

25 Dec. 2009 @ YITP workshop on BH in higher dimensions 09

Application of String Theory and Sugra Solution

Koji Hashimoto (RIKEN)

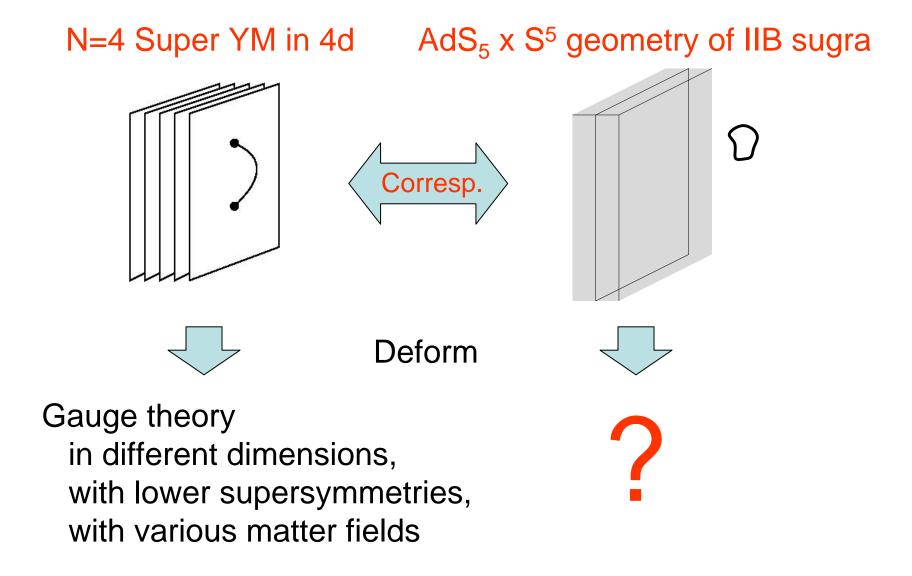
arXiv: 0909.12196

w/ Heng-Yu Chen (Madison), Shunji Matsuura (KITP)

Relax...

- KT [Klebanov, Tseytlin, 0002159]
- MN [Maldacena, Nunez, 0008001]
- KS [Klebanov, Strassler, 0007191]
- BMN [Berenstein, Maldacena, Nastase, 0202021]
- LLM [Lin, Lunin, Maldacena, 0409174]

These are important geometries for string theorists


..... Why important?

Plan

1. Need of gravity solutions 4 pages 2. My Sugra analysis 5 pages 3. Motivation for the computations 4 pages 4. Sugra back-reaction and "physics" 10 pages

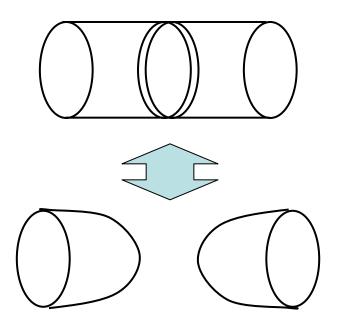
1. Need of gravity solutions

Motivation for a superstring theorist

Requirement : Clear deformations on the both sides !

Ex.1) Introduction of matter fields by "flavor D-branes"

"Probe approximation" : Nc >> Nf


Throwing away important gauge dynamics... "Nc ~ Nf" effects : beyond quenching, Seiberg dualities, Color-flavor locking, ...

Ex.2) SUSY + boundary informations

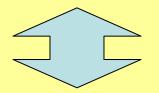
Higher supersymmetries constrains geometries, and AdS/CFT dictionary at boundary fixes them. Non-commutative YM, bubbling geometry

Ex.3) Geometrically clear deformations

Gravity solution for pure YM without SUSY

- *Nc* D4-branes wrapping S¹ Gaugino : antiperiodic
- \rightarrow 4d bosonic YM at low energy

Gravity solution [Gibbons, Maeda (88)] Double-Wick rotated AdS₇ x S⁴ blackhole


$$ds^{2} = \frac{r^{2}}{L^{2}} \left(\eta_{\mu\nu} dx^{\mu} dx^{\nu} + f(r) d\tau^{2} \right) + \frac{L^{2}}{r^{2}} f^{-1}(r) dr^{2}$$

(written with 11 dim. supergravity notation) $f \equiv 1 - R^{6}/r^{6}$

What is cleaver about this geometry :

How to break susy is specified \rightarrow field theory dual is clear

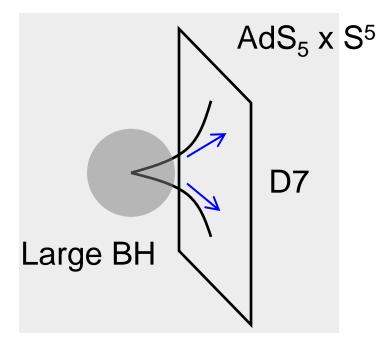
Techniques demanded

D-brane consruction of gauge theories : well established

Supergravity solutions ???

Gravity solutions for even simple intersecting D-branes have not been constructed explicitly [Lunin (0706.3396)]

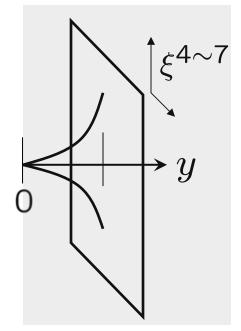
What have been done :


Back-reaction solved order by order in Nf / Nc Smearing of D-branes....

2. My Sugra analysis

My SUGRA analysis

I would like to compute ...


A back reaction of spiky D7-brane probe in $AdS_5 BH$

Spike (scalar charge) is translation invariant under x^1 , x^2 , x^3

On the D7, from the tip, electric flux is generated

D7 spike solution

Background:
$$AdS_5 \times S^5$$

 $ds^2 = \frac{r_6^2}{R^2} dx^{\mu} dx^{\nu} \eta_{\mu\nu} + \frac{R^2}{r_6^2} dr_6^2 + R^2 ds_5^2.$
 $r_6^2 = r^2 + y^2 + z^2$ $r^2 = (\xi^4)^2 + (\xi^5)^2 + (\xi^6)^2 + (\xi^7)^2$
 $g_s C_4 = \frac{r_6^4}{R^4} dx^0 \wedge dx^1 \wedge dx^2 \wedge dx^3,$
 $g_s F_5 = (1 + *_{10})d(g_s C_4) = 4R^4(d\Omega_5 + *_{10}d\Omega_5).$

See [Karch O'Bannon(07)]

D7-action:
$$S = -\mathcal{T}_{D7} \int d^4x \int d^4\xi \operatorname{tr} \sqrt{-\det(G_{\mu\nu} + 2\pi\alpha' F_{\mu\nu})}$$

We turn on only $y(r), A_t(r) \rightarrow$ Spike solution

$$2\pi \alpha' A'_t(r) = \frac{\mathbf{d}}{\mathcal{N}\sqrt{r^6 + r_0^6}}, \quad y'(r) = \frac{\mathbf{c}}{\mathcal{N}\sqrt{r^6 + r_0^6}} \qquad r_0^6 = \frac{\mathbf{d}^2 - \mathbf{c}^2}{\mathcal{N}^2}$$

We show D7 electric field back-reacts to generate $F_{123}^{(3)}$

Electric flux on D7 = source for NSNS B-field in the bulk

$$S_{\rm D7} = -N_f \mathcal{T}_{\rm D7} \int d^4 x d^4 \xi \sqrt{-\det(g_{\mu\nu} + 2\pi\alpha' F_{\mu\nu} + \tilde{B}_{\mu\nu})}$$

Expansion of this in terms of B gives a source term

$$S_{\text{DBI}}^{\text{D7}} \Big|_{\mathcal{O}(\hat{B})} = -\int d^4x dr \ \hat{B}_{0r} \left[\frac{\delta L}{\delta(2\pi\alpha' A_t')} \right]_{B=0}$$

Using $z = r_6 \cos \theta_1$, $y = r_6 \sin \theta_1 \cos \theta_2$, $r = r_6 \sin \theta_1 \sin \theta_2$

The tip ~ rigid cone, $\theta_2 \sim \theta_2^{(0)} \equiv \frac{\sqrt{\mathbf{d}^2 - \mathbf{c}^2}}{\mathbf{c}}$ $\theta_1 = \pi/2$

$$S_{\text{DBI}}^{\text{D7}} \Big|_{\mathcal{O}(B)} = -\frac{\mathbf{d}}{2\pi^2} \int d^4x \int dr_6 \ d\Omega_5 \ \delta(\theta_1 - \pi/2) \delta(\theta_2 - \theta_2^{(0)}) \frac{B_{0r_6}}{\sin^3 \theta_2^{(0)}}$$

A SUGRA back reaction : step 2/3

Relevant part of the IIB SUGRA is

$$S_{\rm B} = -\frac{1}{4\kappa_{10}^2} \int d^{10}x \sqrt{-g_{10}} \ e^{-2\Phi} |H_3|^2 + \frac{1}{4\kappa_{10}^2} \int F_5 \wedge B_2 \wedge F_3$$

Substituting the background 5-form flux, we obtain

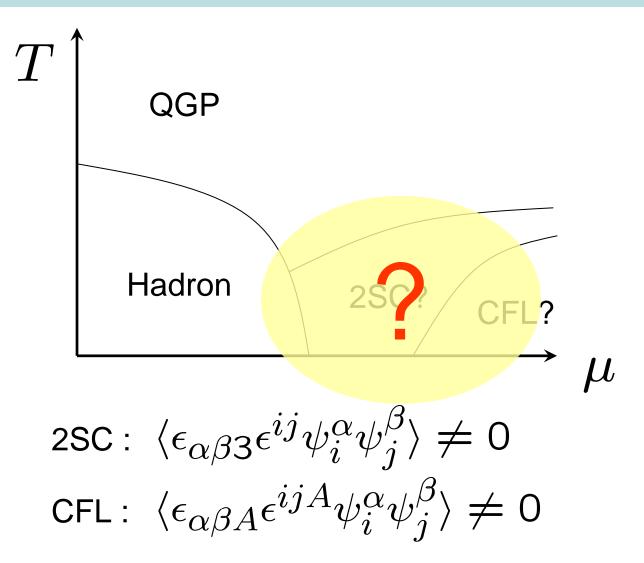
$$S_{\rm B} = -\frac{1}{2(2\pi)^7 \alpha'^4 g_s^2} \int d^4 x dr_6 d\Omega_5 \ r_6^3 \left[H_{0r_6\theta_1}^2 + \frac{1}{\sin^2 \theta_2} H_{0r_6\theta_2}^2 \right] + \frac{1}{(2\pi)^7 \alpha'^4} \int d^4 x dr_6 d\Omega_5 \ B_{0r_6} F_{123}^{(3)} 2^4 \pi N_c(\alpha')^2 \,.$$

With the D7 source term, the EOM is

$$0 = \frac{r_6^3}{(2\pi)^7 \alpha'^4 g_s^2} \left[\partial_{\theta_1} \left(\sin^4 \theta_1 \sin^3 \theta_2 H_{0r_6\theta_1} \right) + \partial_{\theta_2} \left(\sin^2 \theta_1 \sin^3 \theta_2 H_{0r_6\theta_2} \right) \right] + \frac{1}{(2\pi)^7 \alpha'^4} F_{123}^{(3)} \sin^4 \theta_1 \sin^3 \theta_2 \ 2^4 \pi N_c \alpha'^2 - \delta(\theta_1 - \pi/2) \delta(\theta_2 - \theta_2^{(0)}) \frac{\mathbf{d}}{2\pi^2} .$$

Integrating this equation over the θ_1, θ_2 space, we get

$$\frac{1}{(2\pi)^7 \alpha'^4} F_{123}^{(3)} \int_0^\pi d\theta_1 \,\sin^4\theta_1 \int_0^\pi d\theta_2 \,\sin^3\theta_2 \,\left(2^4 \pi N_c \alpha'^2\right) = \frac{\mathbf{d}}{2\pi^2}$$

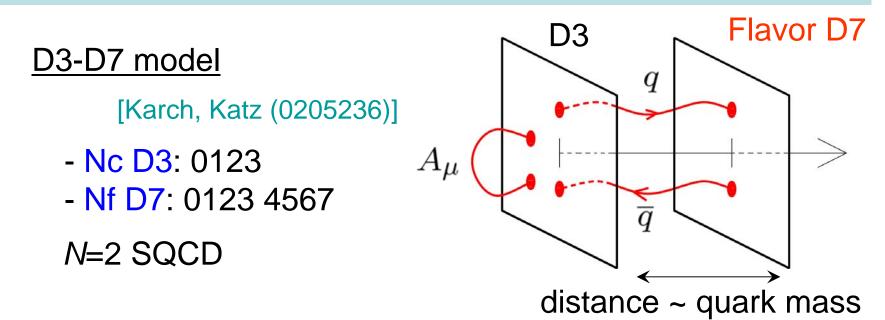

This provides a back-reaction for the constant 3-form flux,

$$F_{123}^{(3)} = \frac{8\pi^3 \alpha'^2 \mathbf{d}}{N_c}$$

- Note: (1) Consistent with the $F^{(3)}$ EOM. "Baryon vertex"! (2) It is a back reaction, $O(1/N_c)$
 - (3) This computation holds also for BH case.
 - (4) Dilaton/gravity back-reactions ignored.

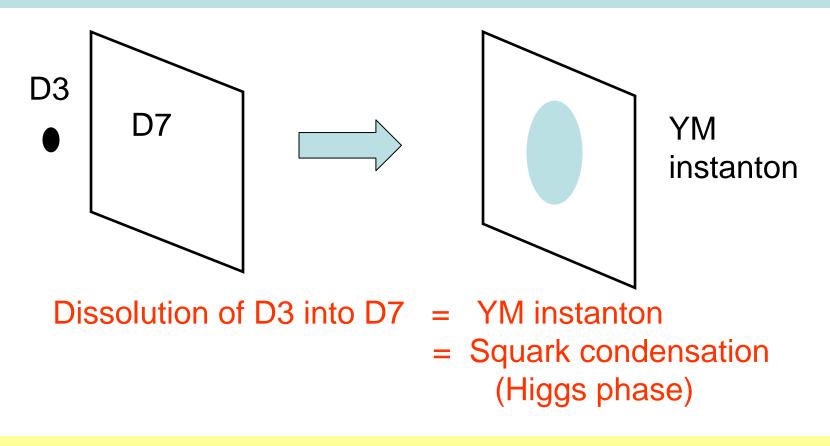
3. Motivation for the computations

Exploring QCD phase diagram


For large chemical potential, perturbative QCD helps. For very small chemical potential, Lattice QCD helps.

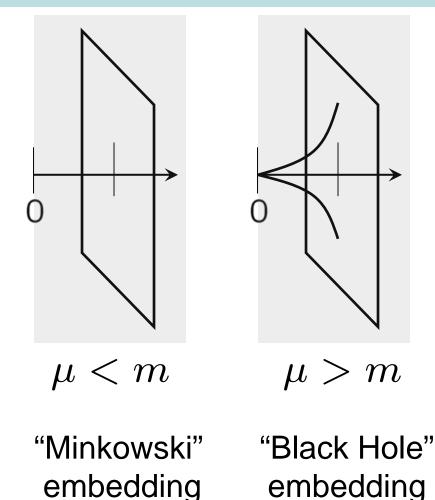
Phase transition cannot be studied by these

Holographic QCD may help?


Toy model of QCD : N=2 SQCD

Quarks are accompanied by Squarks

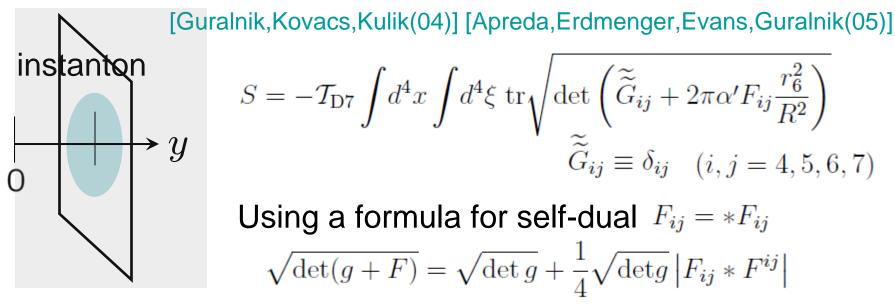
- → When baryon chemical potential μ is turned on, the squarks get condensed first!
- Color-Flavor Locking = Higgs phase


Realization of Higgs phase

In D3-D7 set up of holographic N=2 SQCD, We will show : baryon chemical potential induces a size moduli potential for YM instanton on D7

4. Sugra back-reaction and "physics"

Chemical potential and phase transition at T=0


Chemical potential μ is introduced as asymptotic value of A_t on the D7.

BH embedding is favored for $\mu > m$

[Kobayashi,Mateos,Matsuura, Myers,Thomson (06)] [Nakamura,Seo,Sin,Yogendran (07)] [Gohroku,Ishihara,Nakamura(07)] [Karch,O'Bannon(07)]

 A_t, y :constant Spike solution

Instanton on the flat D7

the D7 action becomes

$$S = -\mathcal{T}_{\mathrm{D7}} \int d^4x \int d^4\xi \,\mathrm{tr} \left[\sqrt{\det \widetilde{\widetilde{G}}} + \frac{1}{8} (2\pi\alpha')^2 \left(\frac{r^2 + y^2}{R^2} \right)^2 \epsilon^{ijkl} F_{ij} F_{kl} \right]$$

This is canceled by the CS term produced by

 $C^{(4)} = \left(\frac{r^2 + y^2}{R^2}\right)^2 dx^0 \wedge dx^1 \wedge dx^2 \wedge dx^3 \qquad \longrightarrow \qquad \begin{array}{c} \text{No moduli} \\ \text{potential} \end{array}$

We combine the spike and the instanton for $\,\mu>m$

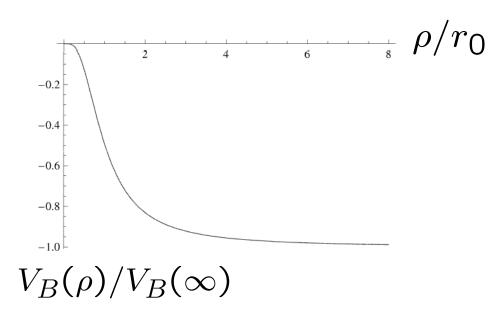
"Effective metric" as seen by the instanton is $\widetilde{G}_{ij} = g_{ij} + g_{yy} \partial_i y \partial_j y + g^{tt} \partial_i A_t \partial_j A_t (2\pi\alpha')^2$ $= \frac{R^2}{r_6^2} \left(\delta_{ij} + \frac{\xi^i \xi^j}{r^2} \left(y'^2 - (2\pi\alpha')^2 A_t'^2 \right) \right)$

This is a conformally flat metric, which allows instanton

- \rightarrow Calcellation of DBI and CS term, again
- \rightarrow No potential for the size moduli of the instanton!
- → No favored Higgs phase..... ????

On the D7-brane, there is a RR coupling $\int C^{(2)} \wedge \operatorname{tr}[F \wedge F \wedge F] \sim \int F_{123}^{(3)} A_0 \operatorname{tr}[F * F]_{4567}$

→ The background $F_{123}^{(3)}$ generates a CS term,

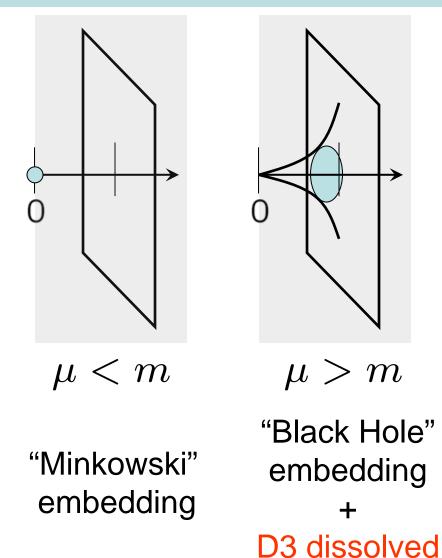

$$S_{\rm CS} = \frac{1}{8(2\pi)^4 \alpha'} \int d^4 x F_{123}^{(3)} \int d^4 \xi \, {\rm tr} \left[A_0 F_{ij} F_{kl} \epsilon^{ijkl} \right] + \cdots$$

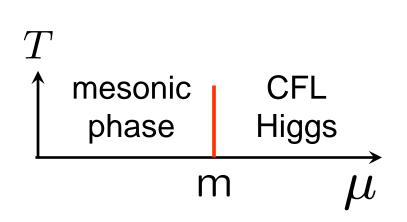
We substitute the BPST instanton, $tr F_{ij}F_{kl}\epsilon^{ijkl} = \frac{192\rho^4}{(\tilde{r}^2 + \rho^2)^4}$

 \rightarrow Potential for the instanton size moduli !

$$V_B(\rho) = -\frac{2\pi\alpha' \mathbf{d}}{N_c} \int_0^\infty dr \ A'_t(r) \frac{\rho^4 (3\tilde{r}^2 + \rho^2)}{(\tilde{r}^2 + \rho^2)^3}$$

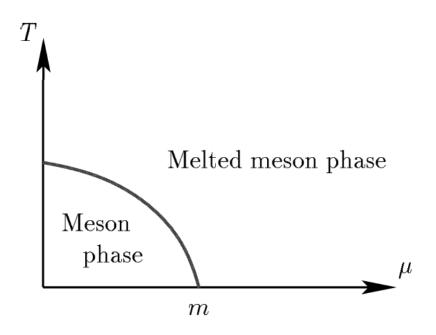
Favoring Color-Flavor Locking




Monotonically decreasing function→ Instanton is dynamically dissolved!CFL favored

$$V_B(\rho = 0) - V_B(\rho = \infty) = \frac{2\pi\alpha' \mathbf{d}\mu}{N_c}$$

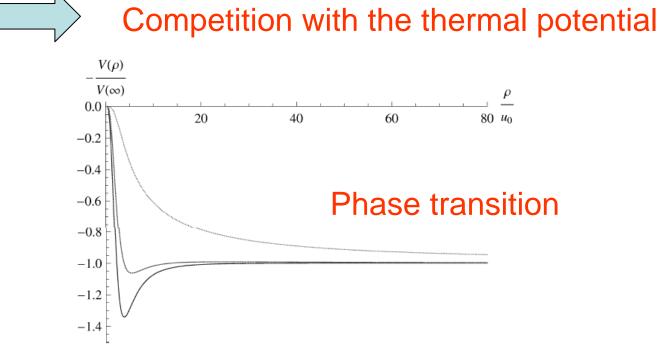
Necessity of the RR 3-form flux **D7 D5** Nc electric flux Nc D3 Nc-1 Nc F1 Charge conservation : Nc electric charge \rightarrow (Nc-1) electric charge + D3 The instanton (=D3) should be 1/Nc electrically charged ! Electrically charged instanton is given by a CS term Sugra back reaction should give 1/Nc RR 3-form flux !


Our result

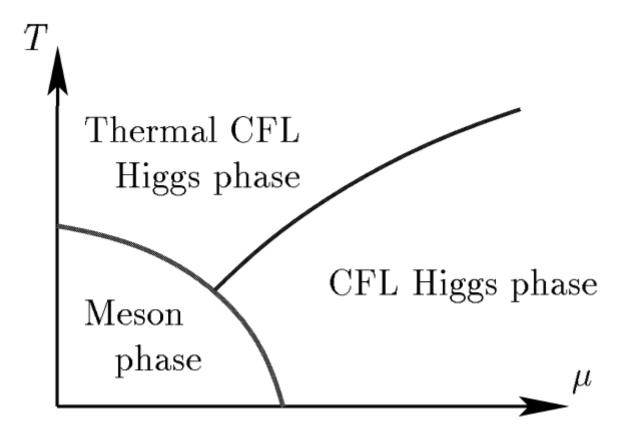
CFL Higgs phase is favored for $\mu > m$

The phase diagram proposed so far is

BH embedding is favored for large $\,\mu,T$


[Kobayashi,Mateos,Matsuura, Myers,Thomson (06)] [Nakamura,Seo,Sin,Yogendran (07)] [Gohroku,Ishihara,Nakamura(07)] [Karch,O'Bannon(07)]

What will happen if we include the D3-dissolving mechanism?


Thermal potential

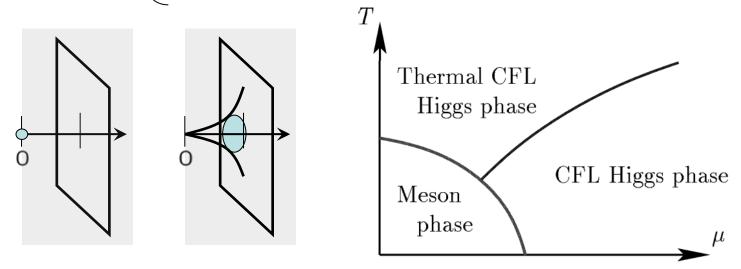
For the BH embedding with finite temperature at zero baryon density, it is known that instanton moduli potential is induced and minimized at finite size [Apreda, Erdmenger, Evans, Guralnik(05)]

Adding the baryon density induces a potential

Resultant phase diagram

6. Conclusion

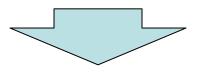
Summary


In holographic *N*=2 SQCD, we show CFL via dynamical squark condensation for chemical potential > squark mass

SUGRA back reaction

Dissolution of D3 into D7

Physics involved :


Baryon vertex and charge conservation Induced CS term and instanton size moduli

Problem1) We separate one D3-brane from the other.

← No justification. I am just afraid of trying to solve the full EOM of Sugra with complete backreaction.

- Problem2) We computed only RR 3-form / NSNS 2-form backreaction.
 - ← It is just an assumption that the D7 backreaction can be ignored. Again, I am just afraid of …

Necessity of more Sugra analysis!