Higher Dimensional Black Holes

Akihiro Ishibashi

Cosmophysics Group, IPNS, KEK

Talk at Onomichi 12 Feb. 08
Purpose of this talk

– give a brief overview of recent progress in understanding basic properties of $D \geq 4$ black holes
Black holes in general relativity

Definitions:

Consider a strongly causal, asymptotically flat spacetime \((M, g_{ab})\)

Let \(\mathcal{I}^+\) be a set of *idealized* distant observers (i.e., future *null infinity*)

- **Black hole** \(B := M \ominus \) Chronological past of \(\mathcal{I}^+\)
- **Event horizon of** \(B\) \(\mathcal{H} := \) Boundary of \(B\)
- **Predictable** \(B\) \(\Leftrightarrow\) Outside \(B\) (including \(\mathcal{H}\)) is globally hyperbolic

Remarks:

- \(\mathcal{H}\) is, by definition, a *null hypersurface*
- \(\mathcal{H}\) is a *global notion*; it has no distinguished local significance
Area Theorem: (Hawking 71)

Consider a predictable black hole that is a solution to Einstein’s equation with the null energy conditions.

The surface area A of horizon cross-sections of \mathcal{H} can never decrease with time.

The null energy conditions: $T_{ab}k^a k^b \geq 0$ for any null vectors k^a.

Remark:

A resemblance to 2nd-law of thermodynamics:
(Entropy S never decreases: $\delta S \geq 0$) (Bekenstein 73)
Towards local characterization of black holes

- Gravitating source bends the spacetime geometry

\[ds^2 = -(1 - 2\Phi)dt^2 + \frac{dr^2}{1 - 2\Phi} + r^2d\Omega^2 : -\Phi : \text{Newton potential} \]

Static observers (along \(t^a = (\partial/\partial t)^a \)) are no longer geodeisc but are accelerated: i.e.,

\[t^c \nabla_c t^a = \kappa(r)(\partial/\partial r)^a \]

- A distinguished null hypersurface \(\mathcal{N} \) in the limit \(\Phi \to 1/2 \)

since \(g^{ab}(dr)_a(dr)_b \to 0, t^a t_a \to 0 \) as \(\Phi \to 1/2 \) \((r \to r_H) \)

\[t^c \nabla_c t^a = \kappa t^a \text{ on } \mathcal{N} \]

- \(t^a \) is tangent and normal to \(\mathcal{N} \)

- \(\kappa = \kappa(r_H) \): redshifted proper acceleration of observer \(t^a \) on \(\mathcal{N} \)
Killing Horizons

Definitions:

Killing horizon \mathcal{N} :⇔ A null hypersurface whose null generators coincide with the orbits of a one-parameter group of isometries (so that there is a Killing field K^a normal to \mathcal{N})

Surface gravity κ of \mathcal{N} :⇔ A function on \mathcal{N} that satisfies

$$\nabla^a (K^b K_b) = -2\kappa K^a \cdots \cdots (\ast)$$

Remarks:

− eq. (\ast) is rewritten as $K^b \nabla_b K^a = \kappa K^a$

− The notion of a Killing horizon is independent of the notion of event horizon

− Surface gravity κ must be constant along each null generator of \mathcal{N}, but can, in general, vary from generator to generator
In a wide variety of circumstances, the event horizon \mathcal{H} of a stationary black hole is also a Killing horizon.

e.g., Kerr metric (rotating black hole)

\[
\begin{align*}
\text{d}s^2 &= \rho^2 \left(\frac{\text{d}r^2}{\Delta} + \text{d}\theta^2 \right) + (r^2 + a^2) \sin^2 \theta \text{d}\phi^2 \\
&\quad - \text{d}t^2 + \frac{2Mr}{\rho^2} (a \sin^2 \theta \text{d}\phi - \text{d}t)^2
\end{align*}
\]

where $\rho^2 = r^2 + a^2 \cos^2 \theta$, $\Delta = r^2 - 2Mr + a^2$ and

\[
K^a = t^a + \frac{a}{r_H^2 + a^2} \phi^a
\]

Although both t^a and ϕ^a are spacelike near \mathcal{H}, $K^a K_a \to 0$ as $r \to r_H$.
Carter’s Rigidity Theorem: (Carter 73)

Consider a stationary-axisymmetric black hole with t^a and φ^a which satisfy $t \wedge dt \wedge \varphi = 0 = \varphi \wedge d\varphi \wedge t$

There exists a Killing field K^a of the form

$$K^a = t^a + \Omega_H \varphi^a$$

which is normal to \mathcal{H}. The constant Ω_H is called the angular velocity of \mathcal{H}. Furthermore, the surface gravity κ must be constant over \mathcal{H}

Remarks:

– purely geometrical result: no use of Einstein’s field equations

– leaves open the possibility that there could exist stationary BHs whose event horizons are not Killing horizons
BH Mechanics and thermodynamics

Mechanics of stationary black holes (Bardeen, Carter & Hawking 73)

$$\kappa = \text{const.}, \quad \delta M = \frac{1}{8\pi} \kappa \delta A + \Omega_H \delta J$$

M: Mass, κ: Surface gravity, Ω_H: Horizon angular velocity, J: Angular momentum

The dominant energy conditions, $T_{ab} V^a W^a \geq 0$ for any causal vectors V^a, W^a

⇒ Mathematical analogue of 0th & 1st laws of equilibrium thermodynamics

$$T = \text{const.}, \quad \delta E = T \delta S + \text{work term}$$

Quantum effects ⇒ $T = \kappa / 2\pi$ (Hawking 75)
If a **stationary** black hole corresponds to an **equilibrium** thermodynamic system, then such a stationary BH should be described by merely a **small numbers of parameters**
Towards BH uniqueness theorems

Topology Theorem: (Hawking 73)

Let (M, g) be a stationary predictable black hole spacetime that satisfies the dominant energy conditions.

Spatial cross-section, Σ, of each connected component of the event horizon \mathcal{H} is homeomorphic to a 2-sphere.
Towards BH uniqueness theorems

Rigidity Theorem: (Hawking 73)

Let \((M, g)\) be an asymptotically flat, regular stationary, predictable black hole spacetime that is a vacuum or electro-vacuum solution to Einstein’s equations. Assume further that \((M, g)\) be analytic.

The event horizon \(\mathcal{H}\) must be a **Killing horizon**

If rotating, the BH spacetime must be **axisymmetric**

Remarks:

- *makes no assumptions of symmetries beyond stationarity*
- *makes use of Einstein’s field equations*
- *use the result of Topology theorem: \(\Sigma \approx S^2\)*
Uniqueness Theorems:
(Israel-Carter-Robinson-Mazur-Bunting-Chrusciel)

Let $\mathcal{M} = (M, g)$ be a regular, stationary predictable BH solution of a vacuum or electro-vacuum Einstein’s equations. Furthermore, assume $\mathcal{M} = (M, g)$ be analytic and \mathcal{H} be connected.

The BH is uniquely specified by its mass, angular momentum, and charges.

Remarks:

- vacuum rotating black hole spacetime \Rightarrow Kerr-metric
- based on the results of Topology and Rigidity theorems
Uniqueness theorems

- If weak cosmic censorship (Penrose) holds, gravitational collapse always forms a black hole
 \[
 \iff \text{strong support from e.g., BH thermodynamics}
 \]

- The Kerr-metric is stable (Press-Teukolsky 73, Whiting 89)
 \[
 \Rightarrow \text{describes a possible final state of dynamics}
 \]
 \[
 \Rightarrow \text{describes astrophysical black holes–formed via gravitational collapse–in our universe}
 \]

- A proof in smooth (not real-analytic) setup
 \[
 \text{(Ionescu-Klainerman 07)}
 \]
Summary: Black holes in $4D$ general relativity

Asymptotically flat stationary BHs in 4-dimensions

- **Exact solutions** e.g., Kerr metric
- **Stability** Stable \Rightarrow final state of dynamics
- **Topology** Shape of the horizon \approx 2-sphere
- **Symmetry** Static or axisymmetric
- **Uniqueness** Vacuum \Rightarrow Kerr-metric
- **BH Thermodynamics** Quantum aspects

Which properties of $4D$ BHs are extended to $D > 4$?
Exact Solutions — much larger variety

- Rotating Holes (Myers & Perry 86)
- Rotating Rings (Emparan & Reall 02)
Exact Solutions — much larger variety

Rotating Holes (Myers & Perry 86) Rotating Rings (Emparan & Reall 02)

Stability — not fully studied yet

Static vacuum ⇒ stable (AI & Kodama 03)
Rotating holes ⇒ partial results:

Special case (e.g., Kunduri-Lucietti-Reall 06, Murata-Soda 07)
• **Exact Solutions** — much larger variety

 Rotating Holes (Myers & Perry 86)
 Rotating Rings (Emparan & Reall 02)

• **Stability** — not fully studied yet

 Static vacuum ⇒ stable (AI & Kodama 03)
 Rotating holes ⇒ partial results:

 Special case (e.g., Kunduri-Lucietti-Reall 06, Murata-Soda 07)

• **Topology** — more varieties

 Some restrictions, (Galloway & Schoen 05)
Exact Solutions — much larger variety
Rotating Holes (Myers & Perry 86) Rotating Rings (Emparan & Reall 02)

Stability — not fully studied yet
Static vacuum ⇒ stable (AI & Kodama 03)
Rotating holes ⇒ partial results:
Special case (e.g., Kunduri-Lucietti-Reall 06, Murata-Soda 07)

Topology — more varieties
Some restrictions, (Galloway & Schoen 05)

Symmetry — rigid
at least, one rotational symmetry:
(Hollands, AI & Wald 07)
- **Exact Solutions** — much larger variety
 - Rotating Holes (Myers & Perry 86)
 - Rotating Rings (Emparan & Reall 02)
- **Stability** — not fully studied yet
 - Static vacuum \Rightarrow stable (AI & Kodama 03)
 - Rotating holes \Rightarrow partial results:
 - Special case (e.g., Kunduri-Lucietti-Reall 06, Murata-Soda 07)
- **Topology** — more varieties
 - Some restrictions, (Galloway & Schoen 05)
- **Symmetry** — rigid
 - at least, one rotational symmetry: (Hollands, AI & Wald 07)
- **Uniqueness** — non-unique
 - Hole and Rings w/ the same (J, M)
 - Static holes: e.g., (Gibbons, Ida & Shiromizu 02)
 - Uniqueness in $5D$ rotating holes/rings (Morisawa-Ida 04, Hollands & Yazadjiev 07)
 - (Morisawa, Tomizawa & Yasui 07)
• **Exact Solutions** — much larger variety

 Rotating Holes (Myers & Perry 86) Rotating Rings (Emparan & Reall 02)

• **Stability** — not fully studied yet

 Static vacuum \Rightarrow stable (AI & Kodama 03)
 Rotating holes \Rightarrow partial results:

 Special case (e.g., Kunduri-Lucietti-Reall 06, Murata-Soda 07)

• **Topology** — more varieties

 Some restrictions, (Galloway & Schoen 05)

• **Symmetry** — rigid

 at least, one rotational symmetry: (Hollands, AI & Wald 07)

• **Uniqueness** — non-unique

 Hole and Rings w/ the same (J, M)

 Static holes: e.g., (Gibbons, Ida & Shiromizu 02)

 Uniqueness in $5D$ rotating holes/rings (Morisawa-Ida 04, Hollands & Yazadjiev 07)

 (Morisawa, Tomizawa & Yasui 07)

• **BH Thermodynamics** — generalize to $D > 4$ e.g., (Rogatko 07)
Exact solutions in $D > 4$

- Static spherical holes in $\forall D > 4$ \quad \text{(Tangherlini 63)}

- Stationary rotating black holes in $\forall D > 4$ \quad \text{(Myers-Perry 82)}

 - Topology of horizon cross-sections $\approx S^{D-2}$

 - $[(D+1)/2]$ commuting Killing fields $\Rightarrow [(D-1)/2]$ spins

 - for $D = 4, 5$, \exists Kerr upper-bound on angular momentum J

 - for $D \geq 6$, \text{No upper-bound on J} \Rightarrow ultra-spinning

$$\exists \text{ horizon} \iff 0 = g^{rr} = \Pi_i \left(1 + \frac{(J_i/M)^2}{r^2}\right) - \frac{GM}{r^{D-3}}$$

as the last term dominates for small r when $D \geq 6$

Sufficient conditions for no-bound:

- two $J_i = 0$ for $D(\text{odd}) \geq 7$, one $J_i = 0$ for $D(\text{even}) \geq 6$
Exact solutions in $D > 4$

Stationary, rotating black-rings in $D = 5$ \hspace{1cm} (Emparan-Reall 02)

- Topology of the horizon $\approx S^1 \times S^2$
- 3-commuting Killing fields $\text{Isom}: \mathbb{R} \times SO(2) \times SO(2)$
- not uniquely specified by global charges (M, J_1, J_2)

Two ring-solutions with the same $(M, J_1, J_2 = 0)$

\Rightarrow In $D = 5$, Uniqueness Theorem no longer holds as it stands
Exact solutions in $D > 4$

- Solutions akin to Emparan-Reall’s ring ($M, J_1 \neq 0, J_2 = 0$)
 - Black-ring w/ ($M, J_1 = 0, J_2 \neq 0$) (Mishima & Iguchi 05)
 - Black-ring w/ two angular momenta ($M, J_1 \neq 0, J_2 \neq 0$) (Pomeransky & Sen’kov 06)
 - Uniqueness proof (Morisawa-Tomizawa & Yasui 07)
Multi-black vacuum solutions:

- Black di-rings ("ring" + "ring") (Iguchi & Mishima 07)
- Black-Saturn ("hole" + "ring") (Elvang & Figueras 07)
- Orthogonal-di-/Bicycling-Rings ("ring" + "ring") (Izumi 07 Elvang & Rodriguez 07)
<table>
<thead>
<tr>
<th>Introduction</th>
<th>BHs in $D = 4$ GR</th>
<th>Symmetry properties</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black holes, rings on various manifolds</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **MP in AdS or dS**
 e.g., (Gibbons, Lu, Page, Pope 04)

- **on Gibbons-Hawking**
 e.g. (BMPV 97, Gauntlett-Gutowski-Hull-Pakis-Reall 03)

- **on 4-Euclid space**
 e.g. (Elvang-Emparan-Mateos-REall 04)

- **on Kaluza-Klein**

- **on Eguchi-Hanson**
 e.g., (Ishihara, Kimura, Matsuno, Nakagawa, Tomizawa 06-08)

- **on Taub-NUT**
 e.g., (Bena-Kraus-Warner 05)

- **Black-p-branes**

- **Black holes on Braneworld**
Studies of $D > 4$ black holes

- $4D$ Black holes:
 - “Special” in many respects

- $D > 4$ Black holes: **Much larger variety**
 - Classify (or get phase space diagram for) them!
 - need study
 - Dynamical stability
 - Possible horizon topology
 - Symmetry properties
Stability of static black holes

Gravitational perturbations of $\forall D > 4$ static black holes

– 3 types: tensor-, vector-, scalar-type w.r.t. $(D-2)$-base space
 – get a single *master equation* for each type of perturbations
 (Kodama & AI 03)
 ⇒ make complete stability analysis possible
 ⇒ Stable for vacuum case (AI & Kodama 03)

– Einstein-Λ-Maxwell case: not completed yet

– New ingredient in $D \geqslant 5$
 Tensor-mode w.r.t. $(D-2)$-horizon manifold Σ

 c.f. if Σ is a *highly clumpy* Einstein-manifold,
 ⇒ tensor-mode instability (Gibbons & Hartnoll 02)
Static background $D = m + n$ (warped product type) metric:

$$ds_{(D)}^2 = (m)g_{AB}dy^A dy^B + r(y)^2 d\sigma_{(n)}^2$$

e.g., when $m = 2$

$$(^2)g_{AB}dy^A dy^B = -f(r)dt^2 + \frac{1}{f(r)} dr^2 , \quad d\sigma_{(D-2)}^2 = n\text{-Einstein}$$

Master equations for each tensor/vector/scalar-type of perturbations:

$$\frac{\partial^2}{\partial t^2} \Phi = -A \Phi = \left(\frac{\partial^2}{\partial r_*^2} - U(r) \right) \Phi$$

– looks just like a Schroedinger equation: If $A \geq 0 \Rightarrow$ stable
Stability of rotating holes: Some partial analysis

Perturbations on cohomogeneity-1 MP holes:

\[D = \text{odd}, \ J_1 = J_2 = \cdots J_{(D-1)/2} \]
\[\Rightarrow \text{enhanced symmetry: } \mathbb{R} \times U((D-1)/2) \Rightarrow \text{depends only on } r \]
\[\Rightarrow \text{Perturbation equations reduce to ODEs} \]

- \(D(\text{odd}) \geq 7: \Rightarrow \text{Stable w.r.t. a subclass of tensor perturbations} \)
 \(\text{(tensor-modes w.r.t. } (D-3)\text{-base space)} \)
 \(\text{(Kunduri-Lucietti-Reall 06)} \)

- \(D = 5: \ \text{Decoupled master equations for zero-modes of vector and tensor (gravity) fields} \)
 \[\Rightarrow \text{Towards complete stability analysis of (coho-1) MP holes} \]
 \(\text{(Murata & Soda 07)} \)
Stability of rotating holes: Some partial analysis

Perturbations on cohomogeneity-2 MP holes:

A single rotation: symmetry enhance $U(1)^N \Rightarrow U(1) \times SO(D - 3)$

$$ds_D^2 = ds_{(4)}^2 \text{(looks like } D = 4 \text{ Kerr metric)} + r^2 \cos^2 \theta \cdot d\Omega_{(D-4)}^2$$

For $D \geq 7$, decoupled master equation for tensor-type perturbations w.r.t. $(D - 4)$-base space \Leftrightarrow Massless Klein-Gordon equation

- Conserved energy integral \Rightarrow Stable
- AdS case \Rightarrow superradiant instability for $|\Lambda| > a^2/r_H^4$ (?) (Kodama 07)

- observed also in coho-mo-1 AdS-MP-holes (Kunduri-Lucietti-Reall 06)

Akihiro Ishibashi
Talk at Onomichi 12 Feb. '08
\[E := - \int_S dS n^a \chi^b T_{ab} \quad \chi^a : \text{co-rotate Killing vector} \] \hspace{1cm} (2)

Note: \(\chi^a \) can be non-spacelike if \(|\Lambda| \leq a^2/r_H^4 \Rightarrow E \geq 0 \)

Kerr-AdS
Stability of rotating holes: Some partial analysis

Indication of instability of cohomogeneity-2 MP holes (heuristic argument)

- \(D \geq 6 \Rightarrow \text{no upper-bound on } J: \)
 - ultra-spinning hole looks like “pancake”
 - looks like black-p-brane near the rotation axis
- \(\Rightarrow \) expected to be unstable due to Gregory-Laflamme modes (Emparan & Myers 03)
Myers-Perry solution:

\[
 ds^2 = -dt^2 + \frac{M}{\rho^2 r^{D-5}} \left(dt + a \sin^2 \theta d\phi \right)^2 + \frac{\rho^2}{\Delta} dr^2 \\
 + \rho^2 d\theta^2 + (r^2 + a^2) \sin^2 \theta d\phi^2 + r^2 \cos^2 \theta d\Omega^2_{(D-4)}
\]

where

\[
 \rho^2 = r^2 + a^2 \cos^2 \theta \quad \Delta = r^2 + a^2 - \frac{M}{r^{D-5}}
\]

In the ultra-spinning limit: \(a \to \infty \) with \(\mu = \frac{M}{a^2} \) kept finite, near the pole \(\theta = 0 \) (\(\sigma := a \sin \theta \)) the metric becomes

\[
 ds^2 = - \left(1 - \frac{\mu}{r^{D-5}} \right) dt^2 + \left(1 - \frac{\mu}{r^{D-5}} \right)^{-1} dr^2 + r^2 d\Omega^2_{(D-4)} + d\sigma^2 + \sigma^2 d\phi^2
\]

⇒ Black-membrane metric ⇒ Gregory-Laflamme instability
– Similar heuristic arguments apply also to thin black-rings, other multi-rings, Saturns, etc.

i.e., – They are expected to suffer from GL-instability
 BHs in \(D = 4 \) GR

BHs in \(D > 4 \)

Symmetry properties

Remarks

Topology of event horizon

- **Method 1: global analysis** \(\text{(Chrusciel & Wald 94)} \)
 - Combine **Topological Censorship** and **Cobordism** of spacelike hypersurface \(S \) with boundaries at horizon and infinity

 Topological Censorship \(\Rightarrow \) \(S \) is simply connected

 \(\Sigma = \partial S \) is cobordant to \(S^{D-2} \) via \(S \)

 In \(4D \) \(\Rightarrow \) \(\partial S \) must be \(S^2 \)

 - powerful method in \(4D \) but turns out to be not so in \(D \geq 6 \)
 e.g., \(\text{(Helfgott-Oz-Yanay 05)} \)
Method 2: local analysis (Hawking 72)

– Combine variational analysis $\delta \theta / \delta \lambda$ and fact that outer-trapped surface must be inside BH, to show

$$\int_{\Sigma} R > 0$$

w/ Σ being a horizon cross-section and R scalar curvature of Σ

⇒ in $4D$, $\Sigma \approx S^2$ via Gauss-Bonnet Theorem

– generalizes to $D > 4$ (Galloway & Schoen 05)
BHs in $D = 4$ GR

Symmetry properties

Remark

Akihiro Ishibashi

Talk at Onomichi 12 Feb. '08
Topology Theorem: (Galloway & Schoen 05 Galloway 07)

Consider a $\forall D \geq 4$ (stationary) black hole spacetime satisfying the dominant energy conditions

The topology of (event) horizon cross-section Σ must be such that Σ admits metrics of positive scalar curvature

Remarks:

- Σ can be topologically e.g., S^{D-2}, $S^m \times \cdots \times S^n$
 \Rightarrow much larger variety in $D > 4$ than $4D$
- $5D \Rightarrow S^3$ **Black holes and $S^1 \times S^2$ Black-rings**
- **What if $\Lambda < 0$ and $D \geq 6$? \Rightarrow more variety?**
Assertion:

(1) The event horizon of a stationary, electro-vacuum BH is a Killing horizon

(2) If rotating, the BH spacetime must be axisymmetric

* Event Horizon: a boundary of causal past of distant observers
* Killing Horizon: a null hypersurface with a Killing symmetry vector field being normal to it

The event horizon is rigidly rotating with respect to infinity

\[\cdot \cdot \cdot \quad \text{Black Hole Rigidity} \]
Why “rigidity” interesting?

- relates “global” (even horizon) to “local” (Killing horizon)
Why “rigidity” interesting?

- relates “global” (even horizon) to “local” (Killing horizon)
- foundation of BH Thermodynamics
 (Constancy of surface gravity \Rightarrow Oth Law of Thermodynamics)
Why “rigidity” interesting?

- relates **“global” (even horizon)** to **“local” (Killing horizon)**
- foundation of BH Thermodynamics
 - *(Constancy of surface gravity ⇒ Oth Law of Thermodynamics)*
- rotating hole ⇒ **extra-(axial) symmetry**
Why “rigidity” interesting?

- relates “global” (even horizon) to “local” (Killing horizon)
- foundation of BH Thermodynamics
 (Constancy of surface gravity \Rightarrow Oth Law of Thermodynamics)
- rotating hole \Rightarrow extra-(axial) symmetry
- a critical step toward proof of “Uniqueness” in $4D$ case
Why “rigidity” interesting?

- relates “global” (even horizon) to “local” (Killing horizon)
- foundation of BH Thermodynamics
 (Constancy of surface gravity ⇒ Oth Law of Thermodynamics)
- rotating hole ⇒ extra-(axial) symmetry
- a critical step toward proof of “Uniqueness” in $4D$ case
- In $D > 4$, Uniqueness no longer holds as it stands, and there seems to be a much larger variety of exact BH solutions
Why “rigidity” interesting?

- relates “global” (even horizon) to “local” (Killing horizon)
- foundation of BH Thermodynamics
 (Constancy of surface gravity ⇒ Oth Law of Thermodynamics)
- rotating hole ⇒ extra-(axial) symmetry
- a critical step toward proof of “Uniqueness” in 4D case
- In $D > 4$, Uniqueness no longer holds as it stands, and there seems to be a much larger variety of exact BH solutions

⇒ “Rigidity”—if holds also in $D > 4$—places important restrictions on possible exact BH solutions
An important question:

– Does there exist a $D > 4$ BH solution with only two commuting Killing fields (i.e., w/ isom. $\mathbb{R} \times U(1)$)?

(Reall 03)

– all known $D > 4$ BH solutions have multiple rotational symmetries

⇒ Hunt (less-symmetric) black objects!

– need to show the existence of, at least, one $U(1)$-symmetry
However Hawking’s proof for $4D$ case relies on the fact that event horizon cross-section Σ is topologically 2-sphere. This makes the Generalization to $D > 4$ not at all obvious.

Goal: Prove BH Rigidity Theorem in $D \geq 4$

No Assumption on Topology of Event Horizon
Let \((M, g)\) be a \(D \geq 4\), analytic, asymptotically flat, stationary vacuum BH solution to Einstein’s equation. Assume event horizon \(\mathcal{H}\) is analytic, non-degenerate, and topologically \(\mathbb{R} \times \Sigma\) with cross-sections \(\Sigma\) being compact, connected.

Theorem 1: There exists a Killing field \(K^a\) in the entire exterior of the BH such that \(K^a\) is normal to \(\mathcal{H}\) and commutes with the stationary Killing vector field \(t^a\) \(\Rightarrow\) “Killing horizon”

Theorem 2: If \(t^a\) is not normal to \(\mathcal{H}\), i.e., \(t^a \neq K^a\), then there exist mutually commuting Killing vector fields \(\varphi^a_{(1)}, \ldots, \varphi^a_{(j)}\) \((j \geq 1)\) with period \(2\pi\) and \(t^a = K^a + \Omega_{(1)}\varphi^a_{(1)} + \cdots + \Omega_{(j)}\varphi^a_{(j)}\), where \(\Omega_{(j)}\)'s constants. \(\Rightarrow\) “Axisymmetry”
Brief sketch of proof of Theorem 1

1. Find Killing Vector on the horizon \mathcal{H}^+

2. Extend K^a to outside the BH
“Trial foliation” Σ & “candidate” vector K^a

Step 1
Construct a “candidate” Killing field K^a on \mathcal{H} which satisfies

- $K^a K_a = 0$ and $\mathcal{L}_t K^a = 0$ on \mathcal{H}
- $\mathcal{L}_K g_{ab} = 0$ (Killing eqn.) on \mathcal{H}
- $\alpha = const.$ $(K^c \nabla_c K^a = \alpha K^a)$ on \mathcal{H}

Try this one! $K^a = t^a - s^a$

Step 2

- Show Taylor expansion $\partial^m (\mathcal{L}_K g_{ab}) / \partial \lambda^m = 0$ at \mathcal{H}
- Extend K^a to the entire spacetime by invoking analyticity
However, there is no reason why α need be constant.

— wish to find “correct” \tilde{K}^a with $\tilde{\alpha} = \text{const.} =: \kappa$ on \mathcal{H} by choosing a new “correct” foliation $\tilde{\Sigma}$

Both K^a and \tilde{K}^a are null

$$\tilde{K}^a = f(x) K^a$$

Task: Find a solution to equation for coordinate transformation from trial Σ to correct $\tilde{\Sigma}$:

$$-\mathcal{L}_s f(x) + \alpha(x) f(x) = \kappa$$

When one solves this equation, the spacetime dimensionality comes to play a role.

K^a + s^a = t^a = \tilde{K}^a + \tilde{s}^a
Find correct foliation $\tilde{\Sigma}$: $4D$ case
Hawking 73

In $4D$, horizon cross-section Σ is 2-sphere, and therefore the orbits of s^a must be closed.

There is a discrete isometry “Γ” which maps each null generator into itself.

Discrete isometry, Γ, helps to

- define the surface gravity as
 \[\kappa \equiv P^{-1} \int_0^P \alpha[\phi_s(x)] ds \]
- find correct foliation $\tilde{\Sigma}$
- show **Step 2**
Find correct foliation $\tilde{\Sigma}$: $D > 4$ case

No reason that the isometry s^a need have closed orbits on Σ. $
Rightarrow$ in general, there is No discrete isometry Γ.

e.g., 5D Myers-Perry BH w/ 2-rotations $\Omega(1), \Omega(2)$:

$$\Sigma \approx S^3, \quad t^a = K^a + s^a$$

$$s^a = \Omega(1)\varphi^a_{(1)} + \Omega(2)\varphi^a_{(2)}$$

Each rotation Killing vector φ^a has closed orbits but s^a does not if $\Omega(1)$ and $\Omega(2)$ are incommensurable.

Akihiro Ishibashi
Talk at Onomichi 12 Feb. ’08
Solution to $D > 4$ case:

(i) When s^a has closed orbits on $\Sigma \Rightarrow$ we are done!

\[
\kappa = \frac{1}{P} \int_0^P \alpha[\phi_s(x)] \, ds \quad P : \text{period} \quad \phi_s : \text{isom. on } \Sigma \text{ by } s^a
\]

(ii) When s^a has No closed orbits \Rightarrow Use Ergodic Theorem!

\[
\kappa = \lim_{T \to \infty} \frac{1}{T} \int_0^T \alpha[\phi_s(x)] \, ds = \frac{1}{\text{Area}(\Sigma)} \int_\Sigma \alpha(x) \, d\Sigma
\]

"time-average" "space-average"

- can show that the limit "κ" exists and is constant
- can find well-behaved transformation $\Sigma \to \tilde{\Sigma}$
Solution to $D > 4$ case:

— wish to solve equation, $\alpha(x)f(x) - \mathcal{L}_s f(x) = \kappa$

to find the “correct” horizon Killing field, $\tilde{K}^a = f(x) K^a$

Solution:

\[f(x) = \kappa \int_0^\infty P(x, T) dT, \quad P(x, T) = \exp \left(- \int_0^T \alpha[\phi_s(x)] ds \right) \]

— since $\forall \epsilon > 0$, $P(x, T) < e^{(\epsilon - \kappa)T}$, for sufficiently large T,

$f(x)$ above is well-defined
— wish to show $t^a = K^a + \Omega_{(1)} \varphi^{(1)} + \cdots + \Omega_{(j)} \varphi^{(j)}$
Brief sketch of proof of Theorem 2

— wish to show $t^a = K^a + \Omega(1)\varphi^a_{(1)} + \cdots + \Omega(j)\varphi^a_{(j)}$

• Get horizon Killing vector field K^a by Theorem 1

⇒ Then $S^a \equiv t^a - K^a$ generates Abelian group, \mathcal{G}, of isometries on horizon cross-sections Σ
Brief sketch of proof of Theorem 2

— wish to show $t^a = K^a + \Omega_{(1)}\varphi_{(1)}^a + \cdots + \Omega_{(j)}\varphi_{(j)}^a$

- Get horizon Killing vector field K^a by Theorem 1
 ⇒ Then $S^a \equiv t^a - K^a$ generates Abelian group, G, of isometries on horizon cross-sections Σ

- If S^a has a closed orbit ⇒ $\exists U(1)$ we are done!
Brief sketch of proof of Theorem 2

— wish to show $t^a = K^a + \Omega(1)\varphi_{(1)}^a + \cdots + \Omega(j)\varphi_{(j)}^a$

— Get horizon Killing vector field K^a by Theorem 1

⇒ Then $S^a \equiv t^a - K^a$ generates Abelian group, \mathcal{G}, of isometries on horizon cross-sections Σ

— If S^a has a closed orbit ⇒ $\exists U(1)$ we are done!

— even if not ⇒ closure of \mathcal{G} on compact space Σ must be a N-torus $\approx U(1)^N$ where $N = \dim(\bar{\mathcal{G}}) \geq 2$
Brief sketch of proof of Theorem 2

— wish to show $t^a = K^a + \Omega(1)\phi^a(1) + \cdots + \Omega(j)\phi^a(j)$

— Get horizon Killing vector field K^a by Theorem 1

⇒ Then $S^a \equiv t^a - K^a$ generates Abelian group, \mathcal{G}, of isometries on horizon cross-sections Σ

— If S^a has a closed orbit ⇒ $\exists U(1)$ we are done!

— even if not ⇒ closure of \mathcal{G} on compact space Σ must be a N-torus $\approx U(1)^N$ where $N = \dim(\bar{\mathcal{G}}) \geq 2$

— Extend $U(1)^N$ into the entire spacetime by analyticity
Immediate generalizations:

- can apply to **Einstein-Λ-Maxwell** system
e.g., **charged-AdS-BHs**
Immediate generalizations:

- can apply to Einstein-Λ-Maxwell system
e.g., charged-AdS-BHs

- combined together with Staticity Theorems

$$d = 4 \quad \text{Sudarsky & Wald (92)} \quad d > 4 \quad \text{Rogatko (05)}$$

⇒ The assertion is rephrased as

Stationary, non-extremal BHs in $D \geq 4$ Einstein-Maxwell system are either static or axisymmetric
Remarks

— can apply to any “horizon” defined as the “boundary” of causal past of a complete timelike orbit γ of t^a
eq 4

Cosmological horizon

e.g., cosmological horizon
Remarks

- can apply to any “horizon” defined as the “boundary” of causal past of a complete timelike orbit γ of t^a
eq 4

- can remove analyticity assumption for the BH interior

by using initial value formulation w/ initial data for K^a on the bifurcate horizon

Cosmological horizon

\[\gamma \]
Remarks

It would **not** appear to be straightforward to generalize to:

- Theories w/ higher curvature terms and/or exotic source

⇐ Present proof relies on Einstein’s equations
Remarks

It would **not** appear to be straightforward to generalize to:

- Theories w/ higher curvature terms and/or **exotic source**

 Present proof relies on Einstein’s equations

- **Non-trivial topology** at infinity / BH exterior

 Horizon Killing field K^a may **not** have
 a single-valued analytic extension
Remarks

It would **not** appear to be straightforward to generalize to:

- **Theories w/ higher curvature terms and/or exotic source**
 - Present proof relies on Einstein’s equations

- **Non-trivial topology** at infinity / BH exterior
 - Horizon Killing field K^a may **not** have a single-valued analytic extension

- **Extremal BHs** (i.e., BHs w/ degenerate horizon $\kappa = 0$)