
Graphic Sequence and Havel-Hakimi Theorem

FIRDAUS Rafi Rizqy (062101889)

Special Mathematics Lecture: Graph Theory (Spring 2024)

In this report, we investigate the Havel-Hakimi algorithm’s capacity to discern graphical sequences

that represent simple graphs. We will review the essential definitions, demonstrate the algorithm’s

recursive nature, and provide a clear example of its practical application.

Definition 1 ([1], pg. 9). A non-increasing sequence (d1, d2, . . . , dn) is said to be graphic if it is the

degree sequence of some simple graph. That simple graph is said to realize the sequence.

Remark. If (d1, d2, . . . , dn) is the degree sequence of a simple graph, then, clearly, d1 ≤ n− 1.

Theorem 1 ([1], pg. 9). Let (d1, d2, . . . , dn) be a graphic sequence, with d1 ≥ d2 ≥ . . . ≥ dn. Then

there is a simple graph with vertex-set {v1, . . . , vn} satisfying deg(vi) = di for i = 1, 2, . . . , n, such

that v1 is adjacent to vertices v2, . . . , vd1+1.

Proof. Consider a collection of simple graphs with a vertex set {v1, v2, . . . , vn} where each vertex vi

has a degree di. Select graph G such that r = |NG(v1) ∩ {v2, . . . , vd1+1}| is at its maximum, where

NG(v1) signifies the neighborhood of v1. If r matches d1, the proof is evident. When r is less than d1,

it implies the existence of a vertex vs within the range 2 ≤ s ≤ d1+1 that does not share an edge with

v1, and conversely, a vertex vt where t > d1+1 that is adjacent to v1 given deg(v1) = d1. Furthermore,

since deg(vs) ≥ deg(vt), we deduce the presence of a vertex vk adjacent to vs but not to vt. Define G′

as the graph formed from G by interchanging the edges v1vt and vsvk with v1vs and vtvk as illustrated

in Figure 1. This action keeps all vertex degrees constant and positions vs ∈ NG′(v1)∩{v2, . . . , vd1+1}.
Consequently, |NG′(v1) ∩ {v2, . . . , vd1+1}| = r + 1, contradicting the initial selection of G and thus

finalizing the argument.

1

v1

vs

vk

vt =⇒

v1

vs

vk

vt

Figure 1: Switching adjacencies while preserving all degrees.

Corollary 1.1 ([1], pg. 10). (Havel (1955) and Hakimi (1961)) A sequence S := (d1, d2, . . . , dn) of

nonnegative integers such that d1 ≤ n−1 and d1 ≥ d2 ≥ . . . ≥ dn is graphic if and only if the sequence

S1 := (d2 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn) is graphic.

Proof. Sufficiency (⇐): Suppose S1 is graphical. Then by definition, there exists a graph G1, of order

n− 1 with degree sequence S1. Hence we can label V (G1) with v2, v3, . . . , vn such that

deg(vi) =

di − 1 for i = 2, 3, . . . , d1 + 1

di for i = d1 + 2, . . . , n

We can construct a new graph G as follows:

• Start with the graph G1.

• Add a new vertex v1.

• Add d1 new edges v1vi for i = 2, 3, . . . , d1 + 1.

The sketch of the construction is given in Figure 2. Thus, in the new graph G the degree of the new

sequence is given by

deg(vi) = di for i = 1 + 2, . . . , n

As a result, the sequence S := (d1, d2, . . . , dn) is graphic.

Necessity (⇒): Suppose sequence S := (d1, d2, . . . , dn) is graphical. Then, by Theorem 1, there

exists a simple graph G with vertex-set {v1, . . . , vn} satisfying deg(vi) = di for i = 1, 2, . . . , n, such

that v1 is adjacent to vertices v2, . . . , vd1+1. Thus, by removing vertex v1 from graph G yields a

graph G− v1 which has degree sequence (d2− 1, . . . , dd1+1− 1, dd1+2, . . . , dn). Therefore the sequence

S1 := (d2 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn) is a graphical sequence.

Remark. Corollary 1.1 yields a recursive algorithm that decides whether a non-increasing sequence

is graphic.

2

Figure 2: A sketch for the proof of Havel-Hakimi Theorem.

Algorithm 1.1.1: GraphicSequence(d1, d2, . . . , dn)

Input: a non-increasing sequence (d1, d2, . . . , dn).

Output: TRUE if the sequence is graphic, FALSE if it is not.

• If d1 ≥ n or d1 < 0

– Return FALSE

• Else

– If d1 = 0

∗ Return TRUE

– Else

∗ Let (a1, a2, . . . , an−1) be a non-increasing permutation

of (d2 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn).

∗ Return GraphicSequence(a1, a2, . . . , an−1)

Remark. Given a graphic sequence, the steps of the iterative version can be reversed to construct a

graph realizing the sequence. However many zeros you get at the end of the forward pass, start with

that many isolated vertices. Then backtrack the algorithm, adding a vertex each time. The following

example illustrates these ideas.

Example. We start with the sequence (3, 3, 2, 2, 1, 1). Figure 1.1.13 illustrates an iterative version

of the algorithm GraphicSequence and then illustrates the backtracking steps leading to a graph that

realizes the original sequence. The hollow vertex shown in each backtracking step is the new vertex

added at that step.

3

Figure 3: Testing and realizing the sequence (3, 3, 2, 2, 1, 1) ([1], pg. 11).

References

[1] Anderson Gross, Yellen. Graph Theory and Its Applications. 2019.

4

