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This report aims to understand one of the properties, the cycle length, of a Bipartite graph. Before

delving into the crux of the report, let us recall the definition of a Bipartite graph.

Definition 1. (Bipartite graph) ([2], pg. 4). An undirected graph G = (V,E) is bipartite

if the set of its vertices can be divided into two subsets V1 and V2 such that any e ∈ E has one end-

point in V1 and the other endpoint in V2. The sets V1 and V2 are called the bipartition subsets.

Theorem 1 ([1], pg. 42). A graph G is bipartite if and only if it has no cycles of odd length.

Proof. Necessity (⇒): Assume G is a bipartite graph. Considering that any walk within this graph

alternates between the two partitions, an even number of steps is required to circle back to the original

partition. Consequently, any cycle within G must comprise an even number of edges.

Sufficiency (⇐): Consider a graph G with at least two vertices, devoid of odd-length cycles. Assuming

G is a connected graph, select a vertex u from G. We can then categorize the vertex set V into two

groups:

X = {x | d(u, x) is even}

Y = {y | d(u, y) is odd}

Should (X,Y ) fail to be a valid bipartition due to an edge connecting two vertices within the same

set, say v and w, consider the shortest paths from u to v (P1) and from u to w (P2). According to the

partitioning categorization that we have defined, both paths would be of the same parity in length

(both even or both odd). Let’s identify the furthest vertex shared by both paths, labeled z. Note

that z can coincide with u. For the sketch of the proof refer to Figure 1.

Given that P1 and P2 are the shortest paths, the segments from u to z on both paths must be

equivalent in length, which means that the remaining segments from z to v and z to w also share

the same parity. Linking these segments with the edge e would construct a cycle whose length is

odd, which is a contradiction to our initial assumption. Therefore, the partition (X,Y ) must indeed

separate G into two distinct parts, establishing it as a bipartite graph.
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Figure 1: A bipartite graph with vertices u, v, w, and z, and an edge e between v and w.

Figure 2: Two examples of bipartite graphs with even cycle lengths, showcasing partitions with

different vertex colors.
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