Higher Dimensional Black Holes

Akihiro Ishibashi

Cosmophysics Group, IPNS, KEK

Talk at Onomichi 12 Feb. 08

・ロト ・聞 と ・ ヨ と ・ ヨ と …

э

Introduction BHs in D = 4 GR BHs in D > 4 Symmetry properties Remarks

Purpose of this talk

– give a brief overview of recent progress in understanding basic properties of $D \ge 4$ black holes

くロト (得) (目) (日)

э

Black holes in general relativity

Definitions:

Consider a strongly causal, asymptotically flat spacetime (M, g_{ab}) Let \mathcal{I}^+ be a set of *idealized* distant observers (i.e., future *null infinity*)

Black hole B := M - Chronological past of \mathcal{I}^+

Event horizon of B $\mathcal{H} :=$ Boundary of B

Predictable B : \Leftrightarrow Outside B (including \mathcal{H}) is globally hyperbolic

Remarks:

- H is, by definition, a null hypersurface
- *H* is a global notion; it has no distinguished local significance

イロト 不得 とくほと くほとう

Area Theorem: (Hawking 71)

Consider a predictable black hole that is a solution to Einstein's equation with the null energy conditions

The surface area A of horizon cross-sections of ${\mathcal H}$ can never decrease with time

The null energy conditions: $T_{ab}k^ak^a \ge 0$ for any null vectors k^a

Remark:

A resemblance to 2nd-law of thermodynamics: (Entropy *S* never decreases: $\delta S \ge 0$) (Bekenstein 73)

くロト (得) (目) (日)

Towards local characterization of black holes

Gravitating source bends the spacetime geometry

$$\mathrm{d}s^2 = -(1-2\Phi)\mathrm{d}t^2 + \frac{\mathrm{d}r^2}{1-2\Phi} + r^2\mathrm{d}\Omega^2 : -\Phi:$$
 Newton potential

Static observers (along $t^a = (\partial/\partial t)^a$) are no longer geodeisc but are accelerated: i.e.,

$$t^c \nabla_c t^a = \kappa(r) (\partial/\partial r)^a$$

- A distinguished null hypersurface N in the limit Φ → 1/2 since g^{ab}(dr)_a(dr)_b → 0, t^at_a → 0 as Φ → 1/2 (r → r_H)
 t^c∇_at^a = κt^a on N
 - $-t^a$ is *tangent* and *normal* to \mathcal{N}
 - $-\kappa = \kappa(r_H)$: redshifted proper acceleration of observer t^a on \mathcal{N}

◎ ▶ ▲ 三 ▶ ▲ 三 ▶ ○ 三 ● ○ ○ ○

Killing Horizons

Definitions:

Killing horizon $\mathcal{N} :\Leftrightarrow$ A null hypersurface whose null generators coincide with the orbits of a one-parameter group of isometries (so that there is a Killing field K^a normal to \mathcal{N})

Surface gravity κ of $\mathcal{N} :\Leftrightarrow A$ function on \mathcal{N} that satisfies

$$\nabla^a (K^b K_b) = -2\kappa K^a \cdots (*)$$

Remarks:

- eq. (*) is rewritten as $K^b
 abla_b K^a = \kappa K^a$
- The notion of a Killing horizon is independent of the notion of event horizon
- Surface gravity κ must be constant along each null generator of N, but can, in general, vary from generator to generator

・ロット (雪) (日) (日) (日)

In a wide variety of circumstances, the event horizon ${\cal H}$ of a stationary black hole is also a Killing horizon

e.g., Kerr metric (rotating black hole)

$$ds^{2} = \rho^{2} \left(\frac{dr^{2}}{\Delta} + d\theta^{2} \right) + (r^{2} + a^{2}) \sin^{2} \theta d\phi^{2}$$
$$-dt^{2} + \frac{2Mr}{\rho^{2}} (a \sin^{2} \theta d\phi - dt)^{2}$$
(1)

where $\rho^2=r^2+a^2\cos^2\theta\,,\quad \Delta=r^2-2Mr+a^2$ and

$$K^a = t^a + \frac{a}{r_H^2 + a^2}\varphi^a$$

Although both t^a and ϕ^a are spacelike near \mathcal{H} , $K^a K_a \to 0$ as $r \to r_H$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ → 目 → のへの

Carter's Rigidity Theorem: (Carter 73)

Consider a stationary-axisymmetric black hole with t^a and φ^a which satisfy $t\wedge \mathrm{d} t\wedge \varphi=0=\varphi\wedge \mathrm{d} \varphi\wedge t$

There exists a Killing field K^a of the form

 $K^a = t^a + \Omega_H \varphi^a$

which is normal to \mathcal{H} . The constant Ω_H is called the angular velocity of \mathcal{H} . Furthermore, the surface gravity κ must be constant over \mathcal{H}

Remarks:

- purely geometrical result: no use of Einstein's field equations
- leaves open the possibility that there could exist stationary BHs whose event horizons are not Killing horizons

イロト 不得 トイヨト イヨト 三日

BH Mechanics and thermodynamics

Mechanics of stationary black holes (Bardeen, Carter & Hawking 73)

$$\kappa = const., \quad \delta M = \frac{1}{8\pi}\kappa\delta A + \Omega_H\delta J$$

M: Mass, κ : Surface gravity, Ω_H : Horizon angular velocity, J: Angular momentum

The dominant energy conditions, $T_{ab}V^aW^a \ge 0$ for any causal vectors V^a , W^a

⇒ Mathematical analogue of 0th & 1st laws of equilibrium thermodynamics

$$T = const., \quad \delta E = T\delta S + work term$$

Quantum effects \Rightarrow $T = \kappa/2\pi$ (Hawking 75)

◆□ > ◆◎ > ◆臣 > ◆臣 > ─ 臣

Indication of BH uniqueness

If a stationary black hole corresponds to an equilibrium thermodynamic system, then such a stationary BH should be described by merely a small numbers of parameters

Towards BH uniqueness theorems

Topology Theorem: (Hawking 73)

Let $({\cal M},g)$ be a stationary predictable black hole spacetime that satisfies the dominant energy conditions

Spatial cross-section, Σ , of each connected component of the event horizon \mathcal{H} is homeomorphic to a 2-sphere

Towards BH uniqueness theorems

Rigidity Theorem: (Hawking 73)

Let (M,g) be an asymptotically flat, regular stationary, predictable black hole spacetime that is a vacuum or electro-vacuum solution to Einstein's equations. Assume further that (M,g) be analytic

The event horizon \mathcal{H} must be a Killing horizon If rotating, the BH spacetime must be axisymmetric

Remarks:

- makes no assumptions of symmetries beyond stationarity
- makes use of Einstein's field equations
- use the result of Topology theorem: $\Sigma\approx S^2$

Uniqueness theorems

Uniqueness Theorems:

(Israel-Carter-Robinson-Mazur-Bunting-Chrusciel)

Let (M,g) be a regular, stationary predictable BH solution of a vacuum or electro-vacuum Einstein's equations. Furthermore, assume (M,g) be analytic and \mathcal{H} be connected

The BH is uniquely specified by its mass, angular momentum, and charges

Remarks:

- vacuum rotating black hole spacetime ⇒ Kerr-metric
- based on the results of Topology and Rigidity theorems

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト ・

Uniqueness theorems

 If weak cosmic censorship (Penrose) holds, gravitational collapse always forms a black hole

- strong support from e.g., BH thermodynamics

- The Kerr-metric is stable (Press-Teukolsky 73, Whiting 89)
 - \Rightarrow describes a possible final state of dynamics
 - ⇒ describes astrophysical black holes–formed via gravitational collapse–in our universe
- A proof in smooth (not real-analytic) setup (lonoscu Klain)

(Ionescu-Klainerman 07)

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト

Summary: Black holes in 4D general relativity

Asymptotically flat stationary BHs in 4-dimensions

- Exact solutions e.g., Kerr metric
 Stability Stable ⇒ final state of dynamics
 Topology Shape of the horizon ≈ 2-sphere
 Symmetry Static or axisymmetric
 Uniqueness Vacuum ⇒ Kerr-metric
- BH Thermodynamics Quantum aspects

Which properties of 4D BHs are extended to D > 4?

・ロン ・四 と ・ ヨン ・ ヨン

Rotating Holes (Myers & Perry 86) Rotating Rings (Emparan & Reall 02)

イロト イポト イヨト イヨト

Rotating Holes (Myers & Perry 86) Rotating Rings (Emparan & Reall 02)

Stability — not fully studied yet

Static vacuum \Rightarrow stable (AI & Kodama 03)

Rotating holes \Rightarrow partial results:

Special case (e.g., Kunduri-Lucietti-Reall 06, Murata-Soda 07)

イロト 不得 とくほ とくほとう

Rotating Holes (Myers & Perry 86) Rotating Rings (Emparan & Reall 02)

Stability — not fully studied yet

Static vacuum \Rightarrow stable (AI & Kodama 03)

Rotating holes \Rightarrow partial results:

Special case (e.g., Kunduri-Lucietti-Reall 06, Murata-Soda 07)

• Topology — more varieties Some restrictions, (Galloway & Schoen 05)

< 回 > < 回 > < 回 > -

Rotating Holes (Myers & Perry 86) Rotating Rings (Emparan & Reall 02)

Stability — not fully studied yet

Static vacuum \Rightarrow stable (AI & Kodama 03)

Rotating holes \Rightarrow partial results:

Special case (e.g., Kunduri-Lucietti-Reall 06, Murata-Soda 07)

- Topology more varieties Some restrictions, (Galloway & Schoen 05)
- Symmetry rigid at least, one rotational symmetry: (Hollands, AI & Wald 07)

ヘロト ヘ戸ト ヘヨト ヘヨト

ъ

Rotating Holes (Myers & Perry 86) Rotating Rings (Emparan & Reall 02)

Stability — not fully studied yet

Static vacuum \Rightarrow stable (AI & Kodama 03)

Rotating holes \Rightarrow partial results:

Special case (e.g., Kunduri-Lucietti-Reall 06, Murata-Soda 07)

- Topology more varieties Some restrictions, (Galloway & Schoen 05)
- Symmetry rigid at least, one rotational symmetry: (Hollands, AI & Wald 07)
- Uniqueness non-unique Hole and Rings w/ the same (J, M)

Static holes: e.g., (Gibbons, Ida & Shiromizu 02) Uniqueness in 5*D* rotating holes/rings (Morisawa-Ida 04, Hollands & Yazadjiev 07) (Morisawa, Tomizawa & Yasui 07)

Rotating Holes (Myers & Perry 86) Rotating Rings (Emparan & Reall 02)

Stability — not fully studied yet

Static vacuum \Rightarrow stable (AI & Kodama 03)

Rotating holes \Rightarrow partial results:

Special case (e.g., Kunduri-Lucietti-Reall 06, Murata-Soda 07)

- more varieties Some restrictions, (Galloway & Schoen 05) Topology
- Symmetry rigid at least, one rotational symmetry: (Hollands, AI & Wald 07)
- Uniqueness non-unique Hole and Rings w/ the same (J, M)

Static holes: e.g., (Gibbons, Ida & Shiromizu 02)

Uniqueness in 5D rotating holes/rings (Morisawa-Ida 04, Hollands & Yazadjiev 07) (Morisawa, Tomizawa & Yasui 07)

• BH Thermodynamics — generalize to D > 4 e.g., (Rogatko 07)

・ロット (雪) (日) (日) (日)

- Static spherical holes in $\forall D > 4$ (Tangherlini 63)
- Stationary rotating black holes in ∀D > 4 (Myers-Perry 82)
 - Topology of horizon cross-sections $\approx S^{D-2}$
 - [(D+1)/2] commuting Killing fields $\Rightarrow [(D-1)/2]$ spins
 - for $D = 4, 5, \exists$ Kerr upper-bound on angular momentum J
 - for $D \ge 6$, No upper-bound on $J \implies$ ultra-spinning

$$\exists \text{ horizon} \Leftrightarrow 0 = g^{rr} = \Pi_i \left(1 + \frac{(J_i/M)^2}{r^2} \right) - \frac{GM}{r^{D-3}}$$

as the last term dominates for small r when $D \ge 6$ Sufficient conditions for no-bound:

- two $J_i = 0$ for $D(odd) \ge 7$, one $J_i = 0$ for $D(even) \ge 6$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ → 目 → のへの

Stationary, rotating black-rings in D = 5 (Emparan-Reall 02)

- – Topology of the horizon $\approx S^1 \times S^2$
- – 3-commuting Killing fields Isom: $\mathbb{R} \times SO(2) \times SO(2)$
- not uniquely specified by global charges (M, J₁, J₂)
 two ring-solutions w/ the same (M, J₁, J₂ = 0)

 \Rightarrow In D = 5, Uniqueness Theorem no longer holds as it stands

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

- Solutions akin to Emparan-Reall's ring $(M, J_1 \neq 0, J_2 = 0)$
 - Black-ring w/ $(M, J_1 = 0, J_2 \neq 0)$ (Mishima & Iguchi 05)
 - Black-ring w/ two angular momenta (M, J₁ ≠ 0, J₂ ≠ 0) (Pomeransky & Sen'kov 06) Uniqueness proof (Morisawa-Tomizawa & Yasui 07)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Multi-black vacuum solutions:

- Black di-rings ("ring" + "ring") (Iguchi & Mishima 07)
- Black-Saturn ("hole" + "ring") (Elvang & Figueras 07)
- Orthogonal-di-/Bicycling-Rings ("ring" + "ring") (Izumi 07 Elvang & Rodriguez 07)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Introduction

BHs in D = 4 GR

BHs in D > 4

Symmetry properties

Remarks

Black holes, rings on various manifolds

- MP in AdS or dS e.g., (Gibbons, Lu, Page, Pope 04)
- on Gibbons-Hawking e.g. (BMPV 97, Gauntlett-Gutowski-Hull-Pakis-Reall 03)
 on 4-Euclid space e.g. (Elvang-Emparan-Mateos-REall 04)
- on Kaluza-Klein
 - on Eguchi-Hanson

e.g., (Ishihara, Kimura, Matsuno, Nakagawa, Tomizawa 06-08)

- on Taub-NUT e.g., (Bena-Kraus-Warner 05)
- Black-p-branes
- Black holes on Braneworld

・ 同 ト ・ ヨ ト ・ ヨ ト

Studies of D > 4 black holes

- 4D Black holes:
 - ⇒ "Special" in many respects
- D > 4 Black holes: Much larger variety
 - \Rightarrow Classify (or get phase space diagram for) them!
 - need study
 - Dynamical stability
 - Possible horizon topology
 - Symmetry properties

・ 同 ト ・ ヨ ト ・ ヨ ト …

Stability of static black holes

Gravitational perturbations of $\forall D > 4$ static black holes

- 3 types: tensor-, vector-, scalar-type w.r.t. (D-2)-base space
 - get a single master equation for each type of perturbations (Kodama & AI 03)
 - \Rightarrow make complete stability analysis possible
 - \Rightarrow Stable for vacuum case (AI & Kodama 03)
 - Einstein-Λ-Maxwell case: not completed yet
 - – New ingredient in $D \ge 5$ Tensor-mode w.r.t. (D-2)-horizon manifold Σ

c.f. if Σ is a *highly clumpy* Einstein-manifold, \Rightarrow tensor-mode instability (Gibbons & Hartnoll 02)

・ロト ・ 理 ト ・ ヨ ト ・

Static background D = m + n (warped product type) metric:

$$ds_{(D)}^{2} = {}^{(m)}g_{AB}dy^{A}dy^{B} + r(y)^{2}d\sigma_{(n)}^{2}$$

e.g., when m = 2

$$^{(2)}g_{AB}dy^{A}dy^{B} = -f(r)dt^{2} + \frac{1}{f(r)}dr^{2}, \ d\sigma_{(D-2)}^{2} = n$$
-Einstein

Master equations for each tensor/vector/scalar-type of perturbations:

$$\frac{\partial^2}{\partial t^2} \Phi = -A \Phi = \left(\frac{\partial^2}{\partial r_*^2} - U(r) \right) \Phi$$

– looks just like a Schroedinger equation: If $A \ge 0 \Rightarrow$ stable

▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ののの

Stability of rotating holes: Some partial analysis

Perturbations on cohomogeneity-1 MP holes:

$$D = \text{odd}, J_1 = J_2 = \cdots J_{[(D-1)/2]}$$

 \Rightarrow enhanced symmetry: $\mathbb{R} \times U((D-1)/2)$ \Rightarrow depends only on r

Remarks

 \Rightarrow Perturbation equations reduce to *ODEs*

- $D(\text{odd}) \ge 7$: \Rightarrow Stable w.r.t. a subclass of tensor perturbations (tensor-modes w.r.t. (D-3)-base space) (Kunduri-Lucietti-Reall 06)
- D = 5: Decoupled master equations for zero-modes of vector and tensor (gravity) fields
 - ⇒ Towards complete stability analysis of (cohomo-1) MP holes (Murata & Soda 07)

ヘロン 人間 とくほ とくほ とう

Stability of rotating holes: Some partial analysis

Perturbations on cohomogeneity-2 MP holes:

A single rotation: symmetry enhance $U(1)^N \Rightarrow U(1) \times SO(D-3)$

$$ds_D^2 = ds_{(4)}^2$$
(looks like ${\scriptscriptstyle D}$ = 4 Kerr metric) $+ \, r^2 \cos^2 heta \cdot d\Omega_{(D-4)}^2$

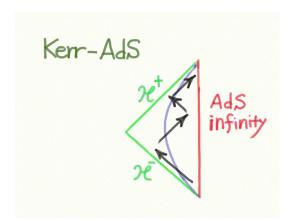
For $D \ge 7$, decoupled master equation for tensor-type perturbations w.r.t. (D-4)-base space \Leftrightarrow Massless Klein-Gordon equation

- Conserved energy integral \Rightarrow Stable
- AdS case \Rightarrow supperradiant instability for $|\Lambda| > a^2/r_H^4$ (?) (Kodama 07)
- observed also in cohomo-1 AdS-MP-holes

(Kunduri-Lucietti-Reall 06)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction BHs in D = 4 GR BHs in D > 4 Symmetry properties Remarks



 $E := -\int_{S} dS n^{a} \chi^{b} T_{ab} \quad \chi^{a}: \text{ co-rotate Killing vector}$ (2)

Note: χ^a can be non-spacelike if $|\Lambda| \leq a^2/r_H^4 \Rightarrow E \geq 0$

<ロ> (四) (四) (三) (三) (三) (三)

Remarks

Stability of rotating holes: Some partial analysis

Indication of instability of cohomogeneity-2 MP holes (heuristic argument)

• $D \ge 6 \Rightarrow$ no upper-bound on J:

- ultra-spinning hole looks like "pancake"

- \Rightarrow looks like black-p-brane near the rotation axis
- ⇒ expected to be unstable due to Gregory-Laflamme modes (Emparan & Myers 03)

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

Myers-Perry solution:

$$ds^{2} = -dt^{2} + \frac{M}{\rho^{2}r^{D-5}}(dt + a\sin^{2}\theta d\phi)^{2} + \frac{\rho^{2}}{\Delta}dr^{2} + \rho^{2}d\theta^{2} + (r^{2} + a^{2})\sin^{2}\theta d\phi^{2} + r^{2}\cos^{2}\theta d\Omega^{2}_{(D-4)}$$

where

$$\rho^2 = r^2 + a^2 \cos^2 \theta \quad \Delta = r^2 + a^2 - \frac{M}{r^{D-5}}$$

In the ultra-spinning limit: $a \to \infty$ with $\mu = M/a^2$ kept finite, near the pole $\theta = 0$ ($\sigma := a \sin \theta$) the metric becomes

$$ds^{2} = -\left(1 - \frac{\mu}{r^{D-5}}\right)dt^{2} + \left(1 - \frac{\mu}{r^{D-5}}\right)^{-1}dr^{2} + r^{2}d\Omega_{(D-4)}^{2} + d\sigma^{2} + \sigma^{2}d\phi^{2}$$

 \Rightarrow Black-membrane metric \Rightarrow Gregory-Laflamme instability

★週 ▶ ★ 注 ▶ ★ 注 ▶ …

э

- Similar heuristic arguments apply also to *thin black-rings*, other multi-rings, Saturns, etc.
 - i.e., They are expected to suffer from GL-instability

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

э

Topology of event horizon

- Method 1: global analysis (Chrusciel & Wald 94)
 - Combine Topological Censorship and Cobordism of spacelike hypersurface S with boundaries at horizon and infinity

Topological Censorship $\Rightarrow S$ is simply connected

 $\Sigma = \partial \mathcal{S}$ is cobordant to S^{D-2} via \mathcal{S}

In $4D \Rightarrow \partial S$ must be S^2

- powerful method in 4D but turns out to be not so in $D \ge 6$ e.g., (Helfgott-Oz-Yanay 05)

ヘロン 人間 とくほ とくほ とう

Topology of event horizon

- Method 2: local analysis (Hawking 72)
 - Combine variational analysis $\delta\theta/\delta\lambda$ and fact that outer-trapped surface must be inside BH, to show

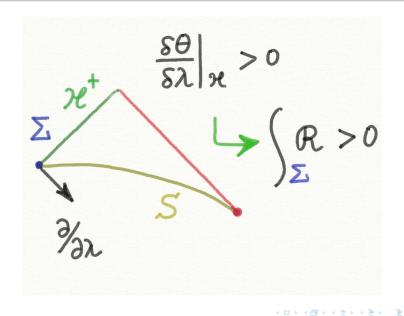
$$\int_{\Sigma} \mathcal{R} > 0$$

w/ Σ being a horizon cross-section and ${\mathcal R}$ scalar curvature of Σ

•

- \Rightarrow in 4D, $\Sigma \approx S^2$ via Gauss-Bonnet Theorem
- generalizes to D > 4 (Galloway & Schoen 05)

イロト 不得 トイヨト イヨト 三日



Topology Theorem: (Galloway & Schoen 05 Galloway 07)

Consider a $\forall D \ge 4$ (stationary) black hole spacetime satisfying the dominant energy conditions

The topology of (event) horizon cross-section Σ must be such that Σ admits metrics of positive scalar curvature

Remarks:

- ∑ can be topologically e.g., S^{D-2}, S^m × ··· × Sⁿ
 ⇒ much larger variety in D > 4 than 4D
- $5D \Rightarrow S^3$ Black holes and $S^1 \times S^2$ Black-rings
- What if $\Lambda < 0$ and $D \ge 6$? \Rightarrow more variety?

イロト 不得 トイヨト イヨト 三日

Symmetry property of black holes

Assertion:

(1) The event horizon of a stationary, electro-vacuum BH is a Killing horizon

(2) If rotating, the BH spacetime must be axisymmetric

- * Event Horizon: a boundary of causal past of distant observers
- * Killing Horizon: a null hypersurface with a Killing symmetry vector field being normal to it

The event horizon is *rigidly* rotating with respect to infinity ... Black Hole Rigidity

・ロト ・厚ト ・ヨト ・ヨト

relates "global" (even horizon) to "local" (Killing horizon)

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト …

- - relates "global" (even horizon) to "local" (Killing horizon)
- foundation of BH Thermodynamics (Constancy of surface gravity ⇒ Oth Law of Thermodynamics)

イロト 不得 とく ヨト くヨトー

- - relates "global" (even horizon) to "local" (Killing horizon)
- foundation of BH Thermodynamics (Constancy of surface gravity ⇒ Oth Law of Thermodynamics)
- – rotating hole \Rightarrow extra-(axial) symmetry

イロン イ理 とく ヨント

- - relates "global" (even horizon) to "local" (Killing horizon)
- foundation of BH Thermodynamics (Constancy of surface gravity ⇒ Oth Law of Thermodynamics)
- – rotating hole \Rightarrow extra-(axial) symmetry
- – a critical step toward proof of "Uniqueness" in 4D case

・ロト ・帰り ・ヨト ・ヨトー

- - relates "global" (even horizon) to "local" (Killing horizon)
- foundation of BH Thermodynamics (Constancy of surface gravity ⇒ Oth Law of Thermodynamics)
- – rotating hole \Rightarrow extra-(axial) symmetry
- – a critical step toward proof of "Uniqueness" in 4D case
- In D > 4, Uniqueness no longer holds as it stands, and there seems to be a much larger variety of exact BH solutions

・ロト ・得 ト ・ヨト ・ヨト

- relates "global" (even horizon) to "local" (Killing horizon)
- foundation of BH Thermodynamics (Constancy of surface gravity ⇒ Oth Law of Thermodynamics)
- – rotating hole \Rightarrow extra-(axial) symmetry
- – a critical step toward proof of "Uniqueness" in 4D case
- In D > 4, Uniqueness no longer holds as it stands, and there seems to be a much larger variety of exact BH solutions
 - ⇒ "Rigidity"–if holds also in D > 4—places important restrictions on possible exact BH solutions

・ロト ・同ト ・ヨト ・ヨトー

An important question:

- Does there exist a D > 4 BH solution with only two commuting Killing fields (i.e., w/ isom. R × U(1))? (Reall 03)
 - all known D > 4 BH solutions have multiple rotational symmetries

⇒ Hunt (less-symmetric) black objects!

– need to show the existence of, at least, one U(1)-symmetry

・ロト ・帰り ・ヨト ・ヨトー

Rigidity theorem in D = 4

However Hawking's proof for 4D case relies on the fact that event horizon cross-section Σ is topologically 2-sphere \Rightarrow Generalization to D > 4 is not at all obvious

Goal: Prove BH Rigidity Theorem in $D \ge 4$ No Assumption on Topology of Event Horizon

・過 と く ヨ と く ヨ と

Rigidity theorems in $D \ge 4$ (Hollands, A.I., & Wald 07)

Let (M, g) be a $D \ge 4$, analytic, asymptotically flat, stationary vacuum BH solution to Einstein's equation. Assume event horizon \mathcal{H} is analytic, non-degenerate, and topologically $\mathbf{R} \times \Sigma$ with cross-sections Σ being compact, connected.

Theorem 1: There exits a Killing field K^a in the entire exterior of the BH such that K^a is normal to \mathcal{H} and commutes with the stationary Killing vector filed $t^a \Rightarrow$ "Killing horizon"

Theorem 2: If t^a is not normal to \mathcal{H} , i.e., $t^a \neq K^a$, then there exist mutually commuting Killing vector fields $\varphi_{(1)}^a$, \cdots , $\varphi_{(j)}$ $(j \ge 1)$ with period 2π and $t^a = K^a + \Omega_{(1)}\varphi_{(1)}^a + \cdots + \Omega_{(j)}\varphi_{(j)}^a$, where $\Omega_{(j)}$'s constants. \Rightarrow "Axisymmetry"

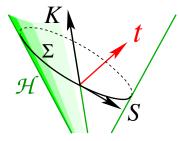
・ロット (雪) (日) (日)

Brief sketch of proof of Theorem 1

Find Killing Vector on the horizon 9et H La Ka Extend Ka to outside the BH

Sketch of proof of Theorem 1

"Trial foliation" Σ & "candidate" vector K^a



 K^a depends on Σ

Step 1

Construct a "candidate" Killing field K^a on \mathcal{H} which satisfies

- $K^a K_a = 0$ and $\pounds_t K^a = 0$ on \mathcal{H}
- $\pounds_K g_{ab} = 0$ (Killing eqn.) on \mathcal{H}
- $\alpha = const.$ ($K^c \nabla_c K^a = \alpha K^a$) on \mathcal{H}

Try this one ! $K^a = t^a - s^a$

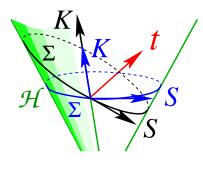
Step 2

- Show Taylor expansion $\partial^m(\pounds_K g_{ab})/\partial\lambda^m = 0$ at \mathcal{H}
- Extend *K^a* to the entire spacetime by invoking analyticity

Introduction BHs in D = 4 GR BHs in D > 4 Symmetry properties Remarks

However, there is No reason why α need be constant

— wish to find "correct" \tilde{K}^a with $\tilde{\alpha} = const. =: \kappa$ on \mathcal{H} by choosing a new "correct" foliation $\tilde{\Sigma}$



$$K^a + s^a = t^a = \tilde{K}^a + \tilde{s}^a$$

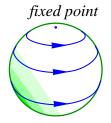
Both K^a and \tilde{K}^a are null $\tilde{K}^a = f(x) K^a$

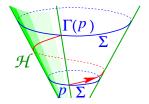
Task: Find a solution to equation for coordinate transformation from trial Σ to correct $\tilde{\Sigma}$:

$$-\pounds_s f(x) + \alpha(x) f(x) = \kappa$$

When one solves this equation, the spacetime dimensionality comes to play a role

Find correct foliation $\tilde{\Sigma}$: 4D case Hawking 73





In 4D, horizon cross-section Σ is 2-shere, and therefore the orbits of s^a must be closed

There is a discrete isometry " Γ " which maps each null generator into itself

Discrete isometry, Γ , helps to

• — define the surface gravity as $\kappa \equiv P^{-1} \int_0^P \alpha [\phi_s(x)] ds$

ヘロト ヘ戸ト ヘヨト ・ヨト

• — find correct foliation $\tilde{\Sigma}$

show Step 2

Find correct foliation $\tilde{\Sigma}$: D > 4 case

No reason that the isometry s^a need have closed orbits on Σ . \Rightarrow in general, there is No discrete isometry Γ .

e.g., 5D Myers-Perry BH w/ 2-rotations $\Omega_{(1)}$, $\Omega_{(2)}$:

$$\Sigma \approx S^3$$
, $t^a = K^a + s^a$

 $s^{a} = \Omega_{(1)}\varphi^{a}_{(1)} + \Omega_{(2)}\varphi^{a}_{(2)}$

Each rotation Killing vector φ^a has closed orbits but s^a does not if $\Omega_{(1)}$ and $\Omega_{(2)}$ are incommensurable

Solution to D > 4 case:

(i) When s^a has closed orbits on $\Sigma \Rightarrow$ we are done!

$$\kappa = \frac{1}{P} \int_0^P \alpha[\phi_s(x)] ds$$
 P : period ϕ_s : isom. on Σ by s^a

(ii) When s^a has No closed orbits \Rightarrow Use Ergodic Theorem !

$$\kappa = \lim_{T \to \infty} \frac{1}{T} \int_0^T \alpha[\phi_s(x)] ds = \frac{1}{\operatorname{Area}(\Sigma)} \int_{\Sigma} \alpha(x) d\Sigma$$

"time-average" "space-average"

- can show that the limit "κ" exists and is constant
- — can find well-behaved transformation $\Sigma \to \tilde{\Sigma}$

(雪) (ヨ) (ヨ)

Solution to D > 4 case:

— wish to solve equation, $\alpha(x)f(x) - \pounds_s f(x) = \kappa$ to find the "correct" horizon Killing field, $\tilde{K}^a = f(x) K^a$

Solution:

$$f(x) = \kappa \int_0^\infty P(x,T) dT$$
, $P(x,T) = \exp\left(-\int^T \alpha[\phi_s(x)] ds\right)$

— since $\forall \epsilon > 0$, $P(x,T) < e^{(\epsilon-\kappa)T}$, for sufficiently large T, f(x) above is well-defined

イロト イポト イヨト イヨト 一臣

— wish to show $t^a = K^a + \Omega_{(1)}\varphi^a_{(1)} + \cdots + \Omega_{(j)}\varphi^a_{(j)}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

— wish to show $t^a = K^a + \Omega_{(1)}\varphi^a_{(1)} + \cdots + \Omega_{(j)}\varphi^a_{(j)}$

- — Get horizon Killing vector field K^a by Theorem 1
 - ⇒ Then $S^a \equiv t^a K^a$ generates Abelian group, \mathcal{G} , of isometries on horizon cross-sections Σ

— wish to show
$$t^a = K^a + \Omega_{(1)}\varphi^a_{(1)} + \cdots + \Omega_{(j)}\varphi^a_{(j)}$$

- — Get horizon Killing vector field K^a by Theorem 1
 - ⇒ Then $S^a \equiv t^a K^a$ generates Abelian group, \mathcal{G} , of isometries on horizon cross-sections Σ
- — If S^a has a closed orbit $\Rightarrow \exists U(1)$ we are done!

イロト 不得 トイヨト イヨト 三日

— wish to show $t^a = K^a + \Omega_{(1)}\varphi^a_{(1)} + \cdots + \Omega_{(j)}\varphi^a_{(j)}$

- — Get horizon Killing vector field K^a by Theorem 1
 - ⇒ Then $S^a \equiv t^a K^a$ generates Abelian group, \mathcal{G} , of isometries on horizon cross-sections Σ
- — If S^a has a closed orbit $\Rightarrow \exists U(1)$ we are done!
 - even if not \Rightarrow closure of \mathcal{G} on compact space Σ must be a *N*-torus $\approx U(1)^N$ where $N = \dim(\overline{\mathcal{G}}) \ge 2$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ → 目 → のへの

— wish to show $t^a = K^a + \Omega_{(1)}\varphi^a_{(1)} + \cdots + \Omega_{(j)}\varphi^a_{(j)}$

- — Get horizon Killing vector field K^a by Theorem 1
 - ⇒ Then $S^a \equiv t^a K^a$ generates Abelian group, \mathcal{G} , of isometries on horizon cross-sections Σ
- — If S^a has a closed orbit $\Rightarrow \exists U(1)$ we are done!
 - even if not \Rightarrow closure of \mathcal{G} on compact space Σ must be a *N*-torus $\approx U(1)^N$ where $N = \dim(\overline{\mathcal{G}}) \ge 2$

• — Extend $U(1)^N$ into the entire spacetime by analyticity

イロト 不得 と 不良 と 不良 と 一度

Immediate generalizations:

 can apply to Einstein-Λ-Maxwell system e.g., charged-AdS-BHs

ヘロト ヘ戸ト ヘヨト ヘヨト

3

Immediate generalizations:

- can apply to Einstein-Λ-Maxwell system e.g., charged-AdS-BHs
- combined together with Staticity Theorems

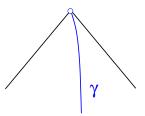
d = 4 Sudarsky & Wald (92) d > 4 Rogatko (05)

 \Rightarrow The assertion is rephrased as

Stationary, non-extremal BHs in $D \ge 4$ Einstein-Maxwell system are either static or axisymmetric

・ロト ・ 日本 ・ 日本 ・ 日本

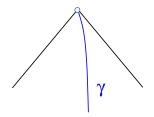
 — can apply to any "horizon" defined as the "boundary" of causal past of a complete timelike orbit γ of t^a
 e.g., cosmological horizon



- can apply to any "horizon" defined as the "boundary" of causal past of a complete timelike orbit γ of t^a
 e.g., cosmological horizon
- can remove analyticity assumption for the BH interior

by using initial value formulation w/ initial data for K^a on the bifurcate horizon

Cosmological horizon



It would not appear to be straightforward to generalize to:

- - Theories w/ higher curvature terms and/or exotic source
 - Present proof relies on Einstein's equations

伺き くほき くほう

It would not appear to be straightforward to generalize to:

- - Theories w/ higher curvature terms and/or exotic source
 - Present proof relies on Einstein's equations
- Non-trivial topology at infinity / BH exterior
 - $\Rightarrow \quad \mbox{Horizon Killing field } K^a \mbox{ may not have} \\ a \mbox{ single-valued analytic extension} \\$

It would not appear to be straightforward to generalize to:

- - Theories w/ higher curvature terms and/or exotic source
 - Present proof relies on Einstein's equations
- Non-trivial topology at infinity / BH exterior
 - $\Rightarrow \quad \mbox{Horizon Killing field } K^a \mbox{ may not have} \\ \mbox{ a single-valued analytic extension} \\$
- Extremal BHs (i.e., BHs w/ degenerate horizon $\kappa = 0$)

・ 戸 ト ・ ヨ ト ・ ヨ ト