}(v)|} d v, \quad A_{i}=-\frac{Q_{1}}{L} \int_{0}^{L} \frac{\dot{F}_{i}(v)}{|\vec{x}-\vec{F}(v)|} \\
& d \gamma=*_{3} d A, \quad d \beta_{I}=*_{3} d f_{I} \\
& \gamma, \beta_{i} \text { have monodromy around curve }
\end{aligned}
$$

$$
\begin{aligned}
& \gamma \rightarrow \gamma-2 q, \quad \beta_{I} \rightarrow \beta_{I}-2 Q_{I} \rightarrow \text { T-fold structure } \\
& \text { just as before }
\end{aligned}
$$

- Asymptotically flat 4D

Metric for $\mathrm{D} 4+\mathrm{D} 4 \rightarrow 5_{2}^{2}$

Other fields:

$$
\begin{gathered}
e^{2 \Phi}=\frac{\sqrt{f_{1} f_{2}}}{f_{1} f_{2}+\gamma^{2}}, \quad B_{89}^{(2)}=\frac{\gamma}{f_{1} f_{2}+\gamma^{2}}, \quad C^{(3)}=-\gamma \rho+\sigma \\
\rho=\left(f_{2}^{-1}+d t-A\right) \wedge d x^{4} \wedge d x^{5}+\left(f_{1}^{-1}+d t-A\right) \wedge d x^{6} \wedge d x^{7} \\
\sigma=\left(\beta_{1}-\gamma d t\right) \wedge d x^{4} \wedge d x^{5}+\left(\beta_{2}-\gamma d t\right) \wedge d x^{6} \wedge d x^{7}
\end{gathered}
$$

Circular D4 + D4 $\rightarrow 5_{2}^{2}$

For circular profile, all functions can be explicitly written down

$$
\begin{gathered}
d x_{123}^{2}=\frac{R^{2}}{(\cos \phi-y)^{2}}\left[\frac{d y^{2}}{y^{2}-1}+\left(y^{2}-1\right) d \psi^{2}+d \phi^{2}\right] \\
f_{I}=1+\frac{Q_{I}}{R} \sqrt{\frac{\cos \phi-y}{-2 y}} F\left(\frac{1}{4}, \frac{3}{4} ; 1 ; z^{2}\right), A_{\psi}=-\frac{q R}{2} \frac{y^{2}-1}{(\cos \phi-y)^{1 / 2}(-2 y)^{3 / 2}} F\left(\frac{3}{4}, \frac{5}{4} ; 2 ; z^{2}\right) \\
\gamma=-\frac{q \sqrt{1-y}}{4 \sqrt{2}(-y)^{3 / 2}}\left\{(1+y) \mathbf{F}\left(\frac{\phi}{2} \left\lvert\, \frac{2}{1-y}\right.\right) F\left(\frac{3}{4}, \frac{5}{4} ; 2 ; z^{2}\right)\right. \\
\left.\quad+u \mathbf{E}\left(\frac{\phi}{2} \left\lvert\, \frac{2}{1-y}\right.\right)\left[3 F\left(\frac{3}{4}, \frac{1}{4} ; 2 ; z^{2}\right)+F\left(\frac{3}{4} ; \frac{5}{4} ; 2 ; z^{2}\right)\right]\right\} \\
\beta_{I}=\cdots
\end{gathered}
$$

Exotic branes and black hole microstates

Mathur's fuzzball proposal

- BHs are filled with stringy fuzz

No horizon
No singularity

- BH microstates $=$ different configurations of the fuzz
- BH entropy $=$ stat. mech. entropy of the fuzz

$$
S_{\mathrm{BH}}=\frac{A}{4 G_{N}} \stackrel{?}{=} S_{\mathrm{fuzz}}
$$

Sugra microstates

Supersym. BHs

Microstates describable within sugra as smooth, horizonless solutions?

- 2-charge system: Successful [Lunin+Matur] [Lunin+Maldacena+Maoz] Rychkou]
- All microstates have been constructed within sugra
- Counting sugra sol'ns reproduces micro entropy: $S_{\text {sugra }}=S_{\text {micro }}$
- But horizon vanishes classically
- 3-charge system: Not so successful
- Many sugra microstates have been constructed [Bena+Warner] [Berglund+Gimon+Levi]
- Evidence that they are not enough [de BoertEl-Showk+Messamah+Van de Bleeken]

They looked for geometric solutions in sugra and didn't find enough microstates.

Proposal:

Generic BH microstates involve exotic charges and are non-geometric!

Puff-ups and BH microstates (2)

- Standard 4D BH system
D0, D4(6789), D4(4589), D4(4567)
: Well studied for microstate counting
[Maladacena+Strominger+Witten]
- Possible puff-ups:

$$
\begin{array}{ll}
& D 4(6789) \\
\text { D0 } & \text { D4(4589) } \\
& \text { D4(4567) }
\end{array}
$$

puff up

$$
\text { NS5 (6789 }) \quad 5_{2}^{2}(6789,45 \psi)
$$

second puff up

NS5 (4589 $\psi) \quad 52(4589,67 \psi)$
NS5 (4567 $\psi) \quad 5_{2}^{2}(4567,89 \psi)$
non-geometric
More exotic charges?

Puff-ups and BH microstates (1)

- 5D BH system
M2(56), M2(78), M2(9A)
: Well studied for microstate geometry
[Mathur] [Bena+Warner] [Berglund+Gimon+Levi] [de Boer+El-Showk+Messamah+Van de Bleeken]
- Possible puff-ups:

M2(56) puff up	M5(789A ψ)	second puff up	$5^{3}(789 A \phi, 56 \psi)$
M2(78)	M5 (569A ψ)		$5^{3}(569 A \phi, 78 \psi)$
M2(9A)	$\begin{aligned} & \text { M5(5678 }) \\ & \text { cf. black ring } \end{aligned}$		$\begin{gathered} 5^{3}(5678 \phi, 9 A \psi) \\ \text { non-geometric } \end{gathered}$

Puff-ups and BH microstates (3)

2-charge system

- Worldvolume theory:
- Higgs branch coming from intersection of two stacks
- Gravity:
- Fluctuation of I-dimensional object

$$
S_{\text {brane }}=S_{\text {gravity }}
$$

Puff-ups and BH microstates (4)

3-charge system

- Worldvolume theory:
- More complicated Higgs branch from triple intersection
- Gravity:
- Fluctuation of 2-dimensional object?

- Exotic branes has just the right dimensionality
- Explains missing entropy in sugra microstate geometries?

$$
S_{\text {brane }}=S_{\text {gravity }} ? ? \quad \begin{aligned}
& \text { [Bena+Warner] [Berglund+Gimon+Levi] } \\
& \text { [de Boer+El-Showk+Messamah+Van den Bleeken] }
\end{aligned}
$$

In progress...

- Double puff-up possible if straight
- Supersymmetry analysis works
- Generic rule for puffed-up charges
- Not (yet) clear if we can bend it / curl it up
- Need to extend the existing ansatz in sugra
- Not globally geometric; only locally

Conclusions

Conclusions

- Exotic branes = non-geometries (U-folds)
- Exotic charges = U-duality monodromies
- Relevant even for non-exotic physics by supertube effect

Exotic branes are not at all exotic; They are everywhere!

Conclusions

- Unexplored exotic land out there awaiting us!
- Classification of exotic branes (bound states, etc.)
- AdS/CFT
- Double bubbles
- Microstate non-geometries
- 4D black ring??

Thanks!

Sugra solution for 5_{2}^{2} (1)

Want to make use of $\operatorname{KKM}(56789,4) \underset{T_{3}}{\Rightarrow} 5_{2}^{2}(56789,34)$
KKM(56789,4):

$$
\begin{aligned}
& d s^{2}=-d t^{2}+H d \vec{x}^{2}+H^{-1}\left(d x^{4}+\omega\right)^{2}+d x_{56789}^{2} \quad \vec{x} \in \mathbb{R}_{123}^{3}: \text { noncompact } \\
& e^{2 \Phi}=1, d \omega=*_{3} d H, \\
& R_{4} \quad x^{5 \ldots 9:} T^{6} \\
& H=1+\sum_{p} H_{p}, \quad H_{p}=\frac{\vec{x}-\vec{x}_{p} \mid}{2 \mid} \\
& \vec{x}_{p} \text { : positions of centers in } \mathbb{R}_{123}^{3} \\
& \text { b, compactify } x^{3}=\text { array centers along } x^{3} \\
& H(r)=h+\sigma \log \left(\frac{\mu}{r}\right) \\
& \text { [Sen] [Blau+O'Loughlin] } \\
& \sqrt{ } \text { T-dualize along } x^{3} \text { (Buscher rule) }
\end{aligned}
$$

Double puff-up

- DI-D5-P system and $3 \rightarrow 2 \rightarrow$ I puff-up

Straight tube

- DI-D5-P system and $3 \rightarrow 2 \rightarrow$ I puff-up

Susy projector analysis (1)

- Original DI-D5-P preserves supercharge $Q=\binom{Q_{1}}{Q_{2}}$

$$
\begin{array}{cl}
\mathrm{D} 1(5) & \Pi_{1} Q=\Pi_{2} Q=\Pi_{3} Q=0 \\
\mathrm{D} 5(56789) & \Pi_{i}=\frac{1}{2}\left(1+P_{i}\right), \quad i=1,2,3
\end{array}
$$

$$
\begin{aligned}
& P_{1}=\Gamma^{05} \sigma^{1}, \\
& P_{2}=\Gamma^{056789} \sigma^{1}, \\
& P_{3}=\Gamma^{05}
\end{aligned}
$$

Susy projector analysis (2)

- First puff-up:

$$
\widehat{\Pi}_{i}=\frac{1}{2}\left(1+\widehat{P}_{i}\right), \quad i=1,2
$$

$$
\begin{gathered}
\mathrm{d} 5(\psi 6789) \\
\mathrm{d} 1(\psi) \\
\mathrm{p}(\psi)
\end{gathered}
$$

$$
\begin{aligned}
& \hat{P}_{1}=c_{1} s_{2}\left(-s_{3} \Gamma^{05}+c_{3} \Gamma^{0 \psi}\right)+c_{1} c_{2}\left(c_{3} \Gamma^{05}+s_{3} \Gamma^{0 \psi}\right) \sigma^{1} \\
& \quad-s_{1} c_{2}\left(-s_{3} \Gamma^{056789}+c_{3} \Gamma^{0 \psi 6789}\right)+s_{1} s_{2}\left(c_{3} \Gamma^{0 \psi 6789}+s_{3} \Gamma^{0 \psi 6789}\right) \sigma^{1} \\
& \hat{P}_{2}=-s_{1} c_{2}\left(-s_{3} \Gamma^{05}+c_{3} \Gamma^{0 \psi}\right)+s_{1} s_{2}\left(c_{3} \Gamma^{05}+s_{3} \Gamma^{0 \psi}\right) \sigma^{1} \\
& -c_{1} s_{2}\left(-s_{3} \Gamma^{056789}+c_{3} \Gamma^{0 \psi 6789}\right)+c_{1} c_{2}\left(c_{3} \Gamma^{0 \psi 6789}+s_{3} \Gamma^{0 \psi 6789}\right) \sigma^{1} \\
& c_{a}=\cos \theta_{a}, \quad s_{a}=\sin \theta_{a}, \quad a=1,2,3
\end{aligned}
$$

- ψ can be any direction
- θ are constrained but there is one free parameter.
- $\widehat{\Pi}_{1} Q=\widehat{\Pi}_{2} Q=0$ for any ψ, θ
\rightarrow Can puff up into any curve with any density

Susy projector analysis (3)

- Second puff-up:

$$
\widehat{\Pi}=\frac{1}{2}(1+\hat{\hat{P}})
$$

```
kkm(\chi6789,5)
kkm(\chi6789,\psi)
    p(\chi)
```

- \hat{P} contains free parameters χ (puff up direction) and θ (density)

- $\widehat{\Pi} Q=0$ for any χ, θ
\rightarrow Can puff up into any surface!?

Projector analysis: 2-charge exercise (2)

- $\mathrm{FI}(\mathrm{I})+\mathrm{D} 0 \rightarrow$ Straight $\mathrm{D} 2(\mathrm{I} \Psi)+\mathrm{P}(\Psi)$
- $\mathrm{FI}(\mathrm{I})$-D0 preserves supercharge $Q=\binom{Q_{1}}{Q_{2}}$

$$
\begin{aligned}
& \Pi_{i} Q=0 \quad \Pi_{i}=\frac{1}{2}\left(1+P_{i}\right), \quad i=1,2 \\
& P_{1}=\Gamma^{01} \sigma^{3}, \quad P_{2}=\Gamma^{0} i \sigma^{2} \\
& \underbrace{\stackrel{5}{5}}_{\psi}
\end{aligned}
$$

iittala Alvar Aalto

Projector analysis: 2-charge exercise (1)

- $\mathrm{Fl}(\mathrm{I})+\mathrm{D} 0 \rightarrow$ flat $\mathrm{D} 2(\mathrm{I} \Psi)+\mathrm{P}(\Psi)$
- $\mathrm{FI}(\mathrm{I})$-D0 preserves supercharge $Q=\binom{Q_{1}}{Q_{2}}$

$$
\begin{aligned}
& \Pi_{i} Q=0 \quad \Pi_{i}=\frac{1}{2}\left(1+P_{i}\right), \quad i=1,2 \\
& P_{1}=\Gamma^{01} \sigma^{3}, \quad P_{2}=\Gamma^{0} i \sigma^{2}
\end{aligned}
$$

[^0]: CCOE "Quest for Fundamental Principles in the Universe" "Quest for Fundamental Principles in the Universe" http://www.gcoe.phys.nagoya-u.ac.jp/

 Local Organizing Committee:
 H. Kanno, T. Sakai, H. Fuji, M. Shigemori, S. Moriyam M. Tanabashi, M, Harada, S. Hirano

[^1]: [97072I7 Elitzur+Giveon+Kutasov+Rabinovici] [97I 2047 Blau+O'Loughlin]
 [9809039 Obers+Pioline]

