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Motivation

Our aim is to develop tools for the study of very irregular functions or curves and for their predictions. The
two leading applications are the Brownian motion and the Black-Scholes model. Figures 1 and 2 are typical
examples of curves that should be understood and described with the content of this course.

These notes and the corresponding course have been mainly inspired by the book [1], with additional material
borrowed from [2], [6], and [13]. Other references will be mentioned on due time. The probability part is
based on [8].

Figure 2: Exchange rate: Japanese yen - US dollar (y-axis gives the value in dollar of 1 yen, as a function of
time) over different periods of time
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Chapter 1

Mathematical Background

This chapter contains the mathematical background necessary for the understanding of concepts in stochastic
calculus.

1.1 Probability and Random Variables

The aim of this section is to describe and quantify any non-predictable experiment. We give a framework
suitable for many applications.

Definition 1.1.1 (Measurable space). A measurable space (Ω,F ) is a setΩ together with a collection of subsets
F closed under complement, countable unions and countable intersections: if A ∈ F , Ac := Ω\A ∈ F , if
{A j} j∈N ⊂ F , then ∪ jA j ∈ F and ∩ jA j ∈ F . One also says that F is a σ-algebra.

Note that we always assume F to be non-empty, which means that there exists at least one element A ∈ F . In
this case, Ac also belongs to F , and A ∪ Ac = Ω and A ∩ Ac = Ø are also elements of F .

Exercise 1.1.2. Prove this statement: if F is a collection of subsets which is closed under complement and
countable unions, then it is closed under countable intersections.

An example of a measurable space is the usual space RN together with the family of sets generated by intervals
by considering countable unions, intersections, and complements. In this case, one speaks about the Borel
σ-algebra σB. Thus, (RN , σB) is the most common measurable space, and one usually denotes it simply by
RN . An other example of a measurable space is provided by Ω = {λ1, . . . , λN} a finite set and F the power set
of Ω consisting of all subsets of Ω. Two standard examples are

Ω = {heads, tails} or Ω =
{
1 ,2 ,3 ,4 ,5 ,6

}
.

This second example can also be extended to an infinite set, like for example Ω = N or Ω = Z, also endowed
with their respective power set.

Exercise 1.1.3. If Ω contains N elements, how many elements does its power set contain ? Provide an easy
and understandable description of this power set.

Definition 1.1.4 (Measurable function). For two measurable spaces (Ω,F ) and (Λ,E), a function f : Ω→ Λ
is measurable if for any A ∈ E, the set

f −1(A) :=
{
ω ∈ Ω | f (ω) ∈ A

}
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belongs to F .

In simpler words, the function f is measurable if it transports back the structure of (Λ,E) to the structure
of (Ω,F ). The set f −1(A) is called the pre-image of A by f , and it does not mean that f is injective. The
measurability requirement is a very weak assumption, but it is usually the minimum requirement for being
able to do anything with a function between two measurable spaces.

Let us now add one more structure on the measurable space (Ω,F ).

Definition 1.1.5 (Probability space). A probability space (Ω,F ,P) consists of a measurable space (Ω,F ) and
a function P : F → [0, 1] satisfying P(Ω) = 1, P(Ø) = 0 and

P
(⋃

j∈N

A j
)
=

∑
j∈N

P(A j)

whenever A j ∩ Ak = Ø ∀ j , k. We call Ω the sample space, F the event space, ω ∈ Ω an elementary event
and A ∈ F an event, and finally P the probability measure.

The function P should be thought at a way to measure the size of the elements of F , or as a way to weight
them.

Exercise 1.1.6. If (Ω,F ,P) is a probability space and if A, B ∈ F , check that

1) P(Ac) = 1 − P(A), where Ac := Ω \ A,

2) P(A ∪ B) = P(A) + P(B) − P(A ∩ B),

3) If A ⊂ B, then P(A) ≤ P(B).

The following statement will often be used, and is related to the monotone convergence theorem.

Lemma 1.1.7 (Continuity of probability). Let (Ω,F ,P) be a probability space and consider {A j} j∈N ⊂ F . If
A j ⊂ A j+1 for any j, then

P
(⋃

j∈N

A j
)
= lim

j→∞
P(A j),

while if A j ⊃ A j+1 for any j, then
P
(⋂

j∈N

A j
)
= lim

j→∞
P(A j).

The proof is left as an exercise, or can be found in [1, Lem. 1.4].

Usually, Ω is very complicated or unknown. Functions defined on Ω are more important than Ω itself. The
following definition is a very general one, but in applications the measurable space (Λ,E) will be chosen
conveniently.

Definition 1.1.8 (Random variable). Consider a probability space (Ω,F ,P) and a measurable space (Λ,E).
A random variable X is a measurable function from (Ω,F ) to (Λ,E). Namely, X is a function satisfying, for
any A ∈ E, {

ω ∈ Ω | X(ω) ∈ A
}
≡ X−1(A) ∈ F . (1.1.1)

Usually, we choose a measurable space (Λ,E) which is much simpler than the initial measurable space (Ω,F ).
Note that in the special case Λ = RN , or more precisely if we consider (Λ,E) = (RN , σB), then (1.1.1) is
satisfied if X = (X1, . . . , XN) verifies{

ω ∈ Ω | X j(ω) ≤ x j ∀ j = 1, . . . ,N
}
∈ F
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for any (x1, . . . , xN) ∈ RN . The special case N = 1 corresponds to a univariate random variables, while
N > 1 corresponds to a multivariate random variables, also called random vectors or vector valued random
variables.

So far we have not used probability measure P in the previous definition. The interest of the previous definition
is coming in the notion of induced probability measure, a new measure on Λ.

Definition 1.1.9 (Induced probability measure). When X : Ω → Λ is a random variable from a probability
space (Ω,F ,P) to a measurable space (Λ,E), the map µX : E → [0, 1] defined for any A ∈ E by

µX(A) = P
(
{ω ∈ Ω | X(ω) ∈ A}

)
= P

(
X−1(A)

)
≡ P(X ∈ A)

is called the induced probability measure. µX is also called the law of X, and we write X ∼ µX for this
correspondence.

It is important to observe that µX is defined on the image of Ω, which can be considered as the set of outcomes
of X. Usually, µX is much simpler than X, since it is defined on (Λ,E), as for example on (RN , σB), and not on
(Ω,F ). The term probability distribution is often used instead of probability measure, but this terminology is
less precise since it also refers to other concepts. Let us mention that there exist two principal types of random
variables (but others also exist). In the sequel, we shall write R+ for [0,∞).

Definition 1.1.10 (Absolutely continuous random variable). The random variable X : Ω → RN is absolutely
continuous if the induced probability measure is absolutely continuous with respect to the Lebesgue measure,
namely if there exists a (measurable) function ΠX : RN → R+ satisfying for any A ∈ σB

µX(A) =
∫

A
ΠX(x)dx.

The function ΠX is called the probability density function, or simply the pdf.

Definition 1.1.11 (Discrete valued random variable). The random variable X : Ω → Λ is discrete valued if
X(Ω) = {X(ω) | ω ∈ Ω} is finite or countable. In this case, we define the function pX : X(Ω)→ [0, 1] by

pX(x) := P
(
X−1({x}))

for any x ∈ X(Ω). The function pX is called the the probability mass function, or simply pmf.

In these two situations, we still write X ∼ ΠX or X ∼ pX . It is clear that the following properties hold:∫
RN ΠX(x)dx = 1 and

∑
x∈X(Ω) pX(x) = 1. Observe also that for any absolutely continuous random variable X,

one has µX(x) = 0 for any x ∈ RN while ΠX(x) ∈ R+ for (almost every) x ∈ RN .

Remark 1.1.12. Any function Π : RN → R+ satisfying
∫
Π(x)dx = 1, or any function p from a finite set or a

countable set Λ to [0, 1] satisfying
∑

x p(x) = 1, defines the pdf or the pmf of a random variable. However, in
such a situation we don’t have the probability space (Ω,F ,P), we just have the law. It means that we have a
rule to associate a weight to any subset of the set of outcomes, but we don’t know the underlying probability
space (Ω,F ,P) (if necessary, such a probability space can be constructed, but it is somewhat artificial).
Nevertheless, we shall say that Π or p define a random variable X with induced probability measure Π or p,
and refer to Π and p as a probability distribution.

Exercise 1.1.13 (Classical probability distributions). Recall the definition of a few classical probability distri-
butions, and recast them in the framework and with the terminology introduced above. For example, consider
the Bernoulli distribution, the binomial distribution, the Poisson distribution, the uniform distribution, the
exponential distribution, etc.
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In the important case of univariate random variable, namely when (Λ,E) = (R, σB), one more function can be
defined.

Definition 1.1.14 (Cumulative distribution function). Let X be a random variable on a probability space
(Ω,F ,P) taking values in (R, σB). The cumulative distribution function FX is defined for any x ∈ R by

FX(x) := P(X ≤ x) ≡ P
({
ω ∈ Ω | X(ω) ≤ x

})
.

One easily observes that limx→−∞ FX(x) = 0 while limx→∞ FX(x) = 1. The function FX is also increasing and
right-continuous, meaning that limε↘0 FX(x + ε) = FX(x), but it is not left-continuous in general. Note also
that this function can be defined because there exists an order on R, which means that the notation X(ω) ≤ x
is meaningful. In an arbitrary measurable space (Λ,E), this notion would be meaningless.

Exercise 1.1.15. Prove the above statements for the cumulative distribution function, and provide a example
of a cumulative distribution function which is not left-continuous.

Exercise 1.1.16. For the classical probability distributions mentioned in Exercise 1.1.13, determine the cu-
mulative distribution function.

1.2 Expectation

Let (Ω,F ,P) be a probability space, and let (Λ,E) and (Ξ,G) be two measurable spaces. Let X : Ω→ Λ be a
random variable, and consider f : Λ→ Ξ be a measurable function, as introduced in Definition 1.1.4. Then it
is easy to check that the composition f ◦ X : Ω→ Ξ defines a new random variable, simply denoted by f (X).

For the following definition, we shall consider only some special instances of measurable spaces. More
precisely let us call standard a measurable space (Ξ,G) with Ξ either a finite or a countable subset of RN

endowed with their power set, or (R, σB), or (RN , σB), or the set Mn×m(R) of n × m matrices with entries in R
(since Mn×m(R) can be identified with Rnm, it is also a measurable space with a suitable Borel σ-algebra).

Definition 1.2.1 (Expectation). Let (Ω,F ,P) be a probability space, let (Λ,E) and (Ξ,G) be measurable
spaces and assume (Ξ,G) be standard, let X : Ω → Λ be a random variable, and let f : Λ → Ξ be a
measurable function. The expectation of f (X) is defined by (the Lebesgue type integral)

E
(
f (X)

)
:=

∫
Λ

f (x) µX(dx). (1.2.1)

Note that when writing such an expression, we assume that it exists even with f replaced by | f | (absolute
convergence of the integral). If the measurable space (Λ,E) is standard and equal to (Ξ,G), and if f denotes
the identity function id with id(x) = x, then we simply write E(X) for E

(
id(X)

)
, and call it the mean value of

X, of the expectation of X.

Exercise 1.2.2. Specialize the formula (1.2.1) for any absolutely continuous random variable, as presented
in Definition 1.1.10, or for a discrete valued random variable, as presented in Definition 1.1.11, when Λ ⊂ R.

Exercise 1.2.3. Why is E(X) not well defined if X is a random variable from a probability space (Ω,F ,P) to
an arbitrary measurable space (Λ,E), why do we consider only standard measurable spaces ? Is there a more
general framework ?

In addition to the expectation, many standard quantities can be associated with a random variable taking values
in R.
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Definition 1.2.4 (Variance, standard deviation, moments, moment generating function). Let (Ω,F ,P) be a
probability space, and let X be a univariate random variable defined on it. The variance of X is defined by

Var(X) := E
((

X − E(X)
)2
)
,

the standard deviation of X is defined by the square root of the variance, the n-moment of X are defined by
E(Xn), and the moment generating function by the function a 7→ E(eaX).

In the framework of Definition 1.2.1, the variance corresponds to the function f given by x 7→
(
x−E(X)

)2, the
moments to the functions x 7→ xn, and the moment generation function to the function x 7→ eax. Obviously,
these quantities exist only if the corresponding integrals (or sums) converge absolutely. For completeness, we
also recall that if the moment generating function E(eaX) exists for all a with |a| < δ for some δ > 0, then this
function defines uniquely the univariate random variable X, see for example [8, Thm. 7.55].

For any measurable space (Λ,E) and for any A ∈ E, we define the indicator function 1A by 1A(x) = 1 if x ∈ A
and 1A(x) = 0 if x < A. Thus, 1A : Λ → R is a measurable function, and one observes that the following
equalities hold:

P(X ∈ A) ≡ P
({
ω ∈ Ω | X(ω) ∈ A

})
= µX(A) =

∫
A
µX(dx) =

∫
Λ

1A(x) µX(dx) = E
(
1A(X)

)
.

Exercise 1.2.5. For σ > 0 and x̄ ∈ R set Π : R→ R+ by

Π(x) :=
1
√

2πσ
exp

(
−

1
2σ2 (x − x̄)2

)
.

Check that
∫
Π(x)dx = 1. In the framework of Reminder 1.1.12 we write X = N(x̄, σ2) for the corresponding

univariate random variable, called Gaussian random variable. Check that E(X) = x̄, and Var(X) = σ2.

More generally, for x̄ ∈ RN and P ∈ MN×N(R) with P > 0, set Π : RN → R+ with

Π(x) :=
1

(2π)N/2|P|1/2
exp

(
−

1
2

(x − x̄)T P−1(x − x̄)
)
,

with |P| := det(P). Check that
∫
Π(x) dx = 1. We write X = N(x̄, P) for the corresponding multivariate

random variable, called N-dim Gaussian random variable or Gaussian vector. Check that E(X) = x̄, and that
P = E

(
(X − x̄)(X − x̄)T

)
. Here, P is called the covariance matrix.

Exercise 1.2.6. If X : Ω → RN is absolutely continuous with pdf ΠX and if ϕ : RN → RN is bijective and
C∞, show that Y := ϕ(X) : Ω → RN is a new absolutely continuous random variable, with pdf ΠY given by
ΠY (y) = ΠX

(
ϕ−1(y)

)
|Jϕ−1(y)|. Here, |Jϕ−1(y)| denotes the determinant of the Jacobian matrix of ϕ−1.

Let us close this section with a few inequalities computed with the expectation. These inequalities hold for
univariate random variables.

Lemma 1.2.7 (Markov’s inequality). Let (Ω,F ,P) be a probability space, and let X : Ω → R be a non-
negative random variable (meaning that X(ω) ≥ 0 for all ω ∈ Ω). Then for any a > 0 the following inequality
holds:

P(X > a) ≡ P
(
{ω ∈ Ω | X(ω) > a}

)
≤

1
a
E(X).

The proof of this inequality is left as an exercise. Also the following two inequalities can be deduced from it.
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Corollary 1.2.8. Let (Ω,F ,P) be a probability space, and let X : Ω→ R be a random variable. Then for any
a > 0 the following inequalities hold:

P(|X| > a) ≤
1
a2E

(
|X|2

)
Chebyshev’s inequality,

and for any λ > 0
P(X > a) ≤ e−λaE

(
eλX

)
Chernoff’s bound.

1.3 Independence

In this section, we consider families of random variables. These random variables will be denoted generically
by {X j} j since each of them could be a multivariate random variable, and therefore have N components:
X j = (X j

1, X
j
2, . . . , X

j
N)T . When each random variable is univariate (which means that it takes values in R) then

we shall simply write X j for X j.

Consider now two measurable spaces (Λ1,E1) and (Λ2,E2), and two random variables X1 : Ω → Λ1 and
X2 : Ω→ Λ2 defined on the same probability space (Ω,F ,P). The induced probability measures are denoted
by µX1 and µX2 . Set Z = (X1, X2) : Ω → Λ1 × Λ2 with Λ1 × Λ2 =

{
(x1, x2) | x1 ∈ Λ1, x2 ∈ Λ2}. The set

Λ1 ×Λ2 is endowed with the σ-algebra generated by boxes A1 × A2 =
{(

x1, x2) | x1 ∈ A1 and x2 ∈ A2} for any
A1 ∈ E1 and A2 ∈ E2. This σ-algebra is denoted by E1 ×E2. The induced probability measure µZ is called the
joint probability measure. By definition, for any set A ∈ E1 × E2, one has

P
({
ω ∈ Ω |

(
X1(ω), X2(ω)

)
∈ A

})
= µZ(A) =

∫
A
µZ

(
dx1 × dx2) = ∫

Λ1×Λ2
1A

(
x1, x2)µZ

(
dx1 × dx2).

The following equalities then hold:

µX1(A1) = µZ(A1 × Λ2) and µX2(A2) = µZ(Λ1 × A2)

for any A1 ∈ E1 and A2 ∈ E2. The probability measures µX1 and µX2 are called the marginal measures of µZ .

Remark 1.3.1. If X j : Ω→ RN j for j ∈ {1, 2} and if we assume that the joint probability measure is absolutely
continuous, with pdf denoted by Π(X1,X2), then the marginal pdfs are given by

ΠX1
(
x1) = ∫

RN2
Π(X1,X2)

(
x1, x2)dx2 and ΠX2

(
x2) = ∫

RN1
Π(X1,X2)

(
x1, x2)dx1.

Still for X j : Ω→ RN j but without assuming the absolute continuity we define the cross-covariance matrix

Cov
(
X1, X2) := E

((
X1 − E

(
X1)) (X2 − E

(
X2))T

)
∈ MN1×N2(R).

In particular, for X : Ω → RN the covariance matrix is given by Cov(X) := Cov(X, X) ∈ MN×N(R). In the
special case N1 = N2 = 1 (a univariate random variable), the correlation coefficient is defined by

Corr (X1, X2) :=
E
((

X1 − E
(
X1

))(
X2 − E

(
X2

)))√
E

((
X1 − E(X1)

)2
)
· E

((
X2 − E(X2)

)2
) ∈ [−1, 1]. (1.3.1)

When Corr(X1, X2) = 0 we say the two univariate random variables are uncorrelated. Observe that even if it
is not written explicitly, all these expressions are computed with the joint probability measure.
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Exercise 1.3.2. Check that the covariance matrix Cov(X) is symmetric and positive semi-definite, namely it
satisfies aT Cov(X)a ≥ 0 for any a ∈ RN with a , 0.

The covariance matrix is also playing an important role when families of univariate random variables are
considered. More precisely, let us consider N univariate random variables X1, . . . , XN on the same probability
space (Ω,F ,P). One then observes that any linear combination a1X1 + a2X2 + · · · + aN XN for a j ∈ R also
defines a univariate random variable on the probability space (Ω,F ,P). If we set X := (X1, . . . , XN)T for
the vector valued random variable defined on (Ω,F ,P), then this linear combination is nothing but f (X) for
f (x) :=

∑N
j=1 a jx j for x = (x1, . . . , xN) ∈ RN . For the following statement we assume that all computed

quantities exist:

Proposition 1.3.3. Let {X j}
N
=1 be a family of univariate random variables defined on the same probability

space (Ω,F ,P), and let a = (a1, . . . , aN)T ∈ RN . Then the following equalities hold:

E
( N∑

j=1

a jX j
)
=

N∑
j=1

a jE(X j), (1.3.2)

Var
( N∑

j=1

a jX j
)
= aT Cov(X)a, (1.3.3)

where X = (X1, . . . , XN)T denotes the vector valued random variable made of X1, . . . , XN .

The proof of this proposition is left as an easy exercise. Still in the above framework, the joint moment
generating function is defined by the expression E(ea·X) if it exists for all a ∈ RN satisfying ∥a∥ < δ for some
δ > 0. The uniqueness result mentioned in Section 1.2 extends to this context:

Theorem 1.3.4. Let {X j}
N
j=1 be a family of univariate random variables X j : Ω → R, set X = (X1, . . . , XN)T ,

and assume that the joint moment generating function E(ea·X) exists for all a ∈ RN satisfying ∥a∥ < δ for some
δ > 0. Then this function defines uniquely the multivariate random variable X.

Exercise 1.3.5. Look for a reference book where the proof is given, and study this proof.

We now introduce the main definition of this section.

Definition 1.3.6 (Independence). Let (Ω,F ,P) be a probability space, and consider two random variables
X1 : Ω→ Λ1 and X2 : Ω→ Λ2. These random variables are independent if for any A1 ∈ E1, A2 ∈ E2 one has

µ(X1,X2)
(
A1 × A2) = µX1

(
A1) µX2

(
A2)

or equivalently
P(X1 ∈ A1, X2 ∈ A2) = P(X1 ∈ A1)P(X2 ∈ A2).

In the special case of absolutely continuous random variables X1 : Ω → RN1 and X2 : Ω → RN2 , the
independence of X1 and X2 is equivalent to the condition Π(X1,X2) = ΠX1ΠX2 , which means that the joint
measure is also absolutely continuous. The following notion plays a fundamental role in many applications of
probability.

Definition 1.3.7 (IID). Let (Ω,F ,P) be a probability space, and let (Λ,E) be a measurable space. A family of
random variables {X j} j with X j : Ω→ Λ is said to be independent and identically distributed (in short IID) if
they are all all independent and equally distributed (they share the same induced probability measure µX).
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Observe that if the family is finite, namely {X j}Nj=1, then this family is IID if the joint probability measure
µ(X1,...,XN ) satisfies for any A j ∈ F

µ(X1,...,XN )(A
1 × . . . × AN) = µX1(A1) . . . µXN (AN) (1.3.4)

with all µX j equal. If the family is infinite, the equality (1.3.4) must hold for any finite subfamily of random
variables.

1.4 Univariate random variables

In this section, we consider univariate random variables defined on the same probability space (Ω,F ,P). This
means that the random variables X we shall consider are measurable functions on Ω taking values on R. The
subsequent definitions complement the various notions introduced in Definition 1.2.4. We state the following
definition in the greatest generality, but the cases p = 1 and p = 2 will mainly be considered in the sequel.

Definition 1.4.1 (Lp-spaces on (Ω,F ,P)). Let (Ω,F ,P) be a probability space, and let p ≥ 1. We set
Lp(Ω,F ,P) for the set of all univariate random variables X on Ω satisfying E

(
|X|p

)
< ∞. For any X ∈

Lp(Ω,F ,P) we also set ∥X∥p :=
(
E
(
|X|p

))1/p
. The set of equivalent classes of elements of Lp(Ω,F ,P) are

denoted by Lp(Ω,F ,P).

Note that the random variables in L1(Ω,F ,P) are precisely the ones for which E(X) is well defined, as men-
tioned in Definition 1.2.1. The ones in L2(Ω,F ,P) correspond to the random variables for which the variance
is well defined. For X in L2(Ω,F ,P), we say that X is square-integrable.

Exercise 1.4.2. Show that Lp(Ω,F ,P) are vector spaces, that ∥ · ∥p defines a norm on Lp(Ω,F ,P), and that
Lp(Ω,F ,P) is complete with this norm. Show also that Lp2(Ω,F ,P) ⊂ Lp1(Ω,F ,P) whenever p2 ≥ p1.

The space L2(Ω,F ,P) has a nice geometric property: it is endowed with the scalar produced defined by the
map

L2(Ω,F ,P) × L2(Ω,F ,P) ∋ (X,Y) 7→ E(XY) ∈ R.

This scalar product satisfies the Cauchy-Schwarz inequality |E(XY)| ≤ ∥X∥2∥Y∥2, which leads directly to the
inequality

|Cov(X,Y)| ≤
√

Var(X)
√

Var(Y).

Clearly, this also leads to the correlation coefficient already introduced in (1.3.1).

Let us introduce a few more geometric concepts. For X,Y ∈ L2(Ω,F ,P) we set

X = X −
E(XY)
E(Y2)

Y +
E(XY)
E(Y2)

Y = X⊥ +
E(XY)
E(Y2)

Y, (1.4.1)

with X⊥ := X − E(XY)
E(Y2) Y , and easily observe that E(X⊥Y) = 0. The decomposition (1.4.1) can be seen as the

decomposition of X in a component parallel to Y , and a component perpendicular to Y . The random variable
E(XY)
E(Y2) Y is called the orthogonal projection of X onto Y .

As usual, any norm on a vector space allows us to define the distance between two elements with the expression
∥X − Y∥p for any X,Y ∈ Lp(Ω,F ,P). One can also define the notion of convergence.

Definition 1.4.3 (Lp-convergence of random variables). A sequence {X j} j∈N ⊂ Lp(Ω,F ,P) of univariate
random variables on the same probability space converges in the Lp-sense to the random variable X∞ ∈
Lp(Ω,F ,P) if ∥X j − X∞∥p → 0 as j→ ∞.
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Note that Lp(Ω,F ,P) is a Banach space, which ensures that any Cauchy sequence in Lp(Ω,F ,P) has its limit
in this space. When p = 2, the L2-convergence is also called the mean square convergence, or the convergence
in quadratic mean. The following exercise uses the notion of convergence in L2(Ω,F ,P).

Exercise 1.4.4 (L2-version of the weak law of large numbers). Consider a family {X j} j∈N ⊂ L2(Ω,F ,P) of
univariate IID random variable with 0 mean value (or in other words with expectation 0). Show that the
empirical mean

S N :=
1
N

N∑
j=1

X j

converges to 0 in the L2-sense, or more precisely ∥S N∥2 → 0 as N → ∞.

11



Chapter 2

Stochastic processes

In this chapter, we provide the definition of general stochastic processes. However, we shall start with the
special instance of a Gaussian process.

2.1 Gaussian vectors

In order to define Gaussian processes, let us start by recalling the Gaussian probability distribution, and then
move to the notion of Gaussian vectors.

The Gaussian probability distribution has been introduced in Exercise 1.2.5, and the corresponding random
variable is denoted by N(x, σ2) in the univariate case, and N(x, P) in the N-dimensional case. Here x stands
for the value in R or the vector in RN given by the expectation value of the corresponding random variable,
σ2 > 0 corresponds to the variance of N(x, σ2), and the Hermitian matrix P > 0 is the covariance matrix of
N(x, P). When x = 0 and σ = 1 (or P is the N × N identity matrix) one speaks about standard Gaussian
probability distribution, or standard Gaussian random variable. This distribution is going to play a central
role in this chapter. For simplicity, we simply say Gaussian random variable for univariate Gaussian random
variable, and say N-dimensional Gaussian random variable when N > 1. For convenience, we also introduce
an extension of the usual univariate Gaussian random variables, namely N(x, 0). This random variable is a
point mass on its mean x, or in other words it corresponds to the random variable taking the value x with a
probability 1. For example 0 = N(0, 0) is the random variable taking the value 0 with probability 1.

Definition 2.1.1 (Gaussian vector). A N-dimensional random vector X = (X1, . . . , XN)T on a probability
space (Ω,F ,P) is said to be a Gaussian vector if for any a = (a1, . . . , aN)T ∈ RN the random variable
a · X :=

∑N
j=1 a j X j is a Gaussian random variable on (Ω,F ,P). In this case, we also say that the univariate

random variables X1, . . . , XN are jointly Gaussian.

Starting from a Gaussian vector X, we observe that each of its component X j is a Gaussian random variable,
by choosing a = e j with {e j}

N
j=1 the standard basis of RN . Conversely, let us check that IID standard Gaussian

random variables lead to a Gaussian vector.

Exercise 2.1.2. Check that if X1, X2 are independent and standard Gaussian random variables, then (X1, X2)T

is a Gaussian vector. Show that the random variable a1X1 + a2X2 is a Gaussian random variable with mean
0 and variance a2

1 + a2
2. Generalize your result for N independent and standard Gaussian random variables.

The following result can also be proved as an exercise, see also [1, Ex. 2.8].
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Lemma 2.1.3. If X is a N-dimensional Gaussian vector and if M ∈ MN×N(R), check that the new vector MX
is also a N-dimensional random vector.

The next statement provides an equivalent definition for a Gaussian vector. Its proof is based on Proposition
1.3.3 and on Theorem 1.3.4. Can you write it ?

Proposition 2.1.4. A N-dimensional random vector X is Gaussian if and only if its moment generating func-
tion E(ea·X) exists for all a ∈ RN and satisfies

E(ea·X) = exp
(
a · E(X) + 1

2 aT Cov(X)a
)
.

As already mentioned, each component of a Gaussian vector is a Gaussian distribution. It has also been shown
in Exercise 2.1.2 that N independent and standard Gaussian random variables lead to a Gaussian vector. The
following statement provides a criterion for the independence of the components of an arbitrary N-dimensional
Gaussian vector. Its proof is left as an exercise, see also [1, Prop. 2.10] for inspiration.

Proposition 2.1.5. Let X = (X1, . . . , XN)T be a N-dimensional Gaussian vector. Its covariance matrix Cov(X)
is diagonal if and only if the Gaussian random variables X1, . . . , XN are independent.

Before studying further the link between Gaussian vectors and the N-dimensional Gaussian random variables
introduced in Exercise 1.2.5, let us recall a result of linear algebra about positive definite and positive semi-
definite matrices. This result can be applied to the covariance matrix, see also Exercise 1.3.2.

Lemma 2.1.6 (Cholesky decomposition). For any positive definite matrix A ∈ MN×N(R), there exists a lower
triangular matrix L ∈ MN×N(R) with strictly positive diagonal entries satisfying

A = LLT .

If A is positive semi-definite, the entries on the diagonal can be 0. In the former case, the matrix L is invertible,
while in the latter case the matrix L is not invertible in general.

Let us emphasize that the matrix L is usually not unique, and that there exist several algorithm for computing
the matrix L. For example, one algorithm is based on a Gram-Schmidt type procedure, as for RN .

We shall now gather a few useful results about Gaussian vectors. Proofs are not difficult and can be found in
[1, Sec. 2.2] and worked out as exercises. They rely on Cholesky decomposition mentioned above. For their
statement, we need one more notion: A N-dimensional Gaussian vector X is non-degenerate if its covariant
matrix is invertible, namely if det

(
Cov(X)

)
, 0. Conversely, if det

(
Cov(X)

)
= 0, we say that the Gaussian

vector X is degenerate. Recall that 0 is the random variable taking the value 0 with probability 1.

Lemma 2.1.7. Let X = (X1, . . . , XN) be a N-dimensional Gaussian vector with mean value E(X) = 0 ∈ RN .
Then X is degenerate if and only if the Gaussian random variables X1, . . . , XN are linearly dependent, namely
if and only if there exists a ∈ Rn, a , 0 such that a · X = 0.

Exercise 2.1.8. Provide an example of a degenerate 3-dimensional Gaussian vector, and check the previous
lemma on this example.

Theorem 2.1.9 (Decomposition into IID Gaussian random variables). Let X be a N-dimensional and non-
degenerate Gaussian vector satisfying E(X) = 0 ∈ RN . Then there exists an invertible matrix L ∈ MN×N(R)
and N IID standard Gaussian random variables Z1, . . . ,ZN such that X = LZ, with Z = (Z1, . . . ,ZN)T .

As seen in Section 1.3, a family of univariate random variables defines a joint probability measure. If this mea-
sure is absolutely continuous with respect to the Lebesgue measure, it defines a probability density function,
as emphasized in Definition 1.1.10. In these notes, we use the notation R+ for [0,∞).
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Corollary 2.1.10 (Joint probability density function). Let X be a N-dimensional and non-degenerate Gaus-
sian vector with expectation E(X) = x ∈ RN and covariance matrix Cov(X) = P ∈ MN×N(R). Then the joint
probability measure of X1, . . . , XN is absolutely continuous with respect to the Lebesgue measure, and the
corresponding probability density function Π : RN → R+ is given for x ∈ RN by

Π(x) :=
1

(2π)N/2|P|1/2
exp

(
−

1
2

(x − x̄)T P−1(x − x̄)
)
.

Exercise 2.1.11. Provide the joint density measure for three Gaussian random variables which are not linearly
independent.

2.2 Gaussian processes

In this section, we briefly introduce some of the main Gaussian processes. The presentation is slightly formal
since the precise definition of a stochastic process is not given yet. This section can be considered as a
motivation for the subsequent developments.

We consider a fixed probability space (Ω,F ,P), a fixed measurable space (Λ,E), and let t denote the time. If
t ∈ N, we speak about a discrete time model, while if t ∈ [0,T ] with T > 0, or if t ∈ R+, we speak about a
continuous time model. In general, we shall simply consider t ∈ T , with T a subset of R. The main object for
describing the evolution of a system consists in the family

X := (Xt)t∈T with Xt : Ω→ Λ a random variable. (2.2.1)

Clearly, X can also be seen as a function of two variables, namely

X : T ×Ω ∋ (t, ω) 7→ X(t, ω) := Xt(ω) ∈ Λ.

We shall come back to this notion in the following sections, and the resulting object will be a stochastic
process. Still, one can have another look at the previous object: For fixed ω ∈ Ω the map T ∋ t 7→ X(t, ω) ∈ Λ
can be seen as a trajectory or as a path in Λ. These different points of view will complement each other.

In the next definition we consider a finite family {t1, t2, . . . , tN} ⊂ T . For this definition it does not matter if T
is a discrete set or a continuous set. We can also observe that the regularity condition not specified above does
not play any role. Note that the following examples are all taking place in a 1-dimensional space, mainly for
simplicity.

Definition 2.2.1 (Gaussian process). The family X := (Xt)t∈T with each Xt a univariate random variable on
the probability space (Ω,F ,P) is a Gaussian process if for any finite family {t1, t2, . . . , tN} ⊂ T with t j < t j+1

the N-dimensional vector
(
Xt1 , Xt2 , . . . , XtN

)T is a Gaussian vector 1(in the sense of Definition 2.1.1).

In particular, as seen in Proposition 2.1.4, the Gaussian vector
(
Xt1 , Xt2 , . . . , XtN

)
is uniquely defined by its

mean value and by its covariance matrix. In the sequel, we list some famous Gaussian processes. As already
mentioned, the presentation is slightly informal, but nevertheless informative. Nice illustrations of these
processes can be found in [1, Sec. 2.3], or can be realized as exercises, see [1, Numerical projects p. 45].

1Some authors require the vector to be non-degenerate, some not. If non-degeneracy is imposed, a characterization of the Gaussian
process in terms of the joint probability measure of Corollary 2.1.10 is possible.

14



Example 2.2.2 (Brownian process2). The Brownian process B := (Bt)t∈R+ corresponds to a Gaussian process
with E(Bt) = 0 and Cov(Bt, Bs) ≡ E(BtBs) = t ∧ s, where t ∧ s stands for the minimum between s and t.
Additional properties will be imposed and studied subsequently.

Example 2.2.3 (Brownian process with drift). Let σ > 0 be called the volatility or the diffusion coefficient,
and let µ ∈ R be called the drift. Let Xt := σBt + µt be the random variable based on the Brownian
process introduced in Example 2.2.2. Then X := (Xt)t∈R+ is a Gaussian process which satisfies E(Xt) = µt and
Cov(Xt, Xs) = σ2(t ∧ s).

Example 2.2.4 (Brownian bridge). The Gaussian process Z := (Zt)t∈[0,1] whose mean value satisfies E(Zt) = 0
and whose covariance satisfies Cov(Zt,Zs) = s(1 − t) for 0 ≤ s ≤ t ≤ 1, is called the Brownian bridge. By
construction one has Z0 = 0 and Z1 = 0. This process can be realized by setting for t ∈ [0, 1]

Zt := Bt − tB1

where (Bt)t∈[0,1] is (part of) the Brownian process introduced in Example 2.2.2.

Example 2.2.5 (Fractional Brownian process). For H ∈ (0, 1), called Hurst index, the fractional Brownian
process is the Gaussian process BH := (BH

t )t∈R+ satisfying E(BH
t ) = 0 and

Cov(BH
t , B

H
s ) =

1
2
(
t2H + s2H − |t − s|2H)

.

Note that the special case H = 1
2 corresponds to the Brownian process.

Example 2.2.6 (Ornstein-Uhlenbeck process). The Ornstein-Uhlenbeck process Y := (Yt)t∈R+ corresponds
to the Gaussian process starting at Y0 = 0 with mean value satisfying E(Yt) = 0 and covariance given by
Cov(Yt,Ys) = e−(t−s)

2
(
1 − e−2s) for s ≤ t. If Y0 is random and satisfies Y0 = N

(
0, 1

2
)
, then Cov(Yt,Ys) = e−(t−s)

2 .

Later, we shall see that these processes are solutions of some stochastic differential equations.

2.3 Stochastic processes

In this section we provide the precise definition of a stochastic process, and some general related notions.
Note that this section is more general than the previous one, since Gaussian processes are special instances of
stochastic processes.

Before the main definition of this section, we start with a slightly technical notion. Throughout the section,
the set T denotes a subset of R, and t ∈ T is used for a parameter representing the time.

Definition 2.3.1 (Filtration). Let (Ω,F ,P) be a probability space. A filtration (Ft)t∈T is a family of σ-
subalgebras of F satisfying Fs ⊂ Ft whenever s ≤ t.

In other words, Ft is a subset of F which also satisfies the condition of Definition 1.1.1, and Ft contains more
elements than Fs whenever s ≤ t. Observe that Ft containing more subsets of Ω than Fs means also that Ft is
more “precise” than Fs, or can provide more accurate information. Later on, Ft will be thought as the amount
of information available at time t.

2The Gaussian process is also called the Wiener process (mainly by mathematicians) in honor of American mathematician Norbert
Wiener for his investigations on the mathematical properties of the one-dimensional Brownian motion. This process is usually called
Brownian motion (mainly by physicists) due to its historical connection with the physical process of the same name originally
observed by Scottish botanist Robert Brown.
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Definition 2.3.2 (Stochastic process). A stochastic process consists of the tuple

X :=
(
Ω,F ,P, (Ft)t∈T , (Xt)t∈T

)
with (Ω,F ,P) a probability space, (Ft)t∈T a filtration, and (Xt)t∈T a family of random variables on Ω, taking
values in a measurable space (Λ,E), and Xt is measurable with respect to Ft.

Let us recall that the notion of measurable function has been provided in Definition 1.1.4: X : Ω → Λ is
measurable if X−1(A) ∈ F for any A ∈ E. Thus, one observes that the measurability of Xt with respect to
Ft is a stronger assumption: since Ft contains less elements than F , having X−1

t (A) in Ft is less likely than
having X−1

t (A) in F . In the present situation, we also say that (Xt)t∈T is adapted to the filtration (Ft)t∈T . Note
that there exists a minimal filtration, also called natural filtration. Namely, let us set σ(Xs) for the smallest
σ-subalgebra of F which contains X−1

s (A) for all A ∈ E. We can then define Gt as the smallest σ-subalgebra
of F containing σ(Xs) for all s ∈ T with s ≤ t. Equivalently, Gt corresponds to the smallest σ-subalgebra of
F containing all elements X−1

s (A) for all A ∈ E and s ∈ T with s ≤ t. Then (Gt)t∈T is adapted to (Xt)t∈T and
is called the natural filtration. Any other adapted filtration must contain it.

Note that in general ∪t∈TFt is not a σ-algebra. If necessary, we can consider FT , the smallest σ-subalgebra of
F containing all Ft for t ∈ T . Usually, FT is strictly contained in F . There is still one filtration which might
be useful, the augmented natural filtration

(
Gt

)
t∈T and defined for any t ∈ T as the smallest σ-subalgebra

of F containing Gt and all negligible events of F , namely any B ∈ F satisfying P(B) = 0. The addition
of the negligible events is an important trick for the various notions of equivalences of stochastic processes3.
For example, the stochastic processes

(
Ω,F ,P, (Ft)t∈T , (Xt)t∈T

)
and

(
Ω,F ,P, (Ft)t∈T , (Yt)t∈T

)
are versions or

modifications of one another if for any t ∈ T , P
(
Xt = Yt

)
= 1, or more precisely if for any t ∈ T

P
(
{ω ∈ Ω | Xt(ω) = Yt(ω)

})
= 1.

Equivalently, if we set Nt := {ω ∈ Ω | Xt(ω) , Yt(ω)}, then the previous condition reads P(Nt) = 0. However, if
we set N := ∪t∈TNt, then it may happen in the continuous time setting that P(N) , 0, since N is then given by
an uncountable union. With this notation we say that

(
Ω,F ,P, (Ft)t∈T , (Xt)t∈T

)
and

(
Ω,F ,P, (Ft)t∈T , (Yt)t∈T

)
are indistinguishable if P(N) = 0. Equivalently, this condition reads

P
({
ω ∈ Ω | ∃t ∈ T with Xt(ω) , Yt(ω)

})
= 0.

Note that in the discrete time setting, these two notions coincide.

So far, we have not imposed any regularity condition for the stochastic process X. By considering again the
function of two variables

T ×Ω ∋ (s, ω) 7→ Xs(ω) ∈ Λ

we could require the measurability of this map, from
(
T ×Ω, σ(T ) ×F

)
to (Λ,E), where we denote by σ(T )

the σ-subalgebra of σB generated by the open sets of T . However, this notion does not use the filtration. The
right notion is the following:

Definition 2.3.3 (Progressively measurable). The stochastic process X is progressively measurable if for any
t ∈ T the map

T ∩ [0, t] ×Ω ∋ (s, ω) 7→ Xs(ω) ∈ Λ

is measurable from
(
T ∩ [0, t] ×Ω, σ(T ∩ [0, t]) × Ft

)
to (Λ,E).

3More precisely, a probability space (Ω,F ,P) is called complete if for any B ∈ F with P(B) = 0 and for any A ⊂ B, one has A ∈ F
(and then P(A) = 0). Accordingly, a filtration {Ft}t∈T is complete if F0 contains the negligible sets
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The previous notion is rather complicated. Fortunately, in most of the cases a stronger regularity property
holds. Its statement contains the notion of continuity or a limit, which are not defined in arbitrary measur-
able spaces. For simplicity, we concentrate on the standard measurable spaces introduced in Section 1.2 but
generalizations are possible.

Definition 2.3.4 (Continuous stochastic process). The stochastic process X taking values in a standard mea-
surable space (Λ,E) is continuous if for every ω ∈ Ω, the map T ∋ t 7→ Xt(ω) ∈ Λ is continuous. It is
a.s. continuous if for almost every ω, the map T ∋ t 7→ Xt(ω) ∈ Λ is continuous. In other words, X is
a.s. continuous if

P
({
ω ∈ Ω | lim

s→t
Xs(ω) = Xt(ω)

})
= 1.

It turns out that any continuous stochastic process is progressively measurable, as shown in [2, Prop. 2.1]

Observe that we haven’t impose any condition on the filtration yet. Some regularity on it are often necessary.
For this we set for any t ∈ T

Ft+ =
⋂
ε>0

Ft+ε. (2.3.1)

It turns out that the intersection of any σ-algebras is also a σ-algebra, and therefore Ft+ is also a σ-subalgebra
of F , with Ft ⊂ Ft+. With this notation, we say that the filtration is right-continuous if Ft = Ft+. One way
to think about this condition is that any information known right after t is also known at t. Observe also that
given a family (Xt)t∈T adapted to the filtration (Ft)t∈T , we can also define a new filtration {Gt}t∈T by setting
Gt := ∩s>tFs. Then {Gt}t∈T is a right-continuous filtration, and (Xt)t∈T is adapted to it. In applications it often
required that the filtration is right-continuous and contains the negligible events.

2.4 Brownian motion

In this section we provide a brief description of the Brownian motion, also called Brownian process or Wiener
process. The first definition is quite general, but later on we shall stick to a simpler presentation. In the sequel,
a RN-valued stochastic process

(
Ω,F ,P, (Ft)t∈T , (Xt)t∈T

)
means that each random variable Xt takes values

in the measurable space (RN , σB). Equivalently, we can also speak about multivariate stochastic process, or
univariate stochastic process in the special case N = 1. We shall also use the short notation a.s. for almost
surely meaning that an equality holds with probability 1. Note that we start with the Brownian motion in
dimension 1 because any Brownian motion in dimension N decomposes in N independent Brownian motions
of dimension 1. We also use the letter B instead of X, since this notation is commonly used for the Brownian
motion. In the statement, Bt can be interpreted as the random variable corresponding to the position at time
t, while for t > s the difference Bt − Bs should be interpreted as the difference of position or as the increment
between the position at time s and position at time t.

Definition 2.4.1 (1-dimensional Brownian motion). A Stochastic process B :=
(
Ω,F ,P, (Ft)t∈R+ , (Bt)t∈R+

)
taking values in R is a 1-dimensional Brownian motion if

1. B0 = 0 a.s.,

2. For any 0 ≤ s ≤ t the random variable Bt − Bs is independent of Fs,

3. For any 0 ≤ s < t the random variable Bt − Bs is a Gaussian random variable N
(
0, t − s

)
.

Condition 1. can be thought as an initial condition. The condition 2. needs an explanation and an interpretation.
The notion of independence of random variables has been introduced in Definition 1.3.6. A family F1, . . . ,Fm
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of σ-subalgebras of F are called independent if for any A1 ∈ F1, . . . , Am ∈ Fm one has

P
(
A1 ∩ A2 ∩ · · · ∩ Am)

= P
(
A1)P(A2) . . . P(Am)

.4

One then infers that the random variables X1, X2, . . . , Xm on (Ω,F ,P) are independent if and only if the σ-
algebras σ(X1), σ(X2), . . . , σ(Xm) they generate are independent. Finally, a random variable X on (Ω,F ,P) is
independent of a σ-subalgebra G of F if and only if the σ-algebras G and σ(X) are independent. Note that
this happens if and only if X is independent of every G-measurable random variables. It is this latter notion
of independence which is used in condition 2. of the previous definition. Intuitively, this condition means that
the increment in the process after time s are independent of the process up to time s.

Exercise 2.4.2. Prove the statements of the previous paragraph, namely: The random variables X1, X2 on
(Ω,F ,P) are independent if and only if the σ-algebras σ(X1), σ(X2) they generate are independent, and A
random variable X on (Ω,F ,P) is independent of a σ-subalgebra G of F if and only X is independent of every
G-measurable random variables.

Exercise 2.4.3. Show that the Brownian process is a Gaussian process, see also [2, Remarks 3.1].

By a rather deep result about continuity (Kolmogorov’s continuity theorem) it turns out that there exists a
modification of (Bt)t∈R+ for which the stochastic process is continuous. Thus, we shall assume from now on
that the Brownian motion is continuous. In addition the following properties of the Brownian motion provides
a new characterization of it, see [2, Prop. 3.1]:

Proposition 2.4.4. Let
(
Ω,F ,P, (Ft)t∈R+ , (Bt)t∈R+

)
be a 1-dimensional Brownian motion. Then

1. B0 = 0 a.s.,

2. For every 0 ≤ t1 < t2 < · · · < tN , the N-dimensional vector B :=
(
Bt1 , Bt2 , . . . , BtN

)T is a Gaussian
vector with E(B) = 0,

3. E(BtBs) = t ∧ s.

Conversely, properties 1. to 3. define a 1-dimensional Brownian motion with the natural filtration. It is called
the natural Brownian motion.

Observe that choosing any t ∈ R+, one infers from 2. that E(Bt) = 0. Thus, the converse statement corresponds
to what was given in Example 2.2.2, when the notion of filtration was not introduced (see Remark below). Let
us finally mention another consequence of Definition 2.4.1: for any sequence ≤ t0 < t1 < · · · < tN , the family
of random variables {Bt j − Bt j−1}

N
j=1 are independent random variables. This property is sometimes used for

(partially) defining the Brownian motion.

Remark 2.4.5. The last part of Proposition 2.4.4 means that whenever the Brownian motion is introduced
without any information about the filtration, then the natural filtration is implicitly used. Since the natu-
ral filtration is the minimal filtration, having the Brownian motion with the natural filtration is the weakest
version (minimal amount of information available at any time t). In fact, it can be shown that any Brow-
nian motion is a Brownian motion with respect to the augmented natural filtration, obtained by adding all
negligible events to the natural filtration, and that this filtration is right-continuous [2, Prop. 4.3]. Thus,(
Ω,F ,P, (Gt)t∈R+ , (Bt)t∈R+

)
is a Brownian motion with a right-continuous filtration and with the negligible

events contained in Ft for any t ∈ R+. A process with these two properties is called a standard stochastic
process.

4This is the common requirement for the independence of a family of events.
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Let us now state additional properties of the Brownian motion with respect to certain transformations. The
proof is interesting and can be studied as an exercise, see [2, Prop. 3.2].

Proposition 2.4.6. Let
(
Ω,F ,P, (Ft)t∈R+ , (Bt)t∈R+

)
be a 1-dimensional Brownian motion. Then,

1. For any s ≥ 0,
(
Ω,F ,P, (Ft+s)t∈R+ , (Bt+s − Bs)t∈R+

)
is a 1-dimensional Brownian motion (time shift),

2.
(
Ω,F ,P, (Ft)t∈R+ , (−Bt)t∈R+

)
is a 1-dimensional Brownian motion (mirror reflection),

3. For any c > 0,
(
Ω,F ,P, (Ft/c2)t∈R+ , (cBt/c2)t∈R+

)
is a 1-dimensional Brownian motion (scaling),

4. The random variables defined by Zt := tB1/t for t > 0 and Z0 = 0 define a natural Brownian motion.

We now discuss some properties of the paths, namely of the continuous functions t 7→ Bt(ω) for fixed ω ∈ Ω.
Recall that a partition Pℓ of an interval [a, b] consists in a set Pℓ := {tℓ0, t

ℓ
1, . . . , t

ℓ
nℓ } with tℓ0 = a, tℓnℓ = b

and tℓj < tℓj+1. For a given partition Pℓ, we set |Pℓ| := max j∈{1,...,nℓ} |t
ℓ
j − tℓj−1| for its mesh. For any function

f : [a, b]→ R we define the variation of f as

var[a,b]( f ) := sup
Pℓ

nℓ∑
j=1

| f (tℓj) − f (tℓj−1)| (2.4.1)

where the supremum is taken over all partitions of [a, b]. If var( f ) < ∞, then f is said to be of finite variation
or of bounded variation. If it is not bounded, we say that the function f has an infinite variation on [a, b].

Exercise 2.4.7. Let f : [a, b] → R. 1) If f is increasing, check that var[a,b]( f ) = f (b) − f (a). 2) If f ∈
C1([a, b]

)
, check that var[a,b]( f ) =

∫ b
a | f

′(t)|dt.

The following statement is borrowed from [4, Prop. 3.6]. Recall that the notion of convergence in the L2-sense
has been introduced in Definition 1.4.3.

Theorem 2.4.8. Let
(
Ω,F ,P, (Ft)t∈R+ , (Bt)t∈R+

)
be a 1-dimensional Brownian motion.

1. Almost every path has a infinite variation on any finite interval, namely for any a, b ∈ R+

P
({
ω ∈ Ω | var[a,b]

(
t 7→ Bt(ω)

)
= ∞

})
= 1.

2. The quadratic variation of the Brownian motion converges in the L2-sense, namely

lim
|Pℓ |→0

E
([ nℓ∑

j=1

(
Btℓj
− Btℓj−1

)2
− (b − a)

]2)
= 0.

3. Almost every path is nowhere differentiable, namely

P
({
ω ∈ Ω | t 7→ Bt(ω) is nowhere differentiable

})
= 1.

By restricting the partitions considered in 2., a different type of convergence can be used. Namely, let {Pℓ}ℓ∈N
be a sequence of partitions of [a, b], and let us assume that

∑
ℓ∈N |Pℓ| < ∞, which means that we consider a set

of partition with rapidly decaying meshes.
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Theorem 2.4.9. Let {Pℓ}ℓ∈N be a sequence of partitions of [a, b] satisfying
∑
ℓ∈N |Pℓ| < ∞. Then almost surely

lim
ℓ→∞

nℓ∑
j=1

(
Btℓj
− Btℓj−1

)2
= b − a,

or equivalently

P
({
ω ∈ Ω | lim

ℓ→∞

nℓ∑
j=1

(
Btℓj

(ω) − Btℓj−1
(ω)

)2
= b − a

})
= 1.

Let us mention that a proof of the statement 2. of Theorem 2.4.8 is provided in [1, Thm. 3.8] or in [14,
Thm. 9.1], see also [2, Prop. 3.4]. A special case of Theorem 2.4.9 is also provided in [1, Corol. 3.16] while
the general case is given in [14, Thm. 9.4]. From Theorem 2.4.9 it is possible to deduce statement 1. of
Theorem 2.4.8. By a contradiction argument based on Exercise 2.4.7, one then deduces that the paths can not
be continuously differentiable, but the statement 3. of Theorem 2.4.8 is much stronger, see for example [14,
Thm. 10.3].

Before the end of this section, let us briefly mention the definition of a N-dimensional Brownian motion. The
definition is completely similar to Definition 2.4.1.

Definition 2.4.10 (N-dimensional Brownian motion). A Stochastic process
(
Ω,F ,P, (Ft)t∈R+ , (Bt)t∈R+

)
taking

values in RN is a N-dimensional Brownian motion if

1. B0 = 0 a.s.,

2. For any 0 ≤ s ≤ t the random variable Bt − Bs is independent of Fs,

3. For any 0 ≤ s < t the random variable Bt − Bs is a Gaussian random variable N
(
0, (t − s)I

)
, where I

denotes the N × N identity matrix.

As for the 1-dimensional Brownian motion, we always assume the continuity of this stochastic process. Prop-
erties of the N-dimensional Brownian motion are similar to the 1-dimensional Brownian motion since each of
its N components correspond to an independent 1-dimensional Brownian motion [2, Rem. 3.2].

Exercise 2.4.11. Work on some of the exercises proposed in [1, Chap. 2 & 3] or in [2, Chap. 1 to 3].
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Chapter 3

Conditional expectation and martingales

In this chapter, we introduce the concept of martingales, which are special instances of stochastic processes.
However, their definition involves the notion of conditional expectation and of conditional probability. We
therefore start by introducing these notions.

3.1 Conditional expectation and conditional probability

Let (Ω,F ,P) be a probability space, and let A, B be two events, with P(B) , 0. The conditional probability
P(A|B) of A knowing B is defined by the formula

P(A|B) :=
P(A ∩ B)
P(B)

.

Clearly, if the events A and B are independent, one has

P(A|B) :=
P(A ∩ B)
P(B)

=
P(A)P(B)
P(B)

= P(A),

as it should be.

Whenever X,Y are two real and discrete valued random variables on (Ω,F ,P), the notion of conditional
probability of X given Y is also naturally defined: For any A included in the range of X and for any y belonging
to the range of Y , we set

P(X ∈ A|Y = y) :=
P
(
X ∈ A,Y = y

)
P(Y = y)

(3.1.1)

assuming that P(Y = y) > 0. This quantity corresponds to the probability of the random variable X ∈ A
knowing that the random variable Y takes the value y. In more precise terms, this reads

P(X ∈ A|Y = y) =
P
({
ω ∈ Ω | X(ω) ∈ A and Y(ω) = y

})
P({ω′ ∈ Ω | Y(ω′) = y})

.

Clearly, for B in the range of Y we can also define P(X ∈ A|Y ∈ B) by a similar formula:

P(X ∈ A|Y ∈ B) =
P
({
ω ∈ Ω | X(ω) ∈ A and Y(ω) ∈ B

})
P({ω′ ∈ Ω | Y(ω′) ∈ B})

.
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Based on these formulas, the conditional expectation E(X|Y = y) of X given Y = y can be computed by

E(X|Y = y) =
∑

x∈X(Ω)

xP(X = x|Y = y)

=
∑

x∈X(Ω)

x
P(X = x and Y = y)

P(Y = y)

=
1

P(Y = y)

∑
x∈X(Ω)

xP
(
{ω ∈ Ω | X(ω) = x and Y(ω) = y

)
=
E(X1Y=y)
P(Y = y)

,

(3.1.2)

where the last equality is left as an exercise. Note that X1Y=y is indeed a new real and discrete valued random
variable.

These expressions are well defined because the random variables (and in particular Y) were supposed to
be discrete valued. Our aim is to generalize these concepts to arbitrary random variables. We start with a
significant generalization of the conditional expectation given in (3.1.2). For it, observe that if X is a random
variable on a probability space (Ω,F ,P) with values in (Λ,E), and if D ∈ F , we can define a new induced
measure µD

X : E → [0, 1] given for any A ∈ E by

µD
X (A) := P

(
X−1(A) ∩ D

)
= P

(
{ω ∈ D | X(ω) ∈ A

})
,

which is well defined since
(
X−1(A) ∩ D

)
∈ F . Observe that in general µD

X (Λ) , 1, but nevertheless µD
X (Λ) ∈

[0, 1]. If (Λ,E) is standard, it is possible to set∫
D

X dP =
∫

D
X(ω)P(dω) :=

∫
Λ

xµD
X (dx) = E(1DX), (3.1.3)

as long as the integral converges absolutely. In the sequel, we shall use the first notation in (3.1.3), as it often
appears in the literature. Let us also observe that the notion of L1(Ω,F ,P) introduced in Section 1.4 is not
only well defined for univariate random variables, but for any random variables taking values in a standard
measurable space (Λ,E). Therefore, the previous definition holds for any X ∈ L1(Ω,F ,P).

Definition 3.1.1 (Conditional expectation with respect to a σ-subalgebra). Let (Ω,F ,P) be a probability
space, and let X be a random variable on (Ω,F ,P), taking with values in a standard measurable space and
belonging to L1(Ω,F ,P). Let also G be a σ-subalgebra of F . The conditional expectation of X given G,
denoted by E(X|G), is the random variable taking values in (Λ,E), measurable with respect to G, belonging
to ∈ L1(Ω,G,P), and satisfying for any D ∈ G∫

D
E(X|G)dP =

∫
D

X dP. (3.1.4)

In this definition, the random variable E(X|G) is defined up to a set of P-measure 0, which means that the con-
ditional expectation of X given G should be considered as an equivalence class of random variables. Clearly,
we fix one in its representatives and consider always this one. Observe that in the l.h.s. of (3.1.4), only the
restricted measure P on G is involved, namely only the values of P on elements of G are playing a role in the
integral. Nevertheless, we keep the same notation for this restricted measure.

22



It is the result of a theorem, see for example [2, Thm. 4.1], that there exists such a random variable E(X|G).
Note that a rather easy consequence of this definition is that the equality

E
(
WE(X|G)

)
= E(WX) (3.1.5)

holds for any bounded and G-measurable univariate5 random variable W on (Ω,F ,P). The property (3.1.5) is
sometimes taken as part of the definition of the conditional expectation of X given G, see [1, Def. 4.14]. By
choosing the constant random variable W = 1 (function taking the constant value 1), one deduces from (3.1.5)
that

E
(
E(X|G)

)
= E(X). (3.1.6)

Exercise 3.1.2. Prove (3.1.5), or at least justifies it as precisely as possible, starting from Definition 3.1.1.

The interest in the previous notion comes from the following framework. Let us consider a second random
variable Y on (Ω,F ,P) and taking values in (Λ′,E′), and recall that σ(Y) denotes the smallest σ-subalgebra
of F defined by Y . We can then consider the conditional expectation of X given σ(Y), and denote it simply by
E(X|Y) instead of E

(
X|σ(Y)

)
. Thus, if X ∈ L1(Ω,F ,P) takes values in the standard measurable space (Λ,E),

then the new random variable E(X|Y) belongs to L1(Ω, σ(Y),P) and also takes values in (Λ,E). By Doob-
Dynkin lemma, one has automatically E(X|Y) = g(Y) for some measurable function g : Λ′ → Λ. Having
this in mind, it follows that the univariate random variable W of (3.1.5) is always of the form h(Y) for some
measurable and bounded h : Λ′ → R, where R is endowed with the σ-algebra σB of Borel sets on R. In this
case (3.1.5) reads

E
(
h(Y)E(X|Y)

)
= E

(
h(Y)g(Y)

)
= E

(
h(Y)X

)
. (3.1.7)

Let us now list a few properties of the conditional expectations. The proof of the next statement is left as an
exercise. It is not so difficult, and inspiration can be obtained from [2, Prop. 4.1].

Proposition 3.1.3. Let X, X1, X2 be random variables on (Ω,F ,P) taking values in a standard measurable
space (Λ,E), and assume that these random variables belong to L1(Ω,F ,P). Let G be a σ-subalgebra of F ,
and let α, β ∈ R.

1. E
(
αX1 + βX2|G

)
= E(αX1|G) + E(βX2|G),

2. If X is G-measurable, then E(X|G) = X,

3. If X ≥ 0 a.s., then E(X|G) ≥ 0 a.s.,

4. If W is an univariate bounded and G-measurable random variable, then E
(
WX|G

)
= WE(X|G) a.s.,

5. If G′ is another σ-subalgebra of F satisfying G ⊂ G′, then E
(
E(X|G′)|G

)
= E(X|G) a.s.,

6. If X is independent of G, then E(X|G) = E(X) a.s., where E(X) can be considered as a constant random
variable,

7. If X is univariate and φ : R→ R is a convex lower semi-continuous function, then

E
(
φ(X)|G

)
≥ φ

(
E(X|G)

)
. (Jensen’s inequality)

Exercise 3.1.4. Study Examples 4.1, 4.2, and 4.3 on p. 92–93 of [2].

5Why univariate only ?
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Exercise 3.1.5 (r). In the framework of the previous proposition and for univariate random variables, show
that the map X 7→ E(X|G) is a bounded linear map from Lp(Ω,F ,P) to Lp(Ω,G,P) with a norm smaller or
equal to 1, for any p ≥ 1. More explicitly, show the linearity and that E

(
|E(X|G)|p

)
≤ E

(
|X|p

)
. In the proof,

use Jensen’s inequality for the function x 7→ |x|p.

Let us now provide an interpretation of E(X|G) in the framework of the Hilbert space L2(Ω,F ,P) for univariate
random variables. Note firstly that L2(Ω,G,P) is a subspace of L2(Ω,F ,P), since it is a stable under addition
and multiplication by scalars. In addition, for the univariate random variable X ∈ L2(Ω,F ,P) one infers from
(3.1.5) that for any bounded and univariate G-measurable function W on Ω one has

E
(
W

(
X − E(X|G)

))
= E(WX) − E

(
WE(X|G)

)
= 0. (3.1.8)

Since bounded and G-measurable functions are dense in L2(Ω,G,P), it follows that (3.1.8) holds for any W ∈
L2(Ω,G,P), when the expectation is understood as a scalar product, see section 1.4. Thus, X − E(X|G) (which
belongs to L2(Ω,F ,P)) is orthogonal to all elements of the subspace L2(Ω,G,P). Equivalently, it means that
E(X|G) is the orthogonal projection of X on L2(Ω,G,P). Still in other words, E(X|G) is the element of the
subspace L2(Ω,G,P) which minimizes the L2-distance to X, or equivalently E(X|G) is the best approximation
of X by elements of L2(Ω,G,P). Later on and for G = σ(Y), we shall understand E(X|Y) as the best estimation
of X given the information of Y .

The statements 2. and 6. of Proposition 3.1.3 are particularly simple. In the next statement we combine them,
and the result turns out to be useful, see [2, Lem. 4.1] for a sketch of the proof, and [14, Lem. A.3] for more
details.

Lemma 3.1.6 (Freezing lemma). Let (Ω,F ,P) be a probability space, and let G1,G2 be two independent
σ-subalgebras of F . For j ∈ {1, 2} let X j be a G1-measurable random variable from (Ω,F ,P) to a standard
measurable space (Λ j,E j) and belonging to L1(Ω,G j,P). Let Ψ : Λ1 × Λ2 → R be a measurable function,
when Λ1 × Λ2 is endowed with the σ-algebra E1 × E2. Then the following equalities hold:

E
(
Ψ(X1, X2)|G1) = (

E
(
Ψ(·, X2)

))
(X1) = E

(
Ψ(X1, X2)|X1)

wherever the map Ω ∋ ω 7→ Ψ
(
X1(ω), X2(ω)

)
∈ R is absolutely integrable.

Exercise 3.1.7. Check the statement for a function Ψ satisfying Ψ(x1, x2) = Ψ1(x1)Ψ2(x2), for x1 ∈ Λ1 and
x2 ∈ Λ2.

Exercise 3.1.8 (r). Study the position of the Brownian motion at a random time, see Example 4.5 p. 95 of [2].

Let us now move to the notion of conditional probability, as sketched in (3.1.1) in the discrete setting.

Definition 3.1.9 (Conditional probability). Let (Ω,F ,P) be a probability space, and let X,Y be random vari-
ables on this space, with X taking values in a measurable space (Λ,E) and Y taking values in a measurable
space (Λ′,E′). A family {νy}y∈Λ′ of probability measures on (Λ,E) is called a conditional probability for X
given Y if

1. For every A ∈ E the map Λ′ ∋ y 7→ νy(A) ∈ R is measurable from (Λ′,E′) to (R+, σB),

2. For any A ∈ E and B ∈ E′ one has

P
(
X ∈ A,Y ∈ B

)
=

∫
B
νy(A)µY (dy), (3.1.9)

where µY is the induced probability measure of the random variable Y.
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The probability measure νy on (Λ,E) can be understood as a suitable law for the random variable X keeping
into account the information Y = y. Since the l.h.s. of (3.1.9) can be understood as E

(
1A(X)1B(Y)

)
, one can

extend this equality by linearity. More precisely if (Λ,E) is a standard measurable space, if f : Λ → Λ is
measurable and verifies f (X) ∈ L1(Ω,F ,P), and if h : Λ′ → R is measurable and bounded, then one obtains
the equality

E
(
h(Y) f (X)

)
=

∫
Λ′

( ∫
Λ

f (x)νy(dx)
)
h(y)µY (dy). (3.1.10)

Considering then f = id, and setting g(y) :=
∫
Λ

xνy(dx) the previous equation reads

E
(
h(Y)X

)
=

∫
Λ′

h(y)g(y)µY (dy) = E
(
h(Y)g(Y)

)
.

By a comparison with (3.1.7), we observe that {νy}y∈Λ′ is the conditional probability of X given Y if and only
if whenever f (X) ∈ L1(Ω,F ,P) one has

E( f (X)|Y) = g(Y) a.s. with g(y) =
∫
Λ

f (x)νy(dx). (3.1.11)

In particular, for f = id one infers that

E(X|Y) = g(Y) a.s. with g(y) =
∫
Λ

xνy(dx)

which means that the conditional expectation is the mean value of the conditional probability.

If the conditional probability {νy}y∈Λ′ exists, the following notations are used for any A ∈ E :

P(X ∈ A|Y = y) = E(1A(X)|Y = y) = νy(A).

However, let us stress that the conditional expectation E(X|Y) always exists, while nothing similar can be
said about the conditional probability. Nevertheless, we shall see that it exists in some standard situations, as
shown below.

Example 3.1.10. Let X a Rm-valued random variable and let Y be a Rn-valued random variable, both
defined on a probability space (Ω,F ,P). We assume that their joint probability measure µ(X,Y) is abso-
lutely continuous, meaning that there exists a probability density function Π(X,Y) : Rm+n → R+, verifying∫
Rm+n Π(X,Y)(x, y)dxdy < ∞ and

µ(X,Y)(A) =
∫

A
Π(X,Y)(x, y)dxdy ∀A ⊂ σB(Rm+n).

Let ΠY : Rn → R+ be the marginal density function of Y defined by ΠY (y) :=
∫
Rm Π(X,Y)(x, y) dx, and set

Q := {y ∈ Rn | ΠY (y) = 0}. Clearly, P(Y ∈ Q) =
∫

QΠY (y)dy = 0. We then define for a.e. x ∈ Rm

Π(X,y)(x) :=

Π(X,Y)(x,y)
ΠY (y) if y < Q,

π(x) if y ∈ Q,

with π : Rm → R+ any density function. Then for any y ∈ Rn the function Π(X,y) corresponds to the density
function of the conditional probability of X given Y, previously denoted by νy. Indeed, one can check the
conditions of Definition 3.1.9, with µy = Π(X,y):
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1. If y < Q: ∫
Rm
Π(X,y)(x)dx =

∫
Rm

Π(X,Y)(x, y)
ΠY (y)

dx = 1,

and if y ∈ Q the same result holds,

2. For any A ∈ σB(Rm), the function

Rn ∋ y 7→ Π(X,y)(A) =

 1
ΠY (y)

∫
AΠ(X,Y)(x, y)dx if y < Q,∫

A π(x)dx if y ∈ Q,
∈ R+

is measurable,

3. If A ∈ σB(Rm) and B ∈ σB(Rm) with B ⊂ Qc, then

P(X ∈ A,Y ∈ B) =
∫

B

( ∫
A
Π(X,Y)(x, y)dx

)
dy =

∫
B

( ∫
A
Π(X,y)(x)dx

)
ΠY (y)dy.

If B ⊂ Q, then the same equality holds, with both sides equal to 0.

Thus, the function y 7→ Π(X,y) corresponds to the density of the conditional probability of X given Y, or
equivalently E(X|Y = y) = Π(X,y) dx.

It is also a good exercise to check that the formalism developed in this section can be applied to discrete
valued random variables, and that it leads to some familiar expressions, as presented at the very beginning of
this section. Alternatively, Gaussian random variables give other possible applications:

Exercise 3.1.11. Study and report about the conditional probability for Gaussian vectors, as presented in [2,
Sec. 4.4].

3.2 Martingales

In this section we study a new type of stochastic processes, which are at the root of the subsequent develop-
ments.

Definition 3.2.1 (Martingale, supermartingale, submartingale). For T ⊂ R+, a real valued stochastic process(
Ω,F ,P, (Ft)t∈T , (Mt)t∈T

)
satisfying Mt ∈ L1(Ω,F ,P) for any t ∈ T is a martingale if E(Mt|Fs) = Ms for all

s ≤ t. It is a supermartingale if E(Mt|Fs) ≤ Ms or a submartingale if E(Mt|Fs) ≥ Ms.

Note that a martingale is a special instance of a supermartingale and of a submartingale. As already mentioned
for the Brownian motion, if the filtration is not mentioned, it means that the natural one is considered. Note
also that we consider only the univariate case for simplicity, but martingales can also take values in a standard
measurable space, or have values in C. Let us start by looking at some example of martingales.

Exercise 3.2.2. Let {Ft}t∈T be a filtration on a probability space (Ω,F ,P), and let X be a univariate ran-
dom variable on this space, with E(|X|) < ∞. Set Xt := E(X|Ft). Show that

(
Ω,F ,P, (Ft)t∈T , (Xt)t∈T

)
is a

martingale.

Exercise 3.2.3. Consider T = N and a sequence (Xn)n∈N of independent and real valued random variables
satisfying E(|Xn|) < ∞ and E(Xn) = 0. Set Yn :=

∑n
j=1 X j. Show that (Y j) j∈N and the natural filtration define a

martingale.
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Exercise 3.2.4. Show that the standard6 1-dimensional Brownian motion is a martingale.

Exercise 3.2.5. Let
(
Ω,F ,P, (Ft)t∈R+ , (Bt)t∈R+

)
be the standard 1-dimensional Brownian motion, and consider

the geometric Brownian motion defined by St := S 0 exp
(
σBt+µt

)
, with σ > 0, µ ∈ R, and S 0 ∈ R an arbitrary

initial value. Show that this process is a martingale if and only if µ = −1
2σ

2.

Exercise 3.2.6. Let
(
Ω,F ,P, (Ft)t∈R+ , (Bt)t∈R+

)
be the standard 1-dimensional Brownian motion. Show that

the new process defined by Xt := B2
t is a submartingale, but that the process defined by Xt := B2

t − t is a
martingale.

Let us add one more exercise about the relation between supermartingale and martingale, see [2, Ex. 5.1].

Exercise 3.2.7 (Constant expectation). Let
(
Ω,F ,P, (Ft)t∈T , (Mt)t∈T

)
be a supermartingale, and assume that

E(Mt) is a constant independent of t. Then this stochastic process is a martingale.

Exercise 3.2.8 (Alternative definition of a martingale). Show that the following definition is equivalent to
Definition 3.2.1: A real valued stochastic process

(
Ω,F ,P, (Ft)t∈T , (Mt)t∈T

)
satisfying Mt ∈ L1(Ω,F ,P) for

any t ∈ T is a martingale if E
(
(Mt − Ms)|Fs

)
= 0 for all s ≤ t.

Let us now state one result for discrete time martingales, namely when T = N. Such stochastic processes
have many applications, and are simpler than the continuous ones. As a starter, a discrete time stochastic
process

(
Ω,F ,P, (Fn)n∈N, (An)n∈N

)
is said to be an increasing predictable process if A0 = 0, An ≤ An+1, and

An+1 is Fn-measurable, for all n ∈ N. Note that the Fn-measurability of An+1 roughly means that at time n we
know the value of the process at time n + 1. This knowledge is responsible for the term “predictable”. Such
processes appear in the following statement about the decomposition of any submartingale. It proof can be
found here or in [2, Thm. 5.1], and can be studied as an exercise.

Theorem 3.2.9 (Doob’s decomposition theorem). Let
(
Ω,F ,P, (Fn)n∈N, (Xn)n∈N

)
be a submartingale, then

there exists a unique decomposition Xn = Mn + An, with (Mn)n∈N a martingale and (An)n∈N an increasing
predictable process. The process (An)n∈N is called the compensator.

There exists a similar result for continuous time submartingales, but its precise statement is more delicate.
However, observe that Exercise 3.2.6 is already an illustration of this result. We now introduce a new concept:

Definition 3.2.10 (Stopping time). Let {Ft}t∈T be a filtration on a probability space (Ω,F ,P). A random
variable τ : Ω→ T ∪ {+∞} on this probability space is said to be a stopping time for this filtration if for any
t ∈ T

{τ ≤ t} ≡
{
ω ∈ Ω | τ(ω) ≤ t

}
∈ Ft.

For any stopping time τ we set Fτ for the σ-subalgebra of F defined by

Fτ =
{
A ∈ FT |

(
A ∩ {τ ≤ t}

)
∈ Ft for every t ∈ T

}
(3.2.1)

where FT is the smallest σ-subalgebra of F containing all Ft for t ∈ T .

In less precise words, τ is a stopping time if we can decide if the events {ω ∈ Ω | τ(ω) ≤ t} occurred based on
the information available at time t. Note that since Ft is stable under complement, the event {ω ∈ Ω | τ(ω) > t}
also belongs to Ft. Typical examples of stopping times are entry and hitting times of a RN-valued process
(Xt)t∈T into a set A ∈ σB(RN), as for example:

1. First entry time into A: τoA(ω) : inf{t ≥ 0 | Xt(ω) ∈ A},

6Standard Brownian motion means the Brownian motion endowed with the right-continuous filtration generated by the augmented
natural filtration.
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2. First hitting time of A: τA(ω) : inf{t > 0 | Xt(ω) ∈ A},

3. First exit time from A: τAc(ω) : inf{t > 0 | Xt(ω) < A},

with the convention that inf(Ø) := ∞. Note that depending on the regularity of the process and of the filtration,
and depending on the nature of A, it can be difficult to prove rigorously that these random variables are
indeed stopping times. Two example of precise statements are indicated below. Recall that a right-continuous
filtration (Ft+)t∈T can be constructed from any filtration, see the last paragraph of Section 2.3.

Lemma 3.2.11. Let
(
Ω,F ,P, (Ft)t∈R+ , (Xt)t∈R+

)
be a RN-valued stochastic process with right-continuous

paths, and let A ⊂ RN be an open set. Then the first hitting time τA is a stopping time if (Ft)t∈R+ is the
right-continuous filtration constructed from the natural filtration.

Lemma 3.2.12. Let
(
Ω,F ,P, (Ft)t∈R+ , (Xt)t∈R+

)
be a RN-valued stochastic process with continuous paths, and

let A ⊂ RN be a closed set. Then the first entry time τoA is a stopping time for the natural filtration, while τA is
a stopping time for the right-continuous filtration constructed from the natural filtration.

We refer to [14, Sec. 5.2] for the proof of these statements. Note that any last passage time can not (in general)
be a stopping time, since the future should be known in order to decide if it is a last passage or not. We now
gather a few general results about stopping times. The easy proof is left as an exercise, see also [2, Prop. 3.5].

Lemma 3.2.13. Let τ, η be two stopping times for the same filtration.

1. τ is Fτ-measurable,

2. τ ∨ η := max{τ, η} and τ ∧ η := min{τ, η} are stopping times,

3. If η ≤ τ, then Fη ⊂ Fτ,

4. Fη∧τ = Fη ∩ Fτ.

Based on the notion of stopping time, let us state an important result for martingales, called Stopping theorem,
see [2, Thm. 5.13].

Theorem 3.2.14. Let
(
Ω,F ,P, (Ft)t∈T , (Mt)t∈T

)
be a right-continuous martingale, and let τ1, τ2 be two a.s.

bounded stopping times, with τ1 ≤ τ2 a.s.. Then E
(
Mτ2 |Fτ1

)
= Mτ1 . The same statement holds for super-

martingale with E
(
Mτ2 |Fτ1

)
≤ Mτ1 , and for submartingale with E

(
Mτ2 |Fτ1

)
≥ Mτ1 .

A rather direct consequence of this statement is a statement about stopped martingales, see [1, Prop. 4.37] or
[2, Thm. 5.14].

Proposition 3.2.15. Let
(
Ω,F ,P, (Ft)t∈T , (Mt)t∈T

)
be a right-continuous martingale, and let τ be a stopping

time. Then
(
Mt∧τ

)
t∈T defines also a martingale with the same filtration, where Mt∧τ(ω) = Mt(ω) if t ≤ τ(ω)

and Mt∧τ(ω) = Mτ(ω)(ω) if t ≥ τ(ω).

Exercise 3.2.16. In the discrete case T = N, show that
(
Mn∧τ

)
n∈N also also adapted to the filtration (Fn)n∈N.

Observe that the notion of right-continuity was used in the previous two statements. Unlike Brownian motions,
martingales are not automatically continuous (through a modification). Nevertheless, the following statement
provides a sufficient criterion for the right continuity see [2, Thm. 5.14] and [3, Thm. 1.4.3 & Corollary].

Theorem 3.2.17. Let
(
Ω,F ,P, (Ft)t∈T , (Mt)t∈T

)
be a supermartingale, and assume that the filtration is stan-

dard (= right-continuous and containing the negligible sets). Then (Mt)t∈T admits a right-continuous mod-
ification if and only if the map t 7→ E(Mt) is continuous. In particular, if (Mt)t∈T is a martingale, it has a
right-continuous modification.
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Let us still mentioned another consequence of the stopping theorem, which is referred to as the Optional
Stopping Theorem:

Theorem 3.2.18. Let
(
Ω,F ,P, (Fn)n∈N, (Mn)n∈N

)
be a discrete time martingale, and let τ be an a.s. bounded

stopping time. Then E(Mτ) = E(M0).

Let us now state a result which makes discrete time martingales particularly attractive. For this, observe that
any univariate random variable X can be written as X = X+ − X− with X± ≥ 0 (decomposition into positive
and negative part of any function).

Theorem 3.2.19.
(
Ω,F ,P, (Fn)n∈N, (Mn)n∈N

)
be a discrete time supermartingale satisfying the uniform con-

dition supn∈N E(M−n ) < ∞. Then (Mn)n∈N converges almost surely to a finite limit, namely there exists C < ∞
such that

P
({
ω ∈ Ω | lim

n→∞
Mn(ω) = C

})
= 1.

In particular, if Mt ≥ 0, then (Mn)n∈N converges almost surely to a finite limit.

For various exercise, it is necessary to use the Dominated convergence theorem, which is now recalled:

Theorem 3.2.20. If (Xn)n∈N is a family of univariate random variables on (Ω,F ,P) converging almost surely
to a random variable X∞, and if there exists another random variable Y ∈ L1(Ω,F ,P) verifying |Xn| ≤ Y, then
X∞ ∈ L1(Ω,F ,P) and limn→∞ E(Xn) = E(X∞).

Let us mention one specific application of this theorem. In its framework, suppose that all univariate random
variables are uniformly bounded by a constant, namely there exists c > 0 such that |Xn| ≤ c for all n. Since c,
seen as a constant function, belongs to L1(Ω,F ,P), then this constant function can play the role of the random
variable Y and the theorem applies. It means that any uniformly bounded family of univariate random variables
{Xn}n∈N converging almost surely to a random variable X∞ satisfies limn→∞ E(Xn) = E(X∞). In particular, it
implies that any convergence almost surely is also a convergence in probability: If {Xn}n∈N converges almost
surely to X∞, for any ε > 0 one has

lim
n→∞
P
(
|Xn − X∞| > ε

)
= lim

n→∞
E
(
1|Xn−X∞ |>ε

)
= E

(
lim
n→∞

1|Xn−X∞ |>ε
)
= E

(
1|0|>ε

)
= 0 (3.2.2)

where we have used the uniform bound 1|Xn−X∞ |>ε ≤ 1 for the second equality.

Exercise 3.2.21. Study and report on the gambler’s ruin problem, see for example [1, Example 4.41 & 4.42].

Exercise 3.2.22. Study and report on the first passage time for the 1D Brownian motion, for example see [1,
Example 4.43].

Exercise 3.2.23. Work on some problems proposed in [1, p. 93–97] or in [2, p. 75–85, 104–107, or 139–150].
The second book is more complicated, but solutions or hints are presented at the end of the book.

Let us conclude this section with a few additional results about the 1D standard Brownian motion (Bt)t≥0,
mostly based on the notion of stopping time. For more details, we refer to [1, Sec. 4.5] and to [11, Chap. 3].

Let a ∈ R and let τa be the first hitting time, namely τa := inf{t > 0 | Bt = a}. For a < 0 < b we also set
τab := min{τa, τb}, which corresponds to the time to exit the interval (a, b). Note that these random variables
take values in R+.

Proposition 3.2.24. For any a < 0 < b, one has P(τab < ∞) = 1 and E(τab) < ∞. Similarly, P(τa < ∞) = 1
and P(τ0 < ∞) = 1.
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We refer to [11, Thm. 3.13 & 3.14] for the proof of the previous statement, and to [11, Thm. 3.18] for the
following one.

Proposition 3.2.25. For any a ∈ R the random variable τa corresponding to the hitting time is absolutely
continuous, with probability density function Πτa : R+ → R+ given for t > 0 by

Πτa(t) :=
|a|
√

2π
t−

3
2 e−

a2
2t .

Also, E(τa) = ∞.

As a final nice result, let us provide the probability that the standard Brownian motion starting at 0 comes
back to 0 in a certain interval of time, see [11, Sec. 3.9].

Proposition 3.2.26. For 0 < t < T, the probability that the Brownian motion starting at 0 comes back to 0 at
least once in the time interval (t,T ) is given by 2

π arccos
( t

T
)
. The probability that it does not come back to 0

in the time interval (t,T ) is given by 2
π arcsin

( t
T
)
.

Many other quantities can be explicitly computed for the Brownian motion. You can enjoy reading various
textbooks on the topic, and write any report on this topic. ,
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