Graphic Sequence and Havel-Hakimi Theorem

FIRDAUS Rafi Rizqy (062101889)

Special Mathematics Lecture: Graph Theory (Spring 2024)

In this report, we investigate the Havel-Hakimi algorithm's capacity to discern graphical sequences that represent simple graphs. We will review the essential definitions, demonstrate the algorithm's recursive nature, and provide a clear example of its practical application.

Definition 1 ([1], pg. 9). A non-increasing sequence (d_1, d_2, \ldots, d_n) is said to be graphic if it is the degree sequence of some simple graph. That simple graph is said to realize the sequence.

Remark. If (d_1, d_2, \ldots, d_n) is the degree sequence of a simple graph, then, clearly, $d_1 \leq n-1$.

Theorem 1 ([1], pg. 9). Let (d_1, d_2, \ldots, d_n) be a graphic sequence, with $d_1 \ge d_2 \ge \ldots \ge d_n$. Then there is a simple graph with vertex-set $\{v_1, \ldots, v_n\}$ satisfying $\deg(v_i) = d_i$ for $i = 1, 2, \ldots, n$, such that v_1 is adjacent to vertices v_2, \ldots, v_{d_1+1} .

Proof. Consider a collection of simple graphs with a vertex set $\{v_1, v_2, \ldots, v_n\}$ where each vertex v_i has a degree d_i . Select graph G such that $r = |N_G(v_1) \cap \{v_2, \ldots, v_{d_1+1}\}|$ is at its maximum, where $N_G(v_1)$ signifies the neighborhood of v_1 . If r matches d_1 , the proof is evident. When r is less than d_1 , it implies the existence of a vertex v_s within the range $2 \leq s \leq d_1 + 1$ that does not share an edge with v_1 , and conversely, a vertex v_t where $t > d_1 + 1$ that is adjacent to v_1 given $\deg(v_1) = d_1$. Furthermore, since $\deg(v_s) \geq \deg(v_t)$, we deduce the presence of a vertex v_k adjacent to v_s but not to v_t . Define G' as the graph formed from G by interchanging the edges v_1v_t and v_sv_k with v_1v_s and v_tv_k as illustrated in Figure 1. This action keeps all vertex degrees constant and positions $v_s \in N_{G'}(v_1) \cap \{v_2, \ldots, v_{d_1+1}\}| = r + 1$, contradicting the initial selection of G and thus finalizing the argument.

Figure 1: Switching adjacencies while preserving all degrees.

Corollary 1.1 ([1], pg. 10). (Havel (1955) and Hakimi (1961)) A sequence $S := (d_1, d_2, \ldots, d_n)$ of nonnegative integers such that $d_1 \le n-1$ and $d_1 \ge d_2 \ge \ldots \ge d_n$ is graphic if and only if the sequence $S_1 := (d_2 - 1, \ldots, d_{d_1+1} - 1, d_{d_1+2}, \ldots, d_n)$ is graphic.

Proof. Sufficiency (\Leftarrow): Suppose S_1 is graphical. Then by definition, there exists a graph G_1 , of order n-1 with degree sequence S_1 . Hence we can label $V(G_1)$ with v_2, v_3, \ldots, v_n such that

$$\deg(v_i) = \begin{cases} d_i - 1 & \text{for } i = 2, 3, \dots, d_1 + 1 \\ d_i & \text{for } i = d_1 + 2, \dots, n \end{cases}$$

We can construct a new graph G as follows:

- Start with the graph G_1 .
- Add a new vertex v_1 .
- Add d_1 new edges v_1v_i for $i = 2, 3, ..., d_1 + 1$.

The sketch of the construction is given in **Figure 2**. Thus, in the new graph G the degree of the new sequence is given by

$$\deg(v_i) = d_i \quad \text{for } i = 1 + 2, \dots, n$$

As a result, the sequence $S := (d_1, d_2, \ldots, d_n)$ is graphic.

Necessity (\Rightarrow) : Suppose sequence $S := (d_1, d_2, \ldots, d_n)$ is graphical. Then, by **Theorem 1**, there exists a simple graph G with vertex-set $\{v_1, \ldots, v_n\}$ satisfying $\deg(v_i) = d_i$ for $i = 1, 2, \ldots, n$, such that v_1 is adjacent to vertices v_2, \ldots, v_{d_1+1} . Thus, by removing vertex v_1 from graph G yields a graph $G - v_1$ which has degree sequence $(d_2 - 1, \ldots, d_{d_1+1} - 1, d_{d_1+2}, \ldots, d_n)$. Therefore the sequence $S_1 := (d_2 - 1, \ldots, d_{d_1+1} - 1, d_{d_1+2}, \ldots, d_n)$ is a graphical sequence.

Remark. Corollary 1.1 yields a recursive algorithm that decides whether a non-increasing sequence is graphic.

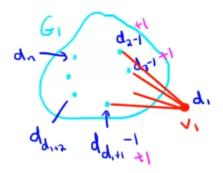


Figure 2: A sketch for the proof of Havel-Hakimi Theorem.

Algorithm 1.1.1: GraphicSequence $(d_1, d_2, ..., d_n)$ Input: a non-increasing sequence $(d_1, d_2, ..., d_n)$. Output: TRUE if the sequence is graphic, FALSE if it is not. • If $d_1 \ge n$ or $d_1 < 0$ - Return FALSE • Else - If $d_1 = 0$ * Return TRUE - Else * Let $(a_1, a_2, ..., a_{n-1})$ be a non-increasing permutation of $(d_2 - 1, ..., d_{d_1+1} - 1, d_{d_1+2}, ..., d_n)$. * Return GraphicSequence $(a_1, a_2, ..., a_{n-1})$

Remark. Given a graphic sequence, the steps of the iterative version can be reversed to construct a graph realizing the sequence. However many zeros you get at the end of the forward pass, start with that many isolated vertices. Then backtrack the algorithm, adding a vertex each time. The following example illustrates these ideas.

Example. We start with the sequence (3, 3, 2, 2, 1, 1). Figure 1.1.13 illustrates an iterative version of the algorithm GraphicSequence and then illustrates the backtracking steps leading to a graph that realizes the original sequence. The hollow vertex shown in each backtracking step is the new vertex added at that step.

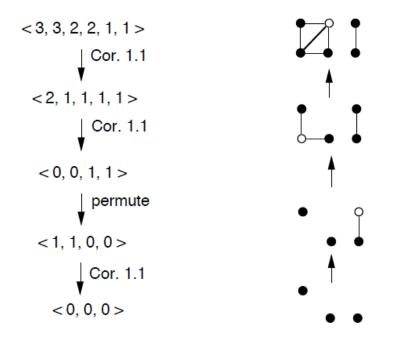


Figure 3: Testing and realizing the sequence (3, 3, 2, 2, 1, 1) ([1], pg. 11).

References

[1] Anderson Gross, Yellen. Graph Theory and Its Applications. 2019.