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phases and phase transitions in condensed matter systems

classical phases

Ginzberg-Laudau theory

Nambu-Goldstone modes

quantum phases

gapped phases

gapless phases

- topological phases

- Fermi liquid

-relativistic conformal 
 quantum critical point

quantum critical points

- topological insulators
- topological superconductors

- non Fermi liquid

- insulators

-quantum Lifshitz 
 critical point
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- connection to D-branes

insulator: material which resists the flow of electric current. 

(gapped) superconductor: "band insulator" for fermionic
                                           quasiparticles



band theory and band insulator
Bloch (1928), Wilson (1931)

single partcle energy spectrum of an electron in solids

= "band structure"

insulator metal

 crystal momentum in
 1st Brillouin Zone, BZ

conduction band

valence band

gap 

fermi energy

fermi "surface"

Role of electric wavefucntions in insulators ???



distinction of insulators by their wavefunctions (or: entanglement) 

boring insulator
less entangled

--> "topological insulators"

topological insulator
more entangled

topological insulator: preview



bulk-boundary correspondence

boundary of topological insulator = perfect metal 

boundary is completely
immune to disorder 
(evades Anderson
 localization).

perfect metaltopological insulator

boundary of ordinary insulator = insulator

A consequence: ordinary and topological insulators cannot
                          be connected adiabatically. 

physical consequence of entangled wavefunctions



"Bloch wavefunction"

a map from BZ to the space of
wavefunctions (projectors)

n,m: number of bands

possible obstruction for constructing a smooth wavefunction over BZ

E.g. quantum Hall effect

Berry gauge field (k-space gauge field)

Bloch wavefunction bundle



E.g.: 

discrete symmetries

discrete symmetry relating k and -k: 

E.g.: time-reversal 

topological phases with Z2 classification 

topological invariant:  

topological phases in odd space dimensions



in d=2 spatial dimensions, with strong T breaking by B

integer quantum Hall effect (IQHE)
K.v.Klitzing, G. Dorda, M. Pepper (1980)



integer quantum Hall edge states

Secret behind quanitization: 

There is a gapless chiral edge mode along the samlple
boundary. 

edge states 

B

bulk states

bulk states

Number of edge modes

Robust against disorder (chiral fermions cannot be backscatterd).

1D boundary (edge)



"Bloch wavefunction"

IQHE as a topological insulator

Hall conductance = topological invariant ! "Chern number"

Thouless-Kohmoto-Nightingale-den Nijs (TKNN) (1982)

- "bulk" point of view

    Bloch wavefunctions define a map from BZ to the space of
    wavefunctions (projection operators).



TRS

IQHE for spin up

IQHE for spin down

B

-B

bulk states

bulk states

in d=2 spatial dimensions, with good T 

quantum spin Hall effect (QSHE)

- time-reversal invariant band insulator 

- strong spin-orbit interaction

- gapless Kramers pair of edge modes



in d=2 spatial dimensions, with good T 

- odd number of Kramers pairs at edge  --> stable

even number of Kramers pairs at edge  --> unstable

quantum spin Hall effect (QSHE)

QSHE vacvacordinary

quantum spin Hall insulator is characterized by a binary (   )
topological quantity. 

1+1=0 3 = 1

experimental realization:
HgTe quantum well

Kane-Mele (05)

Bernevig-Hughes-Zhang (2006)
M. Koenig et al. Science (2007)



experimental realization:
HgTe quantum well

Bernevig-Hughes-Zhang (2006)
M. Koenig et al. Science (2007)

strong spin-orbit interaction

quantum spin Hall effect (QSHE)

QSHE 



d=3 dimensions

time-reversal invariant

characterized by a Z2 quantity

when surface states = odd number of Dirac fermions

Fu-Kane-Mele, Moore-Balents, Roy (06)

bulk

surface

trivial non-trivial

(insulator)

Z2 topological insulator in d=3 spatial dimensions



surface

condensed matter realization of 
domain-wall fermion

bulk
(insulator)

two valleys
(and spin)

surface of top. insulator = "1/4 of graphene" !

Theorem (by Nielsen-Ninomiya): 
For any 2D lattice with TRS

# of Dirac cones must be even.



BiSe Y. Xia et al. Nature Phys. (2009)

5 Dirac conesBiSb D. Hsieh et al. 
Nature (08)

Y. L. Chen et al. Science (2009)BiTe

ARPES experiments on Z2 topological insulators



SiMOS,GaAs

HgTe

BiTe, BiSe, BiSb

- QSHE (2007)

- chiral p-wave SC (topological superconductor) 

- 3D Z2 topological insulator (2008) 

- IQHE (1980) 

more topological insulators/superconductors ? 

SrRuO
nu=5/2 FQHE

never ending story or happy ending ?

K.v.Klitzing, G. Dorda, M. Pepper (1980)

B.Bernevig, T.Hughes, S.C.Zhang (06)
M. Konig et al. (07)
Kane and Mele et al. (05-06)

Moore-Balents (07) Fu-Kane-Mele (07) Roy (07)
D. Hsieh et al (08)

Y. Maeno et al (94)
G. Moore and N. Read et al (91)R.L.Willett et al (87)

Summary so far...

Imposing time-resersal symmetry --> new topological insulators



discrete symmetries



particle-hole symmetry; examples

generic SC:

Nambu spinor: 

particle-hole symmetry (PHS): 

Sz-conserving SC: 

PHS = +1 



- Altland-Zirnbauer (1997) : "ten-fold way"

random matrix ensembles - "ten-fold way"

claim: this is the exhaustive classification of discrete symmetries

- Wigner-Dyson  (1951 -1963) : "three-fold way" complex nuclei

mesoscopic SC systems
- Verbaarschot  (1992 -1993) chiral phase transition in QCD

BdG Hamiltonians realize 6 out of 10 symmetry classes.  



integer classification

binary classification

no top. ins./SC

classification of topological insulators and superconductors



symmetry classes of 
quadratic fermionic 
Hamiltonians 
(Altland-Zirnbauer)

spatial dimensions

presence/absence 
of topological state

integer classification

binary classification

no top. ins./SC

classification of topological insulators and superconductors



IQHE

QSHE
Z2 topological 
insulator

p+ip wave SC

d+id wave SC

polyacetylene

TMTSF

classification of topological insulators and superconductors



- Schnyder, SR, Furusaki, Ludwig (for d=1,2,3, 2008)

- Kitaev (all d and periodicity "Periodic Table", 2009)

- Qi, Hughes, Zhang (cases with one symmetry,  field theory description, 2008)

classification of topological insulators and superconductors

- SR and Takayanagi (construction by D-branes, 2010)

- periodicity 8 both in 
  spatial dimension
  and symmetry class

- Z followed by two Z2 
("dimensional reduction")

- d>3 can characterize
  adiabatic processes, rather
  than states themselves

10 = 8 + 2

- always 5 kinds of
 topological states
 for each dimension.



- discover a topological invariant

- bulk-boundary correspondence
Anderson delocalization

topological insulators/SC

non-linear sigma model on G/H
+ (discrete) topological term

underlying strategies for classification

- obtained 3D analogue of TKNN integer: 

- complication by 



why periodicity ? and why K-theory ? 

"Bloch wavefunction"

a map from BZ to the space of
wavefunctions (projectors).

By "adding" topologically trivial bands should not change the
topological nature of the system

--> consider "stably" equivalent classes of insulators 

n,m: number of bands

e.g.

Can think of "difference" E-F of two Hamiltonians: 

Bott periodicity = periodicity of topological insulators/SCs 

Kitaev (2009)



- 3He B is newly identified as a topological SC (superfluid) in d=3. 

- topological singlet SC in d=3 is predicted.

IQHE

QSHE

Z2 topological 
insulator

polyacetylene

d+id wave SC

p+ip wave SC

3He B

TMTSF

some outcomes of classification 

- topological superconductors in non-centrosymmetric SCs.

topological singlet SC



3He B is a topological "superconductor" in class DIII

topologically protected 
surface Majorana fermion

3d analogue of Moore-Read state

Schnyder, SR, Furusaki, Ludwig (2008)
Roy (2008)
Qi, Hughes, Raghu, Zhang (2008)



Y. Nagato et al. JLTP (2007)

Y. Aoki et al. PRL (2005)

Y. Wada et al. PRB (2008)

M. Saitoh et al. PRB(R) (2006)

S. Murakawa et al. 
           PRL (2009)

Majorana mode detected by surface acoustic impedance

Salomma and Volovik, 1980s



classification of D-branes 

Sen, Witten, Horava 
(98-99)



massive fermion

E.g. IQHE (d=2): p=q=5

fermion mass

Dp-Dq system

edge state = intersection

Dirac model of class A TI

N.B.        : "external" gauge field 
               : "internal" gauge field

Rey (2007), Davis et al (2008)
Bergman et al (2010), Fujita et al (2009)



one-to-one correspondence between TIs/TSCs and D-branes

(i)  PHS 
     = orientifold projection (SO or Sp)

(ii)  SLS ("chiral symmetry")
     = prarity (inversion)

(iii)  TRS = orientifold x parity

class A and AIII = Type IIA and IIB 
 
real symmety classes = Type I

symmetry classspatial dimensionsDp Dq
SO orSp O-plane 



"1st decendant" = non BPS D-brane

1st decendant

E.g. QSHE"2nd decendant" = brane-antibrane bound state

2nd decendant

primary series



QHE, FQHE

Kitaev
model (?) 

gamma matrix
Kitaev model (?)

internal and external gauge group

c.f. projective construction of FQHE by X. G. Wen

C. Hoyos-Badajoz et alJ. Maciejko et al

B. Swingle et al A Karch et al



honeycomb lattice Kitaev model in 2 dimensions

Kitaev model (purely bosonic model) = fermion + Z2 gauge field

Alexei Kitaev, Ann. Phys. (2005)

- exactly solvable in terms of projective construction
                                              (emergent fermions)

- two phases: Abelian and non-Abelian phases 

- supports Abelian and non-Abelian anyons 
  as a quasi particle excitation

introduce four Majorana fermions 



"spin-orbit" Kitaev model ("gamma matrix" Kitaev model)

Kitaev type model on the diamond lattice

SR (2009)

interacting topological phase in symmetry class DIII



AdS/CFT, AdS/CS, AdS/TIS, TSC

holographic dual of 
interacting topological phase

Witten (98)

holographic dual of pure YM 
in (2+1)D 

Fujita, Li, SR, Takayanagi(2009)



  - Complete classification of topological phases in fermion systems
    in all dimensions and symmetry classes   

bulk-to-boudary approach, K-theory, D-branes, dimensional reduction ... :
all agree

collaborators: 
Andreas Schnyder (Max Planck)      Akira Furusaki (RIKEN)
Joel Moore (Berkeley)                   Andreas Ludwig (Santa Barbara)
Pavan Hosur (Berkeley)                 Ashvin Vishwanath (Berkeley)

a big open issue: interactions

- do non-interacting topological phases survive interactions ?

- can topological phases arise solely due to interactions ?

- is there "fractional" topological insulators/superconductors ?

- is there a topological classification for bosonic systems 
                                                       (e.g., spin systems)

  


