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Motivation

• String theory implies the existence of extra dimensions and motivates

us to study a gravity in a higher-dimensional framework.

• There is gravity/gauge duality which is one of the most exciting ideas

in particle physics.

(d + 1)-dim. gravitaional theory ⇔ d-dim. gauge theory

• Understanding in higher-dimensional framework might give us further

understanding in 4-dimension.

Black hole solutions provide important and useful gravitational back-

grounds for these purposes, since black holes possess properties such as

entropy and a singularity that fundamental physics aims to address.
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Black hole metrics in a vacuum

• 4-dimensional black hole metric

mass a.m. NUT Λ
Schwarzschild (1915) ○
Kerr (1963) ○ ○
Carter (1968) ○ ○ ○
Plebanski (1975) ○ ○ ○ ○

• Higher-dimensional (D ≥ 4) black hole metric

mass a.m.s NUTs Λ
Tangherlini (1963) ○
Myers, Perry (1986) ○ ○
Gibbons, Lü, Page, Pope (2004) ○ ○ ○
Chen, Lü, Pope (2006) ○ ○ ○ ○
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Kerr-NUT-AdS metric in D-dimension

The most general known solution (Chen-Lü-Pope metric) is called Kerr-
NUT-AdS metric, which is given by

g =
n∑

µ=1

dx2
µ

Qµ
+

n∑

µ=1

Qµ




n−1∑

k=0

A
(k)
µ dψk



2

+ εS




n∑

k=0

A(k)dψk



2

in D = 2n+ ε dimension, where ε = 0 for even dimensions and ε = 1 for
odd dimesions.

Here the functions are

Qµ =
Xµ

Uµ
, Uµ =

∏

ν 6=µ

(x2
µ − x2

ν) , Xµ =
n∑

k=ε

ckx
2k + bµx1−ε

µ + ε
(−1)kc

x2
µ

,

A(k)
µ =

∑

1≤ν1<···<νk≤n
νi 6=µ

x2
ν1
· · ·x2

νk
, A(k) =

∑

1≤ν1<···<νk≤n

x2
ν1
· · ·x2

νk
, A(0)

µ = A(0) = 1 ,

S =
c

A(n)
, c = const. .

This metric satisfies Rab = −(D − 1)cn gab in all dimesions.
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Kerr metric (4-dimension)

ds2 =
Σ

4dr2 + Σdθ2 −
(4− a2 sin2 θ

Σ

)
dt2

− 4Mar sin2 θ

Σ
dtdφ +

[
(r2 + a2)2 −4a2 sin2 θ

Σ

]
sin2 θdφ2

where

Σ = r2 + a2 sin2 θ , 4 = r2 + a2 − 2Mr
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Kerr metric (4-dimension)

ds2 =
x2 − y2

X
dx2 +

y2 − x2

Y
dy2

+
X

x2 − y2
(dψ0 + y2dψ1)

2 +
Y

y2 − x2
(dψ0 + x2dψ1)

2

where

X = x2 − a2 − 2Mx , Y = y2 − a2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Kerr-NUT metric (4-dimension)

ds2 =
x2 − y2

X
dx2 +

y2 − x2

Y
dy2

+
X

x2 − y2
(dψ0 + y2dψ1)

2 +
Y

y2 − x2
(dψ0 + x2dψ1)

2

where

X = x2 − a2 − 2Mx , Y = y2 − a2 − 2Ly

6



Ansatz metric (4-dimension)

ds2 =
x2 − y2

X(x)
dx2 +

y2 − x2

Y (y)
dy2

+
X(x)

x2 − y2
(dψ0 + y2dψ1)

2 +
Y (y)

y2 − x2
(dψ0 + x2dψ1)

2

We can determine the functions X and Y by imposing Einstein condition

Rab = −3c gab.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Kerr-NUT-AdS metric (4-dimension)

ds2 =
x2 − y2

X
dx2 +

y2 − x2

Y
dy2

+
X

x2 − y2
(dψ0 + y2dψ1)

2 +
Y

y2 − x2
(dψ0 + x2dψ1)

2

where

X = cx4 + x2 − a2 − 2Mx , Y = cy4 + y2 − a2 − 2Ly
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Kerr-NUT-AdS metric (5-dimension)

ds2 =
x2 − y2

X
dx2 +

y2 − x2

Y
dy2

+
X

x2 − y2
(dψ0 + y2dψ1)

2 +
Y

y2 − x2
(dψ0 + x2dψ1)

2

+
c

x2y2
(dψ0 + (x2 + y2)dψ1 + x2y2dψ2)

2

X = c4x4 + c2x2 + c0 + b1 +
c

x2
, Y = c4y4 + c2y2 + c0 + b2 +

c

y2
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Kerr-NUT-AdS metric (6-dimension)

ds2 =
(x2 − y2)(x2 − z2)

X
dx2 +

(y2 − x2)(y2 − z2)

Y
dy2 +

(z2 − x2)(z2 − y2)

Z
dz2

+
X

(x2 − y2)(x2 − z2)
(dψ0 + (y2 + z2)dψ1 + y2z2dψ2)

2

+
Y

(y2 − x2)(y2 − z2)
(dψ0 + (z2 + x2)dψ1 + z2x2dψ2)

2

+
Z

(z2 − x2)(z2 − y2)
(dψ0 + (x2 + y2)dψ1 + x2y2dψ2)

2

where

X = c6x6 + c4x4 + c2x2 + c0 + b1x ,

Y = c6y6 + c4y4 + c2y2 + c0 + b2y ,

Z = c6z6 +c 4z4 + c2z2 + c0 + b3z
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Kerr-NUT-AdS metric (7-dimension)

ds2 =
(x2 − y2)(x2 − z2)

X
dx2 +

(y2 − x2)(y2 − z2)

Y
dy2 +

(z2 − x2)(z2 − y2)

Z
dz2

+
X

(x2 − y2)(x2 − z2)
(dψ0 + (y2 + z2)dψ1 + y2z2dψ2)

2

+
Y

(y2 − x2)(y2 − z2)
(dψ0 + (z2 + x2)dψ1 + z2x2dψ2)

2

+
Z

(z2 − x2)(z2 − y2)
(dψ0 + (x2 + y2)dψ1 + x2y2dψ2)

2

+
c

x2y2z2
(dψ0 + (x2 + y2 + z2)dψ1 + (x2y2 + y2z2 + x2z2)dψ2 + x2y2z2dψ3)

2

where

X = c6x6 + c4x4 + c2x2 + c0 + b1 −
c

x2
,

Y = c6y6 + c4y4 + c2y2 + c0 + b2 −
c

y2
,

Z = c6z6 +c 4z4 + c2z2 + c0 + b3 −
c

z2
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We can assume the ansatz metric

g =
n∑

µ=1

dx2
µ

Qµ
+

n∑
µ=1

Qµ

[
n−1∑

k=0

A(k)
µ dψk

]2

+ εS

[
n∑

k=0

A(k)dψk

]2

in D = 2n+ ε dimension, where ε = 0 for even dimensions and ε = 1 for
odd dimesions.

Here the functions are

Qµ =
Xµ

Uµ
, Uµ =

∏

ν 6=µ

(x2
µ − x2

ν) , Xµ = Xµ(xµ) ,

A(k)
µ =

∑

1≤ν1<···<νk≤n
νi 6=µ

x2
ν1
· · ·x2

νk
, A(k) =

∑

1≤ν1<···<νk≤n

x2
ν1
· · ·x2

νk
, A(0)

µ = A(0) = 1 ,

S =
c

A(n)
, c = const. .

Imposing Einstein condition Rab = λgab, we can determine the form of
the functioin Xµ

Xµ =
n∑

k=ε

ckx
2k + bµx1−ε

µ + ε
(−1)kc

x2
µ

.
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Separabilities of Kerr-NUT-AdS spacetime in higher-dimensions

It is known that the separation of variables for various field equations

on Kerr-NUT-AdS background.

• Geodesic equation
Frolov-Krtous-Kubiznak-Page(2006)

• Klein-Gordon equation
Kubiznak-Krtous-Kubiznak(2006)

• Dirac equation
Oota-Yasui(2008), Wu(2009)

• gravitational perturbation equation (tensor modes)

Kundri-Lucietti-Reall(2006), Oota-Yasui(2008)

• Maxwell equation ?
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Killing vector

Def. A generator of isometry of spacetime ξ, i.e.,

∇(aξb) = 0 (Lξ g = 0) ,

is called Killing vector.

If the orbit of Killing vector
is closed, it generates axial
symmetry. If not, it gener-
ates translation symmetry.

Conformal Killing vector

Def. A generator of conformal symmetry of spacetime ξ, i.e.,

∇(aξb) = φ gab (Lξ g = 2φ g ) ,

is called conformal Killing vector.
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Geodesic integrability

For geodesic Hamiltonian H = 1
2gab papb, E.O.M. gives geodesic equation

pb∇bp
a = 0 ( ẍa + Γa

bcẋ
bẋc = 0) .

We assume that a C.O.M. is written as C = Ka1...anpa1 · · · pan. Then the

condition

{C, H}P = 0

leads to the equation

∇(bKa1...an) = 0 .

This equation is called Killing equation and K is called Killing tensor

of rank-n. When n = 1, K is a Killing vector.

Since Killing tensor gives C.O.M. along geodesic, geodesic equation is

integrable if there are the dimension number of Killing vectors and Killing

tensors totally.
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Geodesic integrability of Kerr spacetime in 4-dimension

Carter (1968) . . . There exists an nontrivial Killing tensor K, so there
are four constants of motion.

ξ = ∂t , η = ∂φ , g , K

Penrose and Floyd (1973) . . . Killing tensor K is written as the square
of rank-2 Killing-Yano tensor f .

∃f s.t. Kab = fa
cfbc , fba = −fab , ∇(afb)c = 0

KY equation

Hughston and Sommers (1987) . . . Two Killing vectors, ξ and η, are
also constructed from the Killing-Yano tensor f .

ξa = ∇b(∗f)ba , ηa = Ka
bξ

b

⇒ KY tensor is more fundamental.
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Killing tensor

Def. When a rank-n symmetric tensor K satisfies the equation

∇(bKa1...an) = 0 ,

K is called Killing tensor.

Killing-Yano tensor

Def. When a rank-n anti-symmetric tensor f satisfies the equation

∇(bfa1)a2...an
= 0 ,

f is called Killing-Yano (KY) tensor.
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Geodesic integrability of Kerr-NUT-AdS spacetime in D-dimension

Page, Frolov, Kubizňák, Krtous and Vasdevan (2006)

There exist n−1 nontrivial Killing tensors K(j) in D-dimension, so there

are the dimension number of constants of motion, which are mutually

commuting.

ξ = ∂t , η(j) = ∂φi
, g , K(j) and η(n) (j = 1, . . . n− 1)

# Dimension # Killing vector # Killing tensor
D = 2n n n
D = 2n + 1 n + 1 n

As the 4-dimension, Killing vectors and tensors, ξ, η(j) and K(j), are

constructed from rank-(D − 2j) Killing-Yano tensors f(j).

K
(j)
ab = f(j)

a···f(j)
b
··· , ξa = ∇b(∗f(1))ba , η(j)a = K(j)a

bξ
b
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Geodesic integrability of Kerr-NUT-AdS spacetime in D-dimension

Futhermore, n−1 Killing-Yano tensors f(j) are constructed from a single

rank-2 CKY tensor h.

f(j) = ∗h(j) , h(j) = h ∧ h ∧ · · · ∧ h

(j times)

⇒ CKY tensor is the most fundamental.
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Conformal Killing-Yano tensor

Def. For a rank-n anti-symmetric tensor h, when there exists a rank-

(n− 1) anti-symmetric tensor ξ such that

∇(ahb)c1...cn−1
= gabξc1...cn−1 +

n−1∑

i=1

(−1)igci(a
ξb)c1...ĉi...cn−1

,

h is called conformal Killing-Yano (CKY) tensor and ξ is called

associated tensor of h,

ξc1...cn−1 =
1

D − n + 1
∇ahac1...cn−1 .

In particular, if ξ = 0 then h is called Killing-Yano (KY) tensor.

Tachibana and Kashiwada (1968)
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Closed conformal Killing-Yano tensor

Def. Let h be a p-form. If h satifies the equations

∇Xh = − 1

D − p + 1
X[ ∧ δh and dh = 0

for ∀X ∈ TM , then we call h rank-p closed conformal Killing-Yano

(CCKY) tensor.

¶ ³

∇ : Levi-Civita connection, ∧ : wedge product, d : exterior derivative,

δ : coderivative operator (= ∗d∗)
µ ´

21



Killing vector conformal Killing vector

symmetric Killing tensor conformal Killing tensor

anti-symmetric Killing-Yano tensor conformal Killing-Yano tensor
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Prop. Suppose that a spacetime admits a rank-2 non-degenerate CCKY

tensor. Then the geodesic equation is integrable, namely there are the

dimension number of Killing vectors and rank-2 Killing tensors totally.

Houri, Oota and Yasui (2007), Krtous, Frolov and Kubizňák (2008)

# Dimension # Killing vector # Killing tensor
2n n n

2n + 1 n + 1 n
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We can prove that

{Ci, Cj}P = 0 , {Ci, cj}P = 0 , {ci, cj}P = 0 .
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Theor. We assume that a spacetime admits a rank-2 non-degenerate

CCKY tensor. Then such a spacetime is given only by the metric of

Kerr-NUT-AdS type. (Einstein equation is not imposed.)

Houri, Oota and Yasui (2007), Krtous, Frolov and Kubizňák (2008)

Kerr-NUT-AdS-type metric in D = 2n + ε dimension

g =
n∑

µ=1

dx2
µ

Qµ
+

n∑

µ=1

Qµ




n−1∑

k=0

A
(k)
µ dψk



2

+ εS




n∑

k=0

A(k)dψk



2

where

Qµ =
Xµ

Uµ
, Uµ =

∏

ν 6=µ

(x2
µ − x2

ν) , Xµ = Xµ(xµ) ,

A(k)
µ =

∑

1≤ν1<···<νk≤n
νi 6=µ

x2
ν1
· · ·x2

νk
, A(k) =

∑

1≤ν1<···<νk≤n

x2
ν1
· · ·x2

νk
, A(0)

µ = A(0) = 1 ,

S =
c

A(n)
, c = const. .
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Solutions admitting a rank-2 closed CKY tensor

4-dimensional black hole metric

mass a.m. NUT Λ
Schwarzschild (1915) ○
Kerr (1963) ○ ○
Carter (1968) ○ ○ ○
Plebanski (1975) ○ ○ ○ ○

Higher-dimensional (D ≥ 4) black hole metric

mass a.m.s NUTs Λ
Tangherlini (1963) ○
Myers, Perry (1986) ○ ○
Gibbons, Lü, Page, Pope (2004) ○ ○ ○
Chen, Lü, Pope (2006) ○ ○ ○ ○

4-dimensional Kerr-Newman metric
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Theorem¶ ³

We assume that D-dimensional spacetime (M, g) admits a single

rank-2 closed CKY tensor. Then (M, g) is the only generalized Kerr-

NUT-AdS spacetime. (Here Einstein condition is not imposed.)
µ ´

Houri, Oota and Yasui (2008)

rank-2 non-degenerate closed unique
conformal Killing-Yano tensor =⇒ Kerr-NUT-AdS metric

rank-2 closed unique generalized
conformal Killing-Yano tensor =⇒ Kerr-NUT-AdS metric

h =
n∑

µ=1

xµ eµ ∧ en+µ + ξ1

m1∑
α1=1

eα1 ∧ em1+α1 + · · ·+ ξN

mN∑
αN=1

eαN ∧ emN+αN

=
n∑

µ=1

xµ eµ ∧ en+µ +
N∑

j=1


ξj

mj∑
αj=1

eαj ∧ emj+αj
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It is convenient to write eigenvalues of a rank-2 closed CKY tensor by
introducing Qa

b = −ha
chc

b.

V −1(Qa
b)V = {−x2

1,−x2
1, . . . ,−x2

n,−x2
n︸ ︷︷ ︸

2n

,−ξ2
1, . . . ,−ξ2

1︸ ︷︷ ︸
2m1

, . . . ,−ξ2
N , . . . ,−ξ2

N︸ ︷︷ ︸
2mN

,0, . . . ,0︸ ︷︷ ︸
K

}

Then D-dimensional generalized Kerr-NUT-AdS metric is

g =
n∑

µ=1

dx2
µ

Pµ
+

n∑
µ=1

Pµ

[
n−1∑

k=0

A(k)
µ θk

]
2 +

N∑

j=1

n∏
µ=1

(x2
µ − ξ2

j )g
(j) +

( ∏
µ

x2
µ

)
g(0)

where g(0) is arbitrary K-dim. metric and g(j) is 2mj-dim. Kähler metric

with the Kähler form ω(j).

Pµ =
Xµ(xµ)

xK
µ

∏N
j=1(x

2
µ − ξ2

j )
mj

∏n
ν=1
ν 6=µ

(x2
µ − x2

ν)
, A(k)

µ =
∑

1≤ν1<···<νk≤n
νi 6=µ

x2
ν1

. . . x2
νk

,

dθk + 2
N∑

j=1

(−1)n−kξ2n−2k−1
j ω(j) = 0 .
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• D-dimensional generalized Kerr-NUT-AdS metric

g =
n∑

µ=1

dx2
µ

Pµ
+

n∑
µ=1

Pµ

[
n−1∑

k=0

A(k)
µ θk

]2

+
N∑

j=1

n∏
µ=1

(x2
µ − ξ2

j )g
(j) +

( ∏
µ

x2
µ

)
g(0)

where

Pµ =
Xµ(xµ)

xK
µ

∏N
j=1(x

2
µ − ξ2

j )
mj

∏n
ν=1
ν 6=µ

(x2
µ − x2

ν)
, A(k)

µ =
∑

1≤ν1<···<νk≤n
νi 6=µ

x2
ν1

. . . x2
νk

,

dθk + 2
N∑

j=1

(−1)n−kξ2n−2k−1
j ω(j) = 0 .

When g(0) is K-dim. Einstein metric, g(j) is 2mj-dim. Einstein-Kähler

metric with the Kähler form ω(j) and

Xµ = xµ

∫
dxµχ(xµ)x

K−2
µ

N∏

i=1

(x2
µ − ξ2

i )
mi + dµxµ

where

χ(xµ) =
n∑

i=0

αix
2i , α0 = (−1)n−1λ(0)

This metric satisfies Einstein equation Rab = −(D − 1)αn gab.
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generalized Kerr-NUT-AdS metric

Spacetime described by generalaized Kerr-NUT-(A)dS metric has a fiber

bundle structure such that

base space : direct products of n Kähler-Einstein spaces

fiber : Kerr-NUT-AdS spacetime

Such a structure of spacetime appears in higher dimensional black holes

with equal angular momenta.

For example, (2m + 3)-dimensional Kerr-AdS black hole metric with

equal angular momenta has the follwing structure:

base space : CP (m)

fiber : 3-dimensional Kerr-NUT-AdS spacetime
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Charged rotating black holes in supergravity theory

Let us consider the following (Einstein-frame) Lagrangian :

LD =R ∗ 1 +
1

2
∗ dϕ ∧ dϕ−X−2 ∗ F(2) ∧ F(2) −

1

2
X−4 ∗H(3) ∧H(3) ,

where

X = e−ϕ/
√

2(D−2) , F(2) = dA(1) , H(3) = dB(2) −A(1) ∧ dA(1) .

This is a system consisted of gravitational field g, scalar field ϕ, 1-form

potential A(1) and 2-form potential B(2).

* This Lagrangian appears as a truncation of the bosonic part of various

supergravity theories, for example of heterotic supergravity compactified

on a torus, and also as the ungauged limit of truncations of certain

gauged supergravity theories.
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Charged Kerr-NUT solution in D = 2n + ε dimension

Chow (2008)

gD = H2/(D−2)

{
n∑

µ=1

dx2
µ

Qµ
+

n∑
µ=1

Qµ

(
Aµ −

n∑
ν=1

2Nνs2

HUν
Aν

)2
+ εS

(
A−

n∑
ν=1

2Nνs2

HUν
Aν

)2
}

X = H−1/(D−2) , A(1) =
n∑

µ=1

2Nµsc

HUµ
Aµ , B(2) = dψ0 ∧

( n∑
ν=1

2Nνs2

HUν
Aν

)
.

Here the 1-forms and the functions are

Aµ =
n−1∑

k=0

A(k)
µ dψk , A =

n∑

k=0

A(k)dψk , H = 1 +
n∑

µ=1

2Nµs2

Uµ
, Nµ = mµx1−ε

µ ,

Qµ =
Xµ

Uµ
, Uµ =

n∏
ν=1
ν 6=µ

(x2
µ − x2

ν) , Xµ = Xµ(xµ) ,

A(k)
µ =

∑

1≤ν1<···<νk≤n
νi 6=µ

x2
ν1
· · ·x2

νk
, A(k) =

∑

1≤ν1<···<νk≤n

x2
ν1
· · ·x2

νk
, A(0)

µ = A(0) = 1 ,

S =
c

A(n)
, c = const. .
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From the viewpoint of hidden symmetries, it is convenient to use a

string-frame metric gs which is conformally related to a Einstein-frame

metirc gE by

gE = X−2gs .

Then it leads to the string-frame Lagrangian

LD = X−(D−2)
{
∗Rs +

1

2
∗ dϕ ∧ dϕ− ∗F(2) ∧ F(2) −

1

2
∗H(3) ∧H(3)

}
.
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In string frame the metric gs is written as

gs =
n∑

µ=1

(eµeµ + eµ̂eµ̂) + εe0e0 ,

where the vielbeins for Chow’s solution are

eµ =
dxµ√

Qµ

, eµ̂ =
√

Qµ

(
Aµ −

n∑
ν=1

2Nνs2

HUν
Aν

)
, e0 =

√
S

(
A−

n∑
ν=1

2Nνs2

HUν
Aν

)
.

As we find soon, there are n + ε Killing vectors given by ∂/∂ψk, k =
0, . . . , n − 1 + ε. In addition, it is known that there are n − 1 rank-2
Killing tensors K(j) given by

K(j) =
n∑

µ=1

A(j)
µ (eµeµ + eµ̂eµ̂) + εA(j)e0e0 ,

where j = 1, . . . , n − 1. Consequently, there are in Einstein frame n − 1
rank-2 conformal Killing tensors Q(j) given by

Q(j) = H2/(D−2)K(j) .
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Generalized Closed Conformal Killing-Yano Tensor

Kubizňák, Kunduri and Yasui (2008)

Def. Let h be a p-form and T be a 3-form. If a pair of (h, T ) satifies
the equations

∇T
Xh = − 1

D − p + 1
X[ ∧ δTh and dTh = 0

for ∀X ∈ TM , then we call h rank-p generalized closed conformal

Killing-Yano (GCCKY) tensor with 3-form T .

¶ ³

∇ : Levi-Civita connection, ∧ : wedge product, d : exterior derivative,

δ : coderivative operator (= ∗d∗), −| : inner product

∇T
Xh := ∇Xh− 1

2

∑
a

(X−| ea−| T ) ∧ (ea−| h) ,

dTh :=
∑
a

ea ∧∇T
ea

h , δTh := −
∑
a

ea−| ∇T
ea

h .

µ ´
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Prop. Let (M , g) be a D-dimensional spacetime. If (M , g) admits a

rank-2 non-degenerate GCCKY tensor h with a 3-form T then there

exist n− 1 rank-2 Killing tensors K(j) (j = 1, . . . , n− 1).

h =
n∑

µ=1

xµ eµ ∧ eµ̂ , K(j) =
n∑

µ=1

A
(j)
µ (eµeµ + eµ̂eµ̂) + εA(j)e0e0

{ea} : orthonormal basis

Difference 1¶ ³

With T = 0 all commutators of Killing tensors vanish automatically,

but with T 6= 0 it doesn’t occur.
µ ´

Difference 2¶ ³

With T = 0 rank-2 CCKY tensor leads to n + ε Killing vectors, but it

doesn’t occur with T 6= 0.
µ ´

For geodesic integrability we need some additional condition for T .
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Charged Kerr-NUT solution in D = 2n + ε dimension

Chow (2007)

gD = H2/(D−2)

{
n∑

µ=1

dx2
µ

Qµ
+

n∑
µ=1

Qµ

(
Aµ −

n∑
ν=1

2Nνs2

HUν
Aν

)2
+ εS

(
A−

n∑
ν=1

2Nνs2

HUν
Aν

)2
}

X = H−1/(D−2) , A(1) =
n∑

µ=1

2Nµsc

HUµ
Aµ , B(2) = dψ0 ∧

( n∑
ν=1

2Nνs2

HUν
Aν

)
.

Here the 1-forms and the functions are

Aµ =
n−1∑

k=0

A(k)
µ dψk , A =

n∑

k=0

A(k)dψk , H = 1 +
n∑

µ=1

2Nµs2

Uµ
, Nµ = mµx1−ε

µ ,

Qµ =
Xµ

Uµ
, Uµ =

n∏
ν=1
ν 6=µ

(x2
µ − x2

ν) , Xµ = Xµ(xµ) ,

A(k)
µ =

∑

1≤ν1<···<νk≤n
νi 6=µ

x2
ν1
· · ·x2

νk
, A(k) =

∑

1≤ν1<···<νk≤n

x2
ν1
· · ·x2

νk
, A(0)

µ = A(0) = 1 ,

S =
c

A(n)
, c = const. .
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For Chow’s solution in string frame, we find a rank-2 GCCKY tensor

h =
n∑

µ=1

xµ eµ ∧ eµ̂

with a 3-form

h =
n∑

ρ=1

n∑

µ=1
µ 6=ρ

√
Qµ(∂ρ lnH) eρ ∧ eµ̂ ∧ eρ̂

− ε
n∑

ρ=1

√
S(∂ρ lnH) eρ ∧ eρ̂ ∧ e0 + ε

n∑

ρ=1

f

xρ
eρ ∧ eρ̂ ∧ e0 ,

where f is an arbitrary function.

¶ ³

When f = 0, we can write the 3-form T as

T = k XD−6H(3) ,

where H(3) = dB(2) −A(1) ∧ dA(1) and k is some constant.
µ ´
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Thus in string frame there are n−1 rank-2 Killing tensors K(j) given by

K(j) =
n∑

µ=1

A
(j)
µ (eµeµ + eµ̂eµ̂) + εA(j)e0e0 ,

where j = 1, . . . , n− 1.

¶ ³

One can check that the torsion T satisfies a condition on which Killing

tensors are mutually commuting.
µ ´

Consequently, there are in Einstein-frame n−1 rank-2 conformal Killing

tensors Q(j) given by

Q(j) = H2/(D−2)K(j) .
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Summary

• We have introduced the notion of (G)CCKY tensor and showed the

relation to geodesic integrabilty.

• By imposing a rank-2 non-degenerate CCKY tensor we have con-

structed a metric ansatz which has geodesic integrability and examined

solutions to (vacuum) Einstein equation.

• We have considered the charged Kerr-NUT spacetime given by Chow’s

solution, which includes ...

Kerr-Sen black hole in 4 dimension,

charged rotating black hole with δ1 = δ2 and δ3 = 0 in 5-dim.

U(1)3 ungaged supergravity, etc.

• We have understood that the Killing tensors for the charged Kerr-NUT

spacetime (in string frame) come from a rank-2 GCCKY tensor.
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Discussion - small questions -

• Properties of charged Kerr-NUT spacetime

relation between GCCKY tensor and Killing vectors?

separability of Klein-Gordon equation, Dirac equation, etc?

• How about other known solutions?

• General properties of GCCKY tensor

What’s the condition that Killing vectors can be constructed

from a GCCKY tensor?

Are symmetry operators which commute with raplacian,

Dirac operator, etc constructed from it?
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Discussion - large questions -

• Can we construct new solution?

e.g. vacuum black hole solutions, Houri, Oota and Yasui (2007)

black hole solution in 5-dim. minimal gauged supergravity

Ahmedov and Aliev (2009)

• What’s the physical meaning?

• Why many known black hole solutions have such a symmetry?

e.g. black ring solution doesn’t admit CCKY tensor.

It seems to me that these questions are deeply related each other...
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