Vainshtein mechanism in a cosmological background in the most general second-order scalar-tensor theory

Tsutomu Kobayashi Rikkyo University

Based on:
work with Rampei Kimura and Kazuhiro Yamamoto (Hiroshima University) Phys. Rev. D 85, 024023 (20|2) [arXiv: I I I .6749]

Talk Plan

I. Motivation
2. Brief review

- Vainshtein mechanism
- The most general second-order scalar-tensor (ST) theory

3. Vainshtein screening in the most general ST theory
4. Summary
5. Motivation

Modified gravity

DGP, Galileons, Massive gravity...

- A new scalar degree of freedom, ϕ, participates in long-range gravitational interaction
- Modification would persist down to small scales...
- Need screening mechanism in order to recover GR on small scales and to pass solar-system tests

Screening mechanisms

ϕ is responsible for gravity modification
ϕ is screened on small scales

This is made possible by the Vainshtein mechanism

Screening mechanisms

ϕ is responsible for gravity modification
ϕ is screened on small scales

This is made possible by the Vainshtein mechanism

Let's analyze how the Vainshtein mechanism operates based on the most general second-order scalar-tensor theory!

2. Brief review

— Vainshtein mechanism

Example

Scalar-field theory non-minimally coupled to matter:

$$
\mathcal{L}=\frac{1}{8 \pi G}\left[-\frac{1}{2}(\partial \varphi)^{2}-\frac{r_{c}^{2}}{3}(\partial \varphi)^{2} \square \varphi\right]+\varphi T_{\mu}^{\mu}
$$

(φ : dimensionless)

Example

Scalar-field theory non-minimally coupled to matter:

$$
\mathcal{L}=\frac{1}{8 \pi G}\left[-\frac{1}{2}(\partial \varphi)^{2}-\frac{r_{c}^{2}}{3}(\partial \varphi)^{2} \square \varphi\right]+\varphi T_{\mu}^{\mu}
$$

(φ : dimensionless)
Non-linear derivative interaction (cubic Galileon)

Example

Scalar-field theory non-minimally coupled to matter:

$$
\mathcal{L}=\frac{1}{8 \pi G}\left[-\frac{1}{2}(\partial \varphi)^{2}-\frac{r_{G}^{2}}{3}(\partial \varphi)^{2} \square \varphi\right]+\varphi T_{\mu}^{\mu}
$$

(φ : dimensionless)

Non-linear derivative interaction (cubic Galileon)

Example

Scalar-field theory non-minimally coupled to matter:

$$
\mathcal{L}=\frac{1}{8 \pi G}\left[-\frac{1}{2}(\partial \varphi)^{2}-\frac{r_{d}^{2}}{3}(\partial \varphi)^{2} \square \varphi\right]+\varphi T_{\mu}^{\mu}
$$

(φ : dimensionless)
Non-linear derivative interaction (cubic Galileon)

Key non-linearity

$$
r_{c}^{2} \square \varphi \text { can be large even if } \varphi \ll 1
$$

Example

Scalar-field theory non-minimally coupled to matter:

$$
\mathcal{L}=\frac{1}{8 \pi G}\left[-\frac{1}{2}(\partial \varphi)^{2}-\frac{r_{d}^{2}}{3}(\partial \varphi)^{2} \square \varphi\right]+\varphi T_{\mu}^{\mu}
$$

(φ : dimensionless)
Non-linear derivative interaction (cubic Galileon)

Key non-linearity

$$
r_{c}^{2} \square \varphi \text { can be large even if } \varphi \ll 1
$$

$\longrightarrow \mathcal{L} \sim \frac{1}{8 \pi G_{\mathrm{eff}}}\left[-\frac{1}{2}(\partial \varphi)^{2}\right]+\varphi T_{\mu}^{\mu}, \quad G_{\mathrm{eff}} \ll G$

Spherically symmetric solution

EOM: $\square \varphi+\frac{2 r_{c}^{2}}{3}\left[(\square \varphi)^{2}-\left(\partial_{\mu} \partial_{\nu} \varphi\right)^{2}\right]=-8 \pi G T_{\mu}^{\mu} \approx 8 \pi G \rho$
Spherically symmetric solution:

$$
\partial_{r} \varphi=\frac{3 r}{8 r_{c}^{2}}\left(-1+\sqrt{1+\frac{16}{3} \frac{r_{s} r_{c}^{2}}{r^{3}}}\right)
$$

(r_{s} : Schwarzschild radius)

Spherically symmetric solution

EOM: $\square \varphi+\frac{2 r_{c}^{2}}{3}\left[(\square \varphi)^{2}-\left(\partial_{\mu} \partial_{\nu} \varphi\right)^{2}\right]=-8 \pi G T_{\mu}^{\mu} \approx 8 \pi G \rho$
Spherically symmetric solution:

$$
\begin{gathered}
\partial_{r} \varphi=\frac{3 r}{8 r_{c}^{2}}\left(-1+\sqrt{1+\frac{16}{3} \frac{r_{s} r_{c}^{2}}{r^{3}}}\right) \\
r_{V}:=\left(r_{s} r_{c}^{2}\right)^{1 / 3}: \text { Vainshtein radius } \\
\left(r_{s}: \text { Schwarzschild radius }\right)
\end{gathered}
$$

Spherically symmetric solution

EAM: $\square \varphi+\frac{2 r_{c}^{2}}{3}\left[(\square \varphi)^{2}-\left(\partial_{\mu} \partial_{\nu} \varphi\right)^{2}\right]=-8 \pi G T_{\mu}^{\mu} \approx 8 \pi G \rho$
Spherically symmetric solution:
$\partial_{r} \varphi=\frac{3 r}{8 r_{c}^{2}}\left(-1+\sqrt{1+\frac{16}{3} \frac{\sqrt{r_{s} r_{c}^{2}}}{r^{3}}}\right)$
$r_{V}:=\left(r_{s} r_{c}^{2}\right)^{1 / 3}:$ Vainshtein radius
$\boxtimes \quad r \gg r_{V} \rightarrow \partial_{r} \varphi \sim \frac{r_{s}}{r^{2}} \sim \partial_{r} \Phi \quad(\Phi:$ gravitational potential $)$
$\nabla \quad r \ll r_{V} \longrightarrow \partial_{r} \varphi \sim \frac{r_{s}}{r^{2}}\left(\frac{r}{r_{V}}\right)^{3 / 2} \ll \partial_{r} \Phi \quad-\quad$ screened!

2. Brief review

- The most general second-order scalar-tensor theory

Horndeski's theory (Generalized Galileon)

In 1974, Horndeski determined the most general Lagrangian of the form

$$
\mathcal{L}=\mathcal{L}\left(\phi, \partial \phi, \partial^{2} \phi, \partial^{3} \phi, \cdots ; g_{\mu \nu}, \partial g_{\mu \nu}, \partial^{2} g_{\mu \nu}, \partial^{3} g_{\mu \nu}, \cdots\right)
$$

having second-order field equations both for ϕ and $g_{\mu \nu}$
Horndeski, Int. J. Theor. Phys. 10,363 (1974)

Horndeski's theory (Generalized Galileon)

In 1974, Horndeski determined the most general Lagrangian of the form

$$
\mathcal{L}=\mathcal{L}\left(\phi, \partial \phi, \partial^{2} \phi, \partial^{3} \phi, \cdots ; g_{\mu \nu}, \partial g_{\mu \nu}, \partial^{2} g_{\mu \nu}, \partial^{3} g_{\mu \nu}, \cdots\right)
$$

having second-order field equations both for ϕ and $g_{\mu \nu}$
Horndeski, Int. J. Theor. Phys. 10,363 (1974)

Horndeski's theory is equivalent to the generalized Galileons [Deffayet et al. 2011] in 4D

Horndeski's theory (Generalized Galileon)

Lagrangian for the most general second-order ST theory:

$$
\begin{aligned}
\mathcal{L}= & K(\phi, X)-G_{3}(\phi, X) \square \phi \\
& +G_{4}(\phi, X) R+G_{4 X}\left[(\square \phi)^{2}-\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}\right] \\
& +G_{5}(\phi, X) G_{\mu \nu} \nabla^{\mu} \nabla^{\nu} \phi-\frac{1}{6} G_{5 X}\left[(\square \phi)^{3}\right. \\
& \left.-3 \square \phi\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}+2\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{3}\right]
\end{aligned}
$$

where $\quad X:=-\frac{1}{2}(\partial \phi)^{2}, \quad G_{i X}:=\partial G_{i} / \partial X$

Horndeski's theory (Generalized Galileon)

Lagrangian for the most general second-order ST theory:

$$
\begin{aligned}
& \mathcal{L}= K(\phi, X)-G_{3}(\phi, X) \square \phi \\
&+G_{4}(\phi, X) R+G_{4 X}\left[(\square \phi)^{2}-\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}\right] \\
&+G_{5}(\phi, X) G_{\mu \nu} \nabla^{\mu} \nabla^{\nu} \phi-\frac{1}{6} G_{5 X}\left[(\square \phi)^{3}\right. \\
&\left.-3 \square \phi\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}+2\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{3}\right]
\end{aligned}
$$

where $\quad X:=-\frac{1}{2}(\partial \phi)^{2}, \quad G_{i X}:=\partial G_{i} / \partial X$

Horndeski's theory (Generalized Galileon)

Lagrangian for the most general second-order ST theory:

$$
\begin{aligned}
& \mathcal{L}= K(\phi, X)-G_{3}(\phi, X) \square \phi \\
&+G_{4}(\phi, X) R+G_{4 X}\left[(\square \phi)^{2}-\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}\right] \\
&+G_{5}(\phi, X) G_{\mu \nu} \nabla^{\mu} \nabla^{\nu} \phi-\frac{1}{6} G_{5 X}\left[(\square \phi)^{3}\right. \\
&\left.-3 \square \phi\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}+2\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{3}\right]
\end{aligned}
$$

where $\quad X:=-\frac{1}{2}(\partial \phi)^{2}, \quad G_{i X}:=\partial G_{i} / \partial X$

- 4 arbitrary functions of ϕ and X

Horndeski's theory (Generalized Galileon)

Lagrangian for the most general second-order ST theory:

$$
\begin{aligned}
\mathcal{L}= & \begin{array}{l}
K(\phi, X)-G_{3}(\phi, X)- \\
+G_{4}(\phi, X) R+G_{4 X}\left[(\square \phi)^{2}-\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}\right] \\
\\
+\underbrace{}_{5}(\phi, X) G_{\mu \nu} \nabla^{\mu} \nabla^{\nu} \phi-\frac{1}{6} G_{5 X}\left[(\square \phi)^{3}\right. \\
\left.-3 \square \phi\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}+2\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{3}\right]
\end{array}
\end{aligned}
$$

where $\quad X:=-\frac{1}{2}(\partial \phi)^{2}, \quad G_{i X}:=\partial G_{i} / \partial X$

- 4 arbitrary functions of ϕ and X
- Non-minimal coupling to gravity

Special cases

$G_{4}=\frac{M_{\mathrm{Pl}}^{2}}{2} \longrightarrow \mathcal{L} \supset \frac{M_{\mathrm{Pl}}^{2}}{2} R \quad$ Einstein-Hilbert
$G_{4}=f(\phi) \quad \mathcal{L} \supset f(\phi) R \quad$ Familiar non-minimal coupling

$$
-G_{3}(\phi, X) \square \phi \quad \supset \quad(\partial \phi)^{2} \square \phi
$$

Kinetic gravity braiding
Deffayet et al. 2010

DGP (brane bending mode)
Luty, Porrati, Rattazzi 2003;
Nicolis, Rattazzi 2004
$G_{5}=-\phi \quad \mathcal{L} \supset G^{\mu \nu} \nabla_{\mu} \phi \nabla_{\nu} \phi$
Gravitationally enhanced friction/purely kinetic coupled gravity

$$
\begin{aligned}
\mathcal{L}= & K(\phi, X)-G_{3}(\phi, X) \square \phi \\
& +G_{4}(\phi, X) R+G_{4 X}\left[(\square \phi)^{2}-\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}\right] \\
& +G_{5}(\phi, X) G_{\mu \nu} \nabla^{\mu} \nabla^{\nu} \phi-\frac{1}{6} G_{5 X}\left[(\square \phi)^{3}\right. \\
& \left.-3 \square \phi\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}+2\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{3}\right]
\end{aligned}
$$

Galileon-like non-linear derivative interactions

$$
\begin{aligned}
\mathcal{L}= & K(\phi, X)-G_{3}(\phi, X) \square \phi \\
& +G_{4}(\phi, X) R+G_{4 X}\left[(\square \phi)^{2}-\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}\right] \\
+ & G_{5}(\phi, X) G_{\mu \nu} \nabla^{\mu} \nabla^{\nu} \phi-\frac{1}{6} G_{5 X}\left[(\square \phi)^{3}\right. \\
& \left.-3 \square \phi\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}+2\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{3}\right]
\end{aligned}
$$

$G_{3} \propto X, G_{4} \propto X^{2}, G_{5} \propto X^{2} \longrightarrow$ covariant galieon

Vainshtein mechanism operates generically?

3. Vainshtein screening in the most general ST theory

Setup

- The most general ST theory, minimally coupled to matter

$$
S=\int \mathrm{d}^{4} x \sqrt{-g}\left[\mathcal{L}+\mathcal{L}_{\mathrm{m}}\left(\psi, g_{\mu \nu}\right)\right]
$$

- Cosmological background

$$
\mathrm{d} s^{2}=-\mathrm{d} t^{2}+a^{2}(t) \mathrm{d} \mathbf{x}^{2}
$$

Setup

- The most general ST theory, minimally coupled to matter

$$
S=\int \mathrm{d}^{4} x \sqrt{-g}\left[\mathcal{L}+\mathcal{L}_{\mathrm{m}}\left(\psi, g_{\mu \nu}\right)\right]
$$

\qquad Non-relativistic matter

- Cosmological background

$$
\mathrm{d} s^{2}=-\mathrm{d} t^{2}+a^{2}(t) \mathrm{d} \mathbf{x}^{2}
$$

Setup

- The most general ST theory, minimally coupled to matter

$$
S=\int \mathrm{d}^{4} x \sqrt{-g}\left[\mathcal{L}+\mathcal{L}_{\mathrm{m}}\left(\psi, g_{\mu \nu}\right)\right]
$$

Non-relativistic matter

- Cosmological background

$$
\mathrm{d} s^{2}=-\mathrm{d} t^{2}+a^{2}(t) \mathrm{d} \mathbf{x}^{2}
$$

Perturbations - Consistent treatment for scalar-field and metric perturbations

$$
\begin{gathered}
\mathrm{d} s^{2}=-(1+2 \Phi) \mathrm{d} t^{2}+a^{2}(1-2 \Psi) \mathrm{d} \mathbf{x}^{2} \\
\phi \rightarrow \phi(t)+\delta \phi(t, \mathbf{x}), \quad \rho_{\mathrm{m}} \rightarrow \rho_{\mathrm{m}}(t)[1+\delta(t, \mathbf{x})]
\end{gathered}
$$

Approximations

Weak gravitational field on subhorizon scales

- Useful e.g. for the study of structure formation

De Felice, TK, Tsujikawa (2011)

$$
\begin{aligned}
& \nabla, \Psi, Q:=H \frac{\delta \phi}{\dot{\phi}} \ll 1 \\
& \nabla \partial_{t} \ll \partial_{i} \quad \text { (Quasi-static approximation) }
\end{aligned}
$$

Keep relevant non-linear terms written schematically as

$$
\begin{array}{r}
\left(\nabla^{2} \epsilon\right)^{2},\left(\nabla^{2} \epsilon\right)^{3}, \cdots \quad \text { where } \quad \epsilon=\Phi, \Psi, Q \\
\text { (Quartic terms }\left(\nabla^{2} \epsilon\right)^{4} \text { do not appear) }
\end{array}
$$

Neglect "mass" terms: $\quad K_{\phi \phi} \ll \nabla^{2}, \ldots$

[1] Scalar-field EOM

$$
\begin{aligned}
& A_{0} \nabla^{2} Q-A_{1} \nabla^{2} \Psi-A_{2} \nabla^{2} \Phi+\frac{B_{0}}{a^{2} H^{2}} \mathcal{Q}^{(2)} \\
& -\frac{B_{1}}{a^{2} H^{2}}\left(\nabla^{2} \Psi \nabla^{2} Q-\partial_{i} \partial_{j} \Psi \partial^{i} \partial^{j} Q\right) \\
& -\frac{B_{2}}{a^{2} H^{2}}\left(\nabla^{2} \Phi \nabla^{2} Q-\partial_{i} \partial_{j} \Phi \partial^{i} \partial^{j} Q\right) \\
& -\frac{B_{3}}{a^{2} H^{2}}\left(\nabla^{2} \Phi \nabla^{2} \Psi-\partial_{i} \partial_{j} \Phi \partial^{i} \partial^{j} \Psi\right) \\
& -\frac{C_{0}}{a^{4} H^{4}}\left[\left(\nabla^{2} Q\right)^{3}-3 \nabla^{2} Q\left(\partial_{i} \partial_{j} Q\right)^{2}+2\left(\partial_{i} \partial_{j} Q\right)^{3}\right] \\
& -\frac{C_{1}}{a^{4} H^{4}}\left[\mathcal{Q}^{(2)} \nabla^{2} \Phi-2 \nabla^{2} Q \partial_{i} \partial_{j} Q \partial^{i} \partial^{j} \Phi+2 \partial_{i} \partial_{j} Q \partial^{j} \partial^{k} Q \partial_{k} \partial^{i} \Phi\right]=0 \\
& \text { where } \quad \mathcal{Q}^{(2)}:=\left(\nabla^{2} Q\right)^{2}-\left(\partial_{i} \partial_{j} Q\right)^{2}
\end{aligned}
$$

[1] Scalar-field EOM

Linear terms

$$
\begin{aligned}
& \frac{A_{0} \nabla^{2} Q-A_{1} \nabla^{2} \Psi-A_{2} \nabla^{2} \Phi+\frac{B_{0}}{a^{2} H^{2}} \mathcal{Q}^{(2)}}{-\frac{B_{1}}{a^{2} H^{2}}\left(\nabla^{2} \Psi \nabla^{2} Q-\partial_{i} \partial_{j} \Psi \partial^{i} \partial^{j} Q\right)} \\
& -\frac{B_{2}}{a^{2} H^{2}}\left(\nabla^{2} \Phi \nabla^{2} Q-\partial_{i} \partial_{j} \Phi \partial^{i} \partial^{j} Q\right) \\
& -\frac{B_{3}}{a^{2} H^{2}}\left(\nabla^{2} \Phi \nabla^{2} \Psi-\partial_{i} \partial_{j} \Phi \partial^{i} \partial^{j} \Psi\right) \\
& -\frac{C_{0}}{a^{4} H^{4}}\left[\left(\nabla^{2} Q\right)^{3}-3 \nabla^{2} Q\left(\partial_{i} \partial_{j} Q\right)^{2}+2\left(\partial_{i} \partial_{j} Q\right)^{3}\right] \\
& -\frac{C_{1}}{a^{4} H^{4}}\left[\mathcal{Q}^{(2)} \nabla^{2} \Phi-2 \nabla^{2} Q \partial_{i} \partial_{j} Q \partial^{i} \partial^{j} \Phi+2 \partial_{i} \partial_{j} Q \partial^{j} \partial^{k} Q \partial_{k} \partial^{i} \Phi\right]=0 \\
& \text { where } \quad \mathcal{Q}^{(2)}:=\left(\nabla^{2} Q\right)^{2}-\left(\partial_{i} \partial_{j} Q\right)^{2}
\end{aligned}
$$

[1] Scalar-field EOM

Linear terms

$$
\begin{aligned}
& \frac{A_{0} \nabla^{2} Q-A_{1} \nabla^{2} \Psi-A_{2} \nabla^{2} \Phi+\frac{B_{0}}{a^{2} H^{2}} \mathcal{Q}^{(2)}}{-\frac{B_{1}}{a^{2} H^{2}}\left(\nabla^{2} \Psi \nabla^{2} Q-\partial_{i} \partial_{j} \Psi \partial^{i} \partial^{j} Q\right) \quad\left(\nabla^{2} \epsilon\right)^{2} \text { terms }} \\
& -\frac{B_{2}}{a^{2} H^{2}}\left(\nabla^{2} \Phi \nabla^{2} Q-\partial_{i} \partial_{j} \Phi \partial^{i} \partial^{j} Q\right) \\
& -\frac{B_{3}}{a^{2} H^{2}}\left(\nabla^{2} \Phi \nabla^{2} \Psi-\partial_{i} \partial_{j} \Phi \partial^{i} \partial^{j} \Psi\right) \\
& -\frac{C_{0}}{a^{4} H^{4}}\left[\left(\nabla^{2} Q\right)^{3}-3 \nabla^{2} Q\left(\partial_{i} \partial_{j} Q\right)^{2}+2\left(\partial_{i} \partial_{j} Q\right)^{3}\right] \\
& -\frac{C_{1}}{a^{4} H^{4}}\left[\mathcal{Q}^{(2)} \nabla^{2} \Phi-2 \nabla^{2} Q \partial_{i} \partial_{j} Q \partial^{i} \partial^{j} \Phi+2 \partial_{i} \partial_{j} Q \partial^{j} \partial^{k} Q \partial_{k} \partial^{i} \Phi\right]=0 \\
& \text { where } \mathcal{Q}^{(2)}:=\left(\nabla^{2} Q\right)^{2}-\left(\partial_{i} \partial_{j} Q\right)^{2}
\end{aligned}
$$

[1] Scalar-field EOM

Linear terms

$$
\begin{aligned}
& \frac{A_{0} \nabla^{2} Q-A_{1} \nabla^{2} \Psi-A_{2} \nabla^{2} \Phi+\frac{B_{0}}{a^{2} H^{2}} \mathcal{Q}^{(2)}}{-\frac{B_{1}}{a^{2} H^{2}}\left(\nabla^{2} \Psi \nabla^{2} Q-\partial_{i} \partial_{j} \Psi \partial^{i} \partial^{j} Q\right) \quad\left(\nabla^{2} \epsilon\right)^{2} \quad \text { terms }} \\
& -\frac{B_{2}}{a^{2} H^{2}}\left(\nabla^{2} \Phi \nabla^{2} Q-\partial_{i} \partial_{j} \Phi \partial^{i} \partial^{j} Q\right) \\
& -\frac{B_{3}}{a^{2} H^{2}}\left(\nabla^{2} \Phi \nabla^{2} \Psi-\partial_{i} \partial_{j} \Phi \partial^{i} \partial^{j} \Psi\right) \\
& -\frac{C_{0}}{a^{4} H^{4}}\left[\left(\nabla^{2} Q\right)^{3}-3 \nabla^{2} Q\left(\partial_{i} \partial_{j} Q\right)^{2}+2\left(\partial_{i} \partial_{j} Q\right)^{3}\right] \\
& -\frac{C_{1}}{a^{4} H^{4}}\left[\mathcal{Q}^{(2)} \nabla^{2} \Phi-2 \nabla^{2} Q \partial_{i} \partial_{j} Q \partial^{i} \partial^{j} \Phi+2 \partial_{i} \partial_{j} Q \partial^{j} \partial^{k} Q \partial_{k} \partial^{i} \Phi\right]=0 \\
& \text { where } \mathcal{Q}^{(2)}:=\left(\nabla^{2} Q\right)^{2}-\left(\partial_{i} \partial_{j} Q\right)^{2}
\end{aligned}
$$

[1] Scalar-field EOM

Linear terms

$$
A_{0} \nabla^{2} Q-A_{1} \nabla^{2} \Psi-A_{2} \nabla^{2} \Phi+\frac{B_{0}}{a^{2} H^{2}}
$$

$$
-\frac{\left.B_{1}\right)}{a^{2} H^{2}}\left(\nabla^{2} \Psi \nabla^{2} Q-\partial_{i} \partial_{j} \Psi \partial^{i} \partial^{j} Q\right)
$$

$$
-\frac{B_{2}}{a^{2} H^{2}}\left(\nabla^{2} \Phi \nabla^{2} Q-\partial_{i} \partial_{j} \Phi \partial^{i} \partial^{j} Q\right)
$$

$$
-\frac{B_{3}}{a^{2} H^{2}}\left(\nabla^{2} \Phi \nabla^{2} \Psi-\partial_{i} \partial_{j} \Phi \partial^{i} \partial^{j} \Psi\right)
$$

$$
-\frac{\left(C_{0}\right)}{a^{4} H^{4}}\left[\left(\nabla^{2} Q\right)^{3}-3 \nabla^{2} Q\left(\partial_{i} \partial_{j} Q\right)^{2}\right.
$$

$$
-\frac{C_{1}}{a^{4} H^{4}}\left[\mathcal{Q}^{(2)} \nabla^{2} \Phi-2 \nabla^{2} Q \partial_{i} \partial_{j} Q \partial^{i} \partial\right.
$$

$$
\text { where } \quad \mathcal{Q}^{(2)}:=\left(\nabla^{2} Q\right)^{2}-\left(\partial_{i} \partial_{j} Q\right)^{2}
$$

Coefficients are written in terms of K, G_{3}, G_{4}, G_{5}. (messy!)

$$
\begin{aligned}
A_{0}:= & \frac{\dot{\Theta}}{H^{2}}+\frac{\Theta}{H}+\mathcal{F}_{T}-2 \mathcal{G}_{T}-2 \frac{\dot{\mathcal{G}}_{T}}{H}-\frac{\mathcal{E}+\mathcal{P}}{2 H^{2}}, \\
A_{1}:= & \frac{1}{H} \frac{\mathrm{~d}}{\mathrm{G}} \\
A_{2}:= & \mathcal{G}_{T}-\frac{\Theta}{H}, \\
B_{0}:= & \frac{X}{H}\left\{\dot{\phi} G_{3 X}+3(\dot{X}+2 H X) G_{4 X X}+2 X \dot{X} G_{4 X X X}-\right. \\
& +\left(\dot{H}+H^{2}\right) \dot{\phi} G_{5 X}+\dot{\phi}\left[2 H \dot{X}+\left(\dot{H}+H^{2}\right) X\right] G_{5 X} \\
& \left.-\dot{\phi} X G_{5 \phi \phi X}-X(\dot{X}-2 H X) G_{5 \phi X X}\right\},
\end{aligned}
$$

$$
B_{1}:=2 X\left[G_{4 X}+\ddot{\phi}\left(G_{5 X}+X G_{5 X X}\right)-G_{5 \phi}+X G_{5 \phi X}\right]
$$

$$
B_{2}:=-2 X\left(G_{4 X}+2 X G_{4 X X}+H \dot{\phi} G_{5 X}+H \dot{\phi} X G_{5 X X}-\right.
$$

$$
B_{3}:=H \dot{\phi} X G_{5 X},
$$

$$
C_{0}:=2 X^{2} G_{4 X X}+\frac{2 X^{2}}{3}\left(2 \ddot{\phi} G_{5 X X}+\ddot{\phi} X G_{5 X X X}-2 G_{5 \phi X}\right.
$$

$$
C_{1}:=H \dot{\phi} X\left(G_{5 X}+X G_{5 X X}\right)
$$

[2] (00) equation

$$
\begin{array}{ll}
\mathcal{G}_{T} \nabla^{2} \Psi+A_{2} \nabla^{2} Q & \longleftarrow \nabla^{2} \epsilon \\
& +\frac{B_{2}}{2 a^{2} H^{2}} \mathcal{Q}^{(2)}+\frac{B_{3}}{a^{2} H^{2}}\left(\nabla^{2} \Psi \nabla^{2} Q-\partial_{i} \partial_{j} \Psi \partial_{i} \partial_{j} Q\right) \\
+\frac{C_{1}}{3 a^{4} H^{4}}\left[\left(\nabla^{2} Q\right)^{3}-3 \nabla^{2} Q\left(\partial_{i} \partial_{j} Q\right)^{2}+2\left(\partial_{i} \partial_{j} Q\right)^{3}\right] & \longleftarrow\left(\nabla^{2} \epsilon\right. \\
= & \frac{a^{2}}{2} \rho_{\mathrm{m}} \delta
\end{array}
$$

[2] (00) equation

$$
\mathcal{G}_{T}:=2\left[G_{4}-2 X G_{4 X}-X\left(H \dot{\phi} G_{5 X}-G_{5 \phi}\right)\right]
$$

$\mathcal{G}_{T} \nabla^{2} \Psi+A_{2} \nabla^{2} Q$
$+\frac{B_{2}}{2 a^{2} H^{2}} \mathcal{Q}^{(2)}+\frac{B_{3}}{a^{2} H^{2}}\left(\nabla^{2} \Psi \nabla^{2} Q-\partial_{i} \partial_{j} \Psi \partial_{i} \partial_{j} Q\right)$
$\longleftarrow \nabla^{2} \epsilon$
$+\frac{C_{1}}{3 a^{4} H^{4}}\left[\left(\nabla^{2} Q\right)^{3}-3 \nabla^{2} Q\left(\partial_{i} \partial_{j} Q\right)^{2}+2\left(\partial_{i} \partial_{j} Q\right)^{3}\right]$

$\longleftarrow\left(\nabla^{2} \epsilon\right)^{3}$
$=\frac{a^{2}}{2} \rho_{\mathrm{m}} \delta$

[2] (00) equation

$$
\mathcal{G}_{T}:=2\left[G_{4}-2 X G_{4 X}-X\left(H \dot{\phi} G_{5 X}-G_{5 \phi}\right)\right]
$$

$\mathcal{G}_{T} \nabla^{2} \Psi+A_{2} \nabla^{2} Q$
$+\frac{B_{2}}{2 a^{2} H^{2}} \mathcal{Q}^{(2)}+\frac{B_{3}}{a^{2} H^{2}}\left(\nabla^{2} \Psi \nabla^{2} Q-\partial_{i} \partial_{j} \Psi \partial_{i} \partial_{j} Q\right)$
$\longleftarrow \nabla^{2} \epsilon$
$\longleftarrow\left(\nabla^{2} \epsilon\right)^{2}$
$+\frac{C_{1}}{3 a^{4} H^{4}}\left[\left(\nabla^{2} Q\right)^{3}-3 \nabla^{2} Q\left(\partial_{i} \partial_{j} Q\right)^{2}+2\left(\partial_{i} \partial_{j} Q\right)^{3}\right]$
$\longleftarrow\left(\nabla^{2} \epsilon\right)^{3}$

$$
=\frac{a^{2}}{2} \rho_{\mathrm{m}} \delta
$$

[3] Traceless part

$$
\begin{aligned}
\nabla^{2}\left(\mathcal{F}_{T} \Psi-\mathcal{G}_{T} \Phi-A_{1} Q\right)= & \frac{B_{1}}{2 a^{2} H^{2}} \mathcal{Q}^{(2)} \\
& +\frac{B_{3}}{a^{2} H^{2}}\left(\nabla^{2} \Phi \nabla^{2} Q-\partial_{i} \partial_{j} \Phi \partial^{i} \partial^{j} Q\right)
\end{aligned}
$$

[3] Traceless part

$$
\begin{aligned}
\nabla^{2}\left(\mathcal{F}_{T} \Psi-\mathcal{G}_{T} \Phi-A_{1} Q\right)= & \frac{B_{1}}{2 a^{2} H^{2}} \mathcal{Q}^{(2)} \\
& +\frac{B_{3}}{a^{2} H^{2}}\left(\nabla^{2} \Phi \nabla^{2} Q-\partial_{i} \partial_{j} \Phi \partial^{i} \partial^{j} Q\right)
\end{aligned}
$$

[3] Traceless part

$$
\begin{aligned}
& \nabla^{2}\left(\mathcal{F}_{T} \Psi-\mathcal{G}_{T} \Phi-A_{1} Q\right)= \frac{B_{1}}{2 a^{2} H^{2}} \mathcal{Q}^{(2)} \\
&+\frac{B_{3}}{a^{2} H^{2}}\left(\nabla^{2} \Phi \nabla^{2} Q-\partial_{i} \partial_{j} \Phi \partial^{i} \partial^{j} Q\right) \\
& \longrightarrow \mathcal{F}_{T}:=2\left[G_{4}-X\left(\ddot{\phi} G_{5 X}+G_{5 \phi}\right)\right]
\end{aligned}
$$

[3] Traceless part

$$
\begin{aligned}
\nabla^{2}\left(\mathcal{F}_{T} \Psi-\mathcal{G}_{T} \Phi-A_{1} Q\right)= & \frac{B_{1}}{2 a^{2} H^{2}} \mathcal{Q}^{(2)} \\
& +\frac{B_{3}}{a^{2} H^{2}}\left(\nabla^{2} \Phi \nabla^{2} Q-\partial_{i} \partial_{j} \Phi \partial^{i} \partial^{j} Q\right) \\
\longrightarrow & \mathcal{F}_{T}:=2\left[G_{4}-X\left(\ddot{\phi} G_{5 X}+G_{5 \phi}\right)\right]
\end{aligned}
$$

Related to propagation speed of gravitational waves:

$$
c_{h}^{2}:=\frac{\mathcal{F}_{T}}{\mathcal{G}_{T}}
$$

TK, Yamaguchi, Yokoyama, Prog. Theor. Phys. 126, 511 (2011)

Spherically symmetric configurations

$$
r=a \sqrt{\delta_{i j} x^{i} x^{j}}, \quad r H \ll 1
$$

The 3 equations can be integrated once to give algebraic equations for $\Phi^{\prime}, \Psi^{\prime}, Q^{\prime}$

$$
\begin{aligned}
c_{h}^{2} \frac{\Psi^{\prime}}{r}-\frac{\Phi^{\prime}}{r}-\alpha_{1} \frac{Q^{\prime}}{r}= & \frac{\beta_{1}}{H^{2}}\left(\frac{Q^{\prime}}{r}\right)^{2}+2 \frac{\beta_{3}}{H^{2}} \frac{\Phi^{\prime}}{r} \frac{Q^{\prime}}{r}, \\
\frac{\Psi^{\prime}}{r}+\alpha_{2} \frac{Q^{\prime}}{r}= & \frac{1}{8 \pi \mathcal{G}_{T}} \frac{\delta M(t, r)}{r^{3}}-\frac{\beta_{2}}{H^{2}}\left(\frac{Q^{\prime}}{r}\right)^{2}-2 \frac{\beta_{3}}{H^{2}} \frac{\Psi^{\prime}}{r} \frac{Q^{\prime}}{r}-\frac{2}{3} \frac{\gamma_{1}}{H^{4}}\left(\frac{Q^{\prime}}{r}\right)^{3}, \\
\alpha_{0} \frac{Q^{\prime}}{r}-\alpha_{1} \frac{\Psi^{\prime}}{r}-\alpha_{2} \frac{\Phi^{\prime}}{r}= & 2\left[-\frac{\beta_{0}}{H^{2}}\left(\frac{Q^{\prime}}{r}\right)^{2}+\frac{\beta_{1}}{H^{2}} \frac{\Psi^{\prime}}{r} \frac{Q^{\prime}}{r}+\frac{\beta_{2}}{H^{2}} \frac{\Phi^{\prime}}{r} \frac{Q^{\prime}}{r}+\frac{\beta_{3}}{H^{2}} \frac{\Phi^{\prime}}{r} \frac{\Psi^{\prime}}{r}\right. \\
& \left.+\frac{\gamma_{0}}{H^{4}}\left(\frac{Q^{\prime}}{r}\right)^{3}+\frac{\gamma_{1}}{H^{4}} \frac{\Phi^{\prime}}{r}\left(\frac{Q^{\prime}}{r}\right)^{2}\right]
\end{aligned}
$$

Coefficients are dimensionless and written in terms of K, G_{3}, G_{4}, G_{5} (TIme-dependent)

Spherically symmetric configurations

$$
r=a \sqrt{\delta_{i j} x^{i} x^{j}}, \quad r H \ll 1
$$

The 3 equations can be integrated once to give algebraic equations for $\Phi^{\prime}, \Psi^{\prime}, Q^{\prime}$

Enclosed mass:

$$
\begin{aligned}
& c_{h}^{2} \frac{\Psi^{\prime}}{r}-\frac{\Phi^{\prime}}{r}-\alpha_{1} \frac{Q^{\prime}}{r}=\frac{\beta_{1}}{H^{2}}\left(\frac{Q^{\prime}}{r}\right)^{2}+2 \frac{\beta_{3}}{\nabla^{2}} \frac{\Phi^{\prime}}{r} \frac{}{r}, \\
& \frac{\Psi^{\prime}}{r}+\alpha_{2} \frac{Q^{\prime}}{r}=\frac{1\left(\frac{\delta M(t, r)}{8 \pi \mathcal{G}_{T}}-\frac{\beta_{2}}{H^{2}}\left(\frac{Q^{\prime}}{r}\right)^{2}-2 \frac{\beta_{3}}{H^{2}} \frac{\Psi^{\prime}}{r} \frac{Q^{\prime}}{r}-\frac{2}{3} \frac{\gamma_{1}}{H^{4}}\left(\frac{Q^{\prime}}{r}\right)^{3}, ~\right.}{\text {, }} \\
& \alpha_{0} \frac{Q^{\prime}}{r}-\alpha_{1} \frac{\Psi^{\prime}}{r}-\alpha_{2} \frac{\Phi^{\prime}}{r}=2\left[-\frac{\beta_{0}}{H^{2}}\left(\frac{Q^{\prime}}{r}\right)^{2}+\frac{\beta_{1}}{H^{2}} \frac{\Psi^{\prime}}{r} \frac{Q^{\prime}}{r}+\frac{\beta_{2}}{H^{2}} \frac{\Phi^{\prime}}{r} \frac{Q^{\prime}}{r}+\frac{\beta_{3}}{H^{2}} \frac{\Phi^{\prime}}{r} \frac{\Psi^{\prime}}{r}\right. \\
& \left.+\frac{\gamma_{0}}{H^{4}}\left(\frac{Q^{\prime}}{r}\right)^{3}+\frac{\gamma_{1}}{H^{4}} \frac{\Phi^{\prime}}{r}\left(\frac{Q^{\prime}}{r}\right)^{2}\right]
\end{aligned}
$$

Coefficients are dimensionless and written in terms of K, G_{3}, G_{4}, G_{5} (TIme-dependent)

Let's see whether or not usual gravity is

 reproduced in the vicinity of the source:$$
\Phi^{\prime} \simeq \Psi^{\prime} \simeq \frac{G_{N} \delta M}{r^{2}}-? ? ?
$$

Linear solution at large r

At sufficiently large r all the non-linear terms may be neglected

$$
\begin{aligned}
\Phi^{\prime} & =\frac{c_{h}^{2} \alpha_{0}-\alpha_{1}^{2}}{\alpha_{0}+\left(2 \alpha_{1}+c_{h}^{2} \alpha_{2}\right) \alpha_{2}} \frac{\mu}{r^{2}} \\
\Psi^{\prime} & =\frac{\alpha_{0}+\alpha_{1} \alpha_{2}}{\alpha_{0}+\left(2 \alpha_{1}+c_{h}^{2} \alpha_{2}\right) \alpha_{2}} \frac{\mu}{r^{2}} \\
Q^{\prime} & =\frac{\alpha_{1}+c_{h}^{2} \alpha_{2}}{\alpha_{0}+\left(2 \alpha_{1}+c_{h}^{2} \alpha_{2}\right) \alpha_{2}} \frac{\mu}{r^{2}}
\end{aligned}
$$

where $\quad \mu:=\frac{\delta M}{8 \pi \mathcal{G}_{T}}$

Linear solution at large r

At sufficiently large r all the non-linear terms may be neglected

$$
\begin{aligned}
\Phi^{\prime} & =\frac{c_{h}^{2} \alpha_{0}-\alpha_{1}^{2}}{\alpha_{0}+\left(2 \alpha_{1}+c_{h}^{2} \alpha_{2}\right) \alpha_{2}} \frac{\mu}{r^{2}} \\
\Psi^{\prime} & =\frac{\alpha_{0}+\alpha_{1} \alpha_{2}}{\alpha_{0}+\left(2 \alpha_{1}+c_{h}^{2} \alpha_{2}\right) \alpha_{2}} \frac{\mu}{r^{2}} \\
Q^{\prime} & =\frac{\alpha_{1}+c_{h}^{2} \alpha_{2}}{\alpha_{0}+\left(2 \alpha_{1}+c_{h}^{2} \alpha_{2}\right) \alpha_{2}} \frac{\mu}{r^{2}}
\end{aligned}
$$

where $\quad \mu:=\frac{\delta M}{8 \pi \mathcal{G}_{T}}$

In general, $\Phi^{\prime} \neq \Psi^{\prime}$
(as expected)

Linear solution at large r (but $r H \ll 1$)
$\longrightarrow r$

Large non-linearity
 (even for weak field)

Linear solution at large r (but $r H \ll 1$)

Large non-linearity
(even for weak field)

Linear solution at large r (but $r H \ll 1$)

Solve the 3 algebraic equations for $\Phi^{\prime}, \Psi^{\prime}, Q^{\prime}$:
Case I $G_{4 X}=0, G_{5}=0 \rightarrow$ Single quadratic equation for Q^{\prime}
$\Rightarrow \quad \mathcal{L}=G_{4}(\phi) R+K(\phi, X)-G_{3}(\phi, X) \square \phi$

Case $2 \quad G_{5 X}=0 \longrightarrow$ Single cubic equation for Q^{\prime}
Case 3 the most general case, $G_{5 X} \neq 0$
Difficult to solve, but can draw some conclusion

Case I: $G_{4 X}=0=G_{5}$

(Non-minimally coupled version of)
Kinetic gravity braiding

$$
\mathcal{L}=G_{4}(\phi) R+K(\phi, X)-G_{3}(\phi, X) \square \phi
$$

Case I: $G_{4 X}=0=G_{5}$

(Non-minimally coupled version of)
Kinetic gravity braiding

$$
\mathcal{L}=G_{4}(\phi) R+K(\phi, X)-G_{3}(\phi, X) \square \phi
$$

Deffayet, Pujolas, Sawicki, Vikman 2010
In order for the solution to be real, $\quad G_{3 X}\left(X G_{3 X}+G_{4 \phi}\right)>0$

Case I: $G_{4 X}=0=G_{5}$

(Non-minimally coupled version of)
Kinetic gravity braiding

$$
\mathcal{L}=G_{4}(\phi) R+K(\phi, X)-G_{3}(\phi, X) \square \phi
$$

Deffayet, Pujolas, Sawicki, Vikman 2010
In order for the solution to be real, $G_{3 X}\left(X G_{3 X}+G_{4 \phi}\right)>0$

Short-distance solution: $\quad \Phi^{\prime} \simeq \Psi^{\prime} \simeq \frac{G_{N} \delta M}{r^{2}} \quad$ Two potentials coincide!
where $8 \pi G_{N}=\frac{1}{2 G_{4}}=\frac{1}{2 G_{4}(\phi(t))}$
Time-dependent G in cosmological background
(Consequences of time dependence will be discussed later)

Case 2: $G_{5 x}=0$

The problem reduces to solving the following cubic equation:

$$
\left(Q^{\prime}\right)^{3}+\mathcal{C}_{2} H^{2} r\left(Q^{\prime}\right)^{2}+\left(\frac{\mathcal{C}_{1}}{2} H^{4} r^{2}-H^{2} \mathcal{C}_{\beta} \frac{\mu}{r}\right) Q^{\prime}-\frac{H^{4} \mathcal{C}_{\alpha} \mu}{2}=0
$$

Case 2: $G_{5 X}=0$

The problem reduces to solving the following cubic equation:

$$
\left(Q^{\prime}\right)^{3}+\mathcal{C}_{2} H^{2} r\left(Q^{\prime}\right)^{2}+\left(\frac{\mathcal{C}_{1}}{2} H^{4} r^{2}-H^{2} \mathcal{C}_{\beta} \frac{\mu}{r}\right) Q^{\prime}-\frac{H^{4} \mathcal{C}_{\alpha} \mu}{2}=0
$$

Time-dependent coefficients, written in terms of $K, G_{3}, G_{4}, G_{5}=G_{5}(\phi)$

Case 2: $G_{5 x}=0$

The problem reduces to solving the following cubic equation:

$$
\left(Q^{\prime}\right)^{3}+\left(\mathcal{C}_{2} H^{2} r\left(Q^{\prime}\right)^{2}+\left(\frac{\mathcal{C}_{1}}{2} H^{4} r^{2}-H\left(\mathcal{C}_{\beta} \frac{\mu}{r}\right) Q^{\prime}-\frac{H^{4} \mathcal{C}_{\alpha} \mu}{2}=0\right.\right.
$$

$$
\mu \propto \delta M
$$

Time-dependent coefficients, written in terms of $K, G_{3}, G_{4}, G_{5}=G_{5}(\phi)$

Case 2: $G_{5 X}=0$

The problem reduces to solving the following cubic equation:

$$
\left(Q^{\prime}\right)^{3}+\left(\mathcal{C}_{2} H^{2} r\left(Q^{\prime}\right)^{2}+\left(\frac{\mathcal{C}_{1}}{2} H^{4} r^{2}-H^{2} \mathcal{C}_{\beta} \frac{\mu}{r}\right) Q^{\prime}-\frac{H^{4} \mathcal{C}_{\alpha} \mu}{2}=0\right.
$$

$$
\mu \propto \delta M
$$

Time-dependent coefficients, written in terms of $K, G_{3}, G_{4}, G_{5}=G_{5}(\phi)$

3 possible solutions at short distances:

$$
Q^{\prime} \simeq+H \sqrt{\mathcal{C}_{\beta} \frac{\mu}{r}}, \quad-H \sqrt{\mathcal{C}_{\beta} \frac{\mu}{r}}, \quad-\frac{\mathcal{C}_{\alpha}}{\mathcal{C}_{\beta}} \frac{H^{2} r}{2}
$$

(i) Either of 3 short-distance solutions is joined to the long-distance, linearized solution; real everywhere;

(ii) No real solution with this long-distance behavior

$$
r=r_{V}\left\{\begin{array}{l}
r_{*}:=\left(\frac{\mathcal{C}_{\alpha}^{2}}{\mathcal{C}_{1}^{2} \mathcal{C}_{\beta}} \frac{\mu}{H^{2}}\right)^{1 / 3} \text { for } Q^{\prime} \simeq \pm H \sqrt{\mathcal{C}_{\beta} \frac{\mu}{r}} \\
r_{*}:=\left(-\frac{\mathcal{C}_{\beta}}{\mathcal{C}_{1}} \frac{\mu}{H^{2}}\right)^{1 / 3} \text { for } Q^{\prime} \simeq-\frac{\mathcal{C}_{\alpha}}{\mathcal{C}_{\beta}} \frac{H^{2} r}{2}
\end{array}\right.
$$

Gravity at short distances

$\boxtimes Q^{\prime} \simeq \pm H \sqrt{\mathcal{C}_{\beta} \frac{\mu}{r}}$
Time-dependent G :

Two potentials coincide!

$$
\Phi^{\prime} \simeq \Psi^{\prime} \simeq \frac{G_{N} \delta M}{r^{2}}
$$

$$
8 \pi G_{N}=\frac{1}{2\left(G_{4}-4 X G_{4 X}-4 X^{2} G_{4 X X}+3 X G_{5 \phi}\right)}
$$

Gravity at short distances

$\boxtimes Q^{\prime} \simeq \pm H \sqrt{\mathcal{C}_{\beta} \frac{\mu}{r}}$
Time-dependent G :

Two potentials coincide!

$$
\Phi^{\prime} \simeq \Psi^{\prime} \simeq \frac{G_{N} \delta M}{r^{2}}
$$

$$
8 \pi G_{N}=\frac{1}{2\left(G_{4}-4 X G_{4 X}-4 X^{2} G_{4 X X}+3 X G_{5 \phi}\right)}
$$

Experimental constraints: $\left|\dot{G}_{N} / G_{N}\right|<0.02 H_{0}$

- must be much slower than the cosmological time scale

Gravity at short distances

$\boxtimes Q^{\prime} \simeq \pm H \sqrt{\mathcal{C}_{\beta} \frac{\mu}{r}}$
Time-dependent G :

Two potentials coincide!

$$
\Phi^{\prime} \simeq \Psi^{\prime} \simeq \frac{G_{N} \delta M}{r^{2}}
$$

$$
8 \pi G_{N}=\frac{1}{2\left(G_{4}-4 X G_{4 X}-4 X^{2} G_{4 X X}+3 X G_{5 \phi}\right)}
$$

Experimental constraints: $\left|\dot{G}_{N} / G_{N}\right|<0.02 H_{0}$

- must be much slower than the cosmological time scale Williams et al. 2004; Babichev et al. 2011
(D) $G_{N}(t)=G_{\cos }(t) \quad$ (" G^{\prime} ' in Friedmann equation)

Gravity at short distances

$\boxtimes Q^{\prime} \simeq-\frac{\mathcal{C}_{\alpha}}{\mathcal{C}_{\beta}} \frac{H^{2} r}{2}$

Two potentials do not coincide...

$$
\begin{gathered}
\Phi^{\prime} \simeq \frac{c_{h}^{2}}{8 \pi \mathcal{G}_{T}} \frac{\delta M}{r^{2}}, \quad \Psi^{\prime} \simeq \frac{1}{8 \pi \mathcal{G}_{T}} \frac{\delta M}{r^{2}} \\
\gamma_{\mathrm{PPN}}=\frac{1}{c_{h}^{2}}
\end{gathered}
$$

Case 3: $G_{5 x} \neq 0$

Difficult to analyze a variety of possible solutions in detail...

Case 3: $G_{5 x} \neq 0$

Difficult to analyze a variety of possible solutions in detail...

But, can show that inverse-square potentials,

$$
\Phi^{\prime} \simeq \Psi^{\prime} \propto \frac{1}{r^{2}}
$$

cannot be a solution on the shortest scales

Evolution of density perturbations

ϕ is minimally coupled to matter

- matter equations are not modified
$\ddot{\delta}+2 H \dot{\delta}-\frac{4}{3} \frac{\dot{\delta}^{2}}{1+\delta}=(1+\delta) \frac{\nabla^{2}}{a^{2}} \Phi \longmapsto \frac{\nabla^{2}}{a^{2}} \Phi=4 \pi G_{\text {eff }} \rho_{\mathrm{m}} \delta$
- On large scales (but well inside the horizon)

$$
\begin{aligned}
& G_{\text {eff }} \rightarrow \cdots\left(\neq G_{N}\right) \quad \text { De Felice, TK, Tsujikawa (2011) } \\
&(\text { messy expression) }
\end{aligned}
$$

- On small scales

$$
G_{\mathrm{eff}} \rightarrow G_{N}(t)
$$

(For an appropriate model choice with $G_{5 X}=0$)

4. Summary

Summary

- Generic scalar-tensor theory contains Galileon-like nonlinear derivative interaction
- Vainshtein screening in the most general ST theory?
- Time-dependent G in cosmological background ... Time dependence is not screened
- constrained from observations and experiments
- Inverse-square law cannot be reproduced on the smallest scales if $G_{5 X} \neq 0$
- Application to the study of structure formation

