
Special Mathematics Lecture

Graph theory
Nagoya University, Spring 2024

Lecturer: Serge Richard
Teaching assistant: Sota Kitano

Goals of these Lectures notes:

Provide the necessary background information for understanding the main ideas of graph
theory. These notes correspond to 14 lectures lasting 90 minutes each.

Figure 1: A finite graph

Website for this course:
http://www.math.nagoya-u.ac.jp/∼richard/SMLspring2024.html

Comments or corrections are welcome:
richard@math.nagoya-u.ac.jp

http://www.math.nagoya-u.ac.jp/~richard/SMLspring2024.html
mailto:richard@math.nagoya-u.ac.jp

Contents

1 The basics 2
1.1 Graphs . 2
1.2 Walks and paths . 5
1.3 Cycles . 8
1.4 Weighted graphs . 9

2 Representations and structures 11
2.1 Matrix representations . 11
2.2 Isomorphisms . 15
2.3 Automorphisms and symmetries . 17
2.4 Subgraphs . 20

3 Trees 23
3.1 Trees and forests . 23
3.2 Rooted trees . 25
3.3 Traversals in binary trees . 28
3.4 Applications . 30

3.4.1 Arithmetic expression trees . 30
3.4.2 Binary search trees . 31
3.4.3 Huffman trees . 32
3.4.4 Priority trees . 35

3.5 Counting binary trees . 38

Bibliography 41

1

Chapter 1

The basics

1.1 Graphs

In this section we provide the main definitions about graphs.

Definition 1.1 (Graph). A graph G consists in a pair G = (V, E) of two sets together with a map i : E → V ×V
assigning to every e ∈ E a pair (x, y) of elements of V1. Elements of V are called vertices, elements of E are
called edges. If i(e) = (x, y), the vertices x and y are also called the endpoints of e.

Figure 1.1: One edge, two vertices

We say that the graph is undirected or unoriented if we identify
the pairs (x, y) and (y, x) in V × V , while the graph is directed
or oriented if we consider (x, y) distinct from (y, x) in V × V .
For undirected graphs, when i(e) = (x, y) we say that the edge e
links x to y or y to x, without any distinction, or that e is an edge
between x and y, or between y and x. For directed graphs, if
i(e) = (x, y) we often call x the initial vertex for e, or the origin
of e, while y is called the terminal vertex or the target. In this
case, we also set o : E → V and t : E → V with o(e) = x and
t(e) = y such that i(e) =

(
o(e), t(e)

)
, the origin and the terminal maps, see Figure 1.2. Some authors also use

head and tail for the terminal vertex and the initial vertex, respectively. For directed or undirected graphs, we
also say that x and y are connected or adjacent whenever there exists an edge (directed or not) between them.

One observes that Definition 1.1 allows any graph to have loops, when i(e) = (x, x), and multiple edges
between the same vertices, namely when for some fixed x, y ∈ V there exist e1, . . . , en with i(e j) = (x, y) for
all j ∈ {1, . . . , n}, see Figures 1.3 and 1.4.

Note that directed graphs are also called digraphs, and that graphs with loops and / or multiple edges are
also called multigraphs. If a graph contains both directed edges (often represented by arrows) and undirected
edges (just represented by a segment), we call it a mixed graph. Clearly, an undirected graph can be obtained
from a directed graph by forgetting the information about the direction (one simply identifies (x, y) with (y, x)
in V × V), while a directed graph can be constructed from an undirected one by assigning a direction to each
edge (for example by fixing the origin of each edge).

1According to this definition one should write G = (V, E, i) but shall keep the shorter and common notation G = (V, E).

2

Figure 1.2: Oriented edge Figure 1.3: Loop Figure 1.4: Multiple edges

Remark 1.2 (Simple graph). When a graph has no loop and no multiple edge, we say that the graph is simple.
In such a case, the set E can be identified with a subset of V × V. Indeed, an edge can be simply written
e = (x, y) since there is no ambiguity about the indexation. In an undirected simple graph, the notations (x, y)
and (y, x) would represent the same edge, while for a directed simple graph they would not.

Definition 1.3 (Finite graph, order, and size). A graph G = (V, E) is finite if V and E contain only a finite
number of elements. A graph is infinite if either V or E (or both) contain(s) an infinite number of elements. In
the infinite case, it is assumed that the sets V and E are countable. For finite graph, the order of G, denoted
by |G|, corresponds to the cardinality of V, while the size of G, denoted by ∥G∥, corresponds to the cardinality
of E.

Let us provide a few definitions related to vertices.

Definition 1.4 (Degree and neighbourhood). Let x be a vertex of a graph G = (V, E).

(i) The degree of x, or valence of x, denoted by deg(x), corresponds to the number of edges connected at
x, with a loop giving a contribution of 2,

(ii) The set of neighbours of x, denoted by N(x), corresponds to the set of vertices connected to x by an
edge,

Figure 1.5: A 3-regular graph

A vertex x with deg(x) = 1 is sometimes called a leaf, and
a vertex x with deg(x) = 0 is said to be isolated. However,
one has to be careful for graphs admitting loops. Is a vertex
having only one (or more) loop(s) and no other link isolated or
not ? The answer depends on the authors. In principle, we shall
consider that a vertex which has no link to any other vertex is
isolated, even if it possesses some loops.

Based on these notions, we define the minimum degree of a
graph as δ(G) := min{deg(x) | x ∈ V} and the maximum de-
gree of a graph as ∆(G) := max{deg(x) | x ∈ V}. Also, a graph
is k-regular if deg(x) = k for all x ∈ V , see Figure 1.5.

Let us state an easy result based on the notion of degree.

Lemma 1.5 (Euler’s degree-sum theorem). The sum of the degrees of the vertices of a finite graph is twice the
number of edges.

Consider now a graph G = (V, E) and another graph G′ = (V ′, E′) with E′ ⊂ E and V ′ ⊂ V , and with i′ = i|E′
whenever it is defined. In this case G′ is called a subgraph of G, and one says that G contains G′. This notion
is rather simple, but one can be more precise.

3

Definition 1.6 (Induced subgraph). A subgraph G′ ⊂ G is an induced subgraph if, for all x, y ∈ V ′ and all
e ∈ E with i(e) = (x, y) one has e ⊂ E′. We also say that V ′ induces or spans G′ in G, and write G′ = G[V ′].

Figure 1.6: An induced graph in pink

From this definition, one can define the suppression of vertices.
If G = (V, E) is a graph and if U ⊂ V , then we write G − U
for G[V \ U]. In other words, G − U corresponds to the graph
containing all vertices of V \U and all edges of G which do not
have an endpoint in U. For edges, if F ⊂ E, one write G − F
for the graph (V, E \ F).

Remark 1.7 (Union of graphs). The notion of union of two
graphs needs to be defined with great care. Indeed, let us con-
sider G1 = (V1, E1) and G2 = (V2, E2). If we consider a disjoint
union (denoted by ⊔), then G := G1⊔G2 with G := (V, E) and V = V1⊔V2, E = E1⊔E2, with no identification
between some elements of the sets V j, or of the sets E j, for j ∈ {1, 2}. If we want to identify some elements,
then one has to do it very precisely.

One more important definition related to the division of a graph into two parts:

Definition 1.8 (Bipartite graph). An undirected graph G = (V, E) is bipartite if the set of its vertices can be
divided into two subsets V1 and V2 such that any e ∈ E has one endpoint in V1 and the other endpoint in V2.
The sets V1 and V2 are called the bipartition subsets.

Figure 1.7: Bipartite graph

It is rather clear that a bipartite graph can not have any loop. On the other
hand, multiple edges do not prevent a graph to be bipartite. There exists
also a kind of duality between some graphs, as provided in the following
definition.

Definition 1.9 (Line graph). The line graph of an undirected graph G =
(V, E) (without loop) consists in a new graph L(G) := (V ′, E′) with V ′ = E
and two vertices in V ′ are adjacent if and only if they had a common vertex
in G.

The representation of a line graph is provided in Figure 1.8. Note that the
definition of a line graph for an undirected graph with loop does not seem

to be completely clear and standard.

(a) Original graph G (b) Line graph L(G)

Figure 1.8: Graph and its line graph

Note that there exists a lot of classical graphs which are presented in any book, as for example in Section 1.2
of [GYA]. We shall not present these examples except when necessary.

4

1.2 Walks and paths

As in the previous section, the following definitions depend slightly on the authors. We always choose the
definitions which look quite general and flexible.

Definition 1.10 (Walk). A walk W of length N on a graph G = (V, E) is an alternating sequence

W = (x0, e1, x1, e2, . . . , xN−1, eN , xN)

with the requirement that i(e j) = (x j−1, x j) for j ∈ {1, . . . ,N},

An illustration of a walk is given in Figure 1.9.

Figure 1.9: One walk with one loop included

Let us observe that this definition is quite flexible. Indeed, there is no restriction about intersection of a walk
with itself. Also this definition is valid for directed and undirected graphs: for the former, it means that a walk
is always going in the direction of the arrows. Note also that this definition of walk is compatible with loops
and multiple edges, and take them into account. We say that the above walk starts at x0 and ends at xN , or is
from x0 to xN . We also say that the walk is closed if x0 = xN .

Remark 1.11. For simple graphs, a walk is uniquely defined by the sequence (x j)N
j=0 since multiple edges or

loops are not allowed. The list of edges is therefore not necessary.

For k ∈ {1, 2}, consider two walks Wk with start at xk
0 and ends at xk

Nk
. We say that these walks are composable

if x1
N1
= x2

0, and in this case we define their composition. This operation consists in defining the new walk
W = W1W2 with

W = (x1
0, e

1
1, x

1
1, e

1
2, . . . , x

1
N1−1, e

1
N1
, x1

N1
, e2

1, x
2
1, e

2
2, . . . , e

2
N2
, x2

N2
).

This new walk is of length N1 + N2.

One walk can also be concatenated: Consider W = (x0, e1, x1, e2, . . . , xN−1, eN , xN) and suppose that x j = xk

for some 0 ≤ j < k ≤ N. Then one concatenated walk consists in removing x j+1, . . . , xk and e j+1, . . . , ek to
the alternating sequences defining the walk W. One thus get a new walk starting at x0 and ending at xN which
is “shorter” than the initial walk. Note that several concatenations might be possible on a given walk, and do
not always lead to the same resulting walk, see Figure 1.10

The notion of walks is convenient because the addition of two composable walks is again a walk. However,
walks have some drawbacks because “the walker is allowed to do some detours”. Let’s be more efficient !

5

(a) Before concatenation (b) After concatenation

Figure 1.10: One concatenation of a walk

Figure 1.11: d(x, y) = 1 but d(y, x) = ∞

Definition 1.12 (Trail and path). A trail is a walk with no repeated edges. A path is a trail with no repeated
vertices, except possibly the endpoints x0 and xN . The length of a trail or of a path corresponds to the length
of the corresponding walk.

Note that for multiple edges, one has to be careful when defining a trail, since edges linking the same two
vertices can still appear in a trail, if each of them does not appear more than once. On the other hand, in a path
this is not possible since two vertices would appear at least twice.

The following notions could have been defined in terms of walks, but they are always realized by a path. For
that reason, it is more natural to express them in terms of paths.

Definition 1.13 (Distance in a graph). Given two vertices x, y in a graph G, the distance d(x, y) between x
and y corresponds to the length of the shortest path between x and y. If there is no path from x to y, one sets
d(x, y) = ∞.

It is clear that for undirected graphs, one has d(x, y) = d(y, x). For directed graphs, d(x, y) can be different
from d(y, x), see Figure 1.11.

Definition 1.14 (Eccentricity). The eccentricity ecc(·) : V → [0,∞] in a graph G = (V, E) is defined as the
distance between a given vertex x to the vertex farthest to x, namely

ecc(x) := max
y∈V

d(x, y).

6

Two additional notions for a graph can be defined in terms of the eccentricity:

Definition 1.15 (Diameter and radius).

(i) The diameter diam(G) of a graph G = (V, E) is defined by the maximal eccentricity on the graph, namely

diam(G) := max
x∈V

ecc(x) = max
x,y∈V

d(x, y).

(ii) The radius rad(G) of a graph G = (V, E) is the minimum of the eccentricities, namely

rad(G) := min
x∈V

ecc(x).

In a very vague sense, one can think about these two notions respectively as the diameter of a ball containing
the entire graph, and as the maximum radius of a ball contained in the graph and centered at the best place
(the “center” of the graph, as defined below).

Figure 1.12: diam(G) = 4, rad(G) = 2

Let us emphasize that these two concepts can take the
value ∞. It should also be noted that these notions can be
different for a directed graph and for the subjacent undi-
rected graph, once the direction on the edges have been
removed. Related to the notion of radius of a graph, one
can also look for the “center” of a graph.

Definition 1.16 (Central vertex). A central vertex of a
graph G is a vertex with minimum eccentricity, which
means x is a central vertex if ecc(x) = rad(G).

This definition does not imply that there is only one central
vertex. In fact, one can even construct graphs for which all
vertices are the central vertex. Even if uniqueness does not
hold in general, existence always holds: there always exists at least one central vertex (with the exception of
the trivial graph with no vertex).

Paths can also be used for defining the notion of connected graphs.

Definition 1.17 (Connected). An undirected graph G = (V, E) is connected if for any x, y ∈ V there exists a
path between x and y. A directed graph is connected if the underlying undirected graph is connected.

Figure 1.13: One connected graph, one not connected graph

We observe that this definition fits with our definition of an isolated vertex (when it has no link to any vertex
different from itself). Indeed, any such point is isolated, and any graph having such a vertex would not be
connected. Note also that with Definition 1.17, the direction is suppressed. For directed graphs, some authors

7

say that they are weakly connected when they are connected with the notion defined above. This is in contrast
with the following definition, which is more useful for directed graphs:

Definition 1.18 (Strongly connected). An directed graph G = (V, E) is strongly connected if for any x, y ∈ V
there exists one path from x to y.

Figure 1.14: Strongly connected
graph

Observe that for strongly connected graphs, the distances d(x, y) and d(y, x)
are never equal to ∞, for any pair of vertices (x, y). However, these two
quantities can still be different, see Figure 1.14.

1.3 Cycles

The notion of closed walks has already been introduced, and since paths
are special instance of walks, closed paths are also already defined. A
name is given to non-trivial closed paths (here non-trivial means a path not
reduced to a single vertex).

Definition 1.19 (Cycle). A cycle is a (non-trivial) closed path.

Observe that for simple graphs, a cycle has always a length of at least 3.
On the other hand, for graphs with loops or multiple edges, a cycle can
be of length 1 (for a loop) or of length 2 (between 2 vertices linked by

multiple edges). If a graph has no cycle, it is called acyclic, and we shall come back to them subsequently.
For graphs with cycles, we can wonder what is the length of the shortest cycle ?

Definition 1.20 (Girth). The girth of a graph G is the length of the shortest cycle in G, and it is denoted by
girth(G). If G is acyclic, then its girth is∞.

In the next statement, a characterization of bipartite graphs in terms of cycles is provided. A proof is available
in [GYA, Thm. 1.5.4].

Theorem 1.21. An undirected graph is bipartite if and only if it has no cycle of odd length.

The following extension of this result has been proposed by Duc Truyen Dam, and the proof has been provided
by Chang Sun (both former G30 students).

Theorem 1.22 (Strongly connected bipartite graphs). A strongly connected oriented graph G is bipartite if
and only if it has no cycle of odd length.

Figure 1.15: A Hamiltonian
graph

Let us now introduce a cycles with an additional property:

Definition 1.23 (Hamiltonian cycle and graph). A cycle that includes ev-
ery vertex of a graph is called a Hamiltonian cycle. A graph having a
Hamiltonian cycle is called a Hamiltonian graph.

Let us also stress that a Hamiltonian cycle has to go through every vertices,
but it will not use all edges of a graph in general (and is not allowed to
use twice any vertex). These cycles are important because their existence
means that there exists a closed path visiting all vertices once. Hamiltonian
cycles are also related to the famous travelling salesman problem. What
is the analogue definition for edges instead of vertices ? The answer is

8

provided below. Note that we consider trails instead of paths, which means that a vertex can be visited more
than once, but any edge can be used only once.

Definition 1.24 (Eulerian trail and graph).

(i) An Eulerian trail is a trail that contains every edge of a graph.

(ii) An Eulerian tour is a closed Eulerian trail.

(ii) An Eulerian graph is a connected graph which possesses an Eulerian tour.

Figure 1.16: Eulerian graph

Let us remark that there are natural questions related to the above two
notions. Given a connected graph G = (V, E), does it posses a Hamiltonian
cycle, or is it an Eulerian graph ? One answer for simple graphs is provided
in [Die, Thm. 1.8.1] while the proof for more general graphs is given in
[GYA, Thm. 4.5.11].

Theorem 1.25. A connected, undirected and finite graph is Eulerian if and
only if every vertex has even degree.

Let us finally gather in the next statement a few results which link some of
the notions introduced so far. We also recall that δ(G) and ∆(G) denote the
minimal and the maximal degree of a graph.

Theorem 1.26. Let G be a simple undirected finite graph:

(i) G contains a path of length δ(G) and a cycle of length at least δ(G)+
1 (provided δ(G) ≥ 2).

(ii) If G contains a cycle, then girth(G) ≤ 2diam(G) + 1.

(iii) If rad(G) = k and ∆(G) = d ≥ 3, then G contains at most d
d−2 (d−1)k

vertices.

1.4 Weighted graphs

Additional information can be encoded in a graph. In particular, a weight can be added to each vertex and / or
to each edge.

Definition 1.27 (Weighted graph). A weighted graph G = (V, E, ω) is a graph (V, E) together with two maps
ωV : V → R and ωE : E → R. The notation ω refers to the pair (ωV , ωE).

Note that quite often, one considers these maps with value in (0,∞) instead of R, and that the index V or E
is often drop. We then have ω : V → R and ω : E → R, and this does not lead to any confusion. Weighted
graphs are very natural and useful in applications. In this framework one has the following definition:

Definition 1.28 (Weighted length). The weighted length of a walk in a weighted graph is given by the sum of
the weight on the corresponding edges.

Clearly, this definition is also valid for trails, paths or cycles, since they are special instances of walks. For
a graph without weights, it corresponds to the original notion of length of a walk if one endows the graph
with the constant weight 1 on every edge (and on every vertex). Note that in a weighted graph, the shortest
path (disregarding weights) between two vertices might not be the one with the smallest weighted length. In

9

applications, one has therefore to specify which quantity has to be minimized: the unweighted length, or the
weighted length ? Of course, it depends on the purpose.

10

Chapter 2

Representations and structures

In this chapter, we first introduce a few ways to encode the information contained in a graph. Then, we develop
the notion of isomorphisms, and list some invariant structures of a graph.

2.1 Matrix representations

Since linear algebra contains a large set of powerful tools, it is rather natural to use this theory for analysing
graphs. There exist several ways to represent a graph with matrices. The figures about adjacency matrices are
borrowed from [2]. Note that in these figures, vertices are denoted by v j while in the text they are written x j.

Definition 2.1 (Adjacency matrix). Let G = (V, E) be a finite graph, and set V = {x1, . . . , xN}. The adjacency
matrix AG of G is a N × N matrix with entries

a jk = #{e ∈ E | i(e) = (x j, xk)}

with the convention that (x j, xk) = (xk, x j) if the G is undirected, and that a loop satisfying i(e) = (x j, x j) is
counted twice for an undirected graph, but only once for a directed graph.

Figure 2.1: Adjacency matrix of an undirected graph

It easily follows from this definition that the adjacency matrix of an undirected graph is a symmetric matrix,
since a jk = ak j, see Figure 2.1. In addition, the relation

deg(x j) =
∑

k

a jk =
∑

k

ak j

11

Figure 2.2: Non symmetric adjacency matrix

holds for any undirected graph and any x j ∈ V . Note that these properties are not true in general for a directed
graph. However, let us define the indegree and the outdegree of a vertex of a directed graph:

degin(x) = #{e ∈ E | i(e) = (y, x) with y arbitrary} (2.1.1)

and
degout(x) = #{e ∈ E | i(e) = (x, y) with y arbitrary}. (2.1.2)

Clearly, one has degin(x)+ degout(x) = deg(x). Then, if G is a directed graph, the following relations hold, see
Figure 2.2 : ∑

k

a jk = degout(x j) and
∑

j

a jk = degin(xk).

Note also that the convention of counting twice a loop for undirected graph is coherent with the degree 2
attached to a loop in Definition 1.4, see Figure 2.3. However, this choice has also some drawbacks, and the
convention is not universal. For example, this convention leads to wrong result in the next statement about
the powers of the adjacency matrix. Note that in this statement and in the sequel, we take the convention that
N := {1, 2, 3, . . . }.

Figure 2.3: Adjacency matrices in the presence of loops

Proposition 2.2. Let G be a graph and let AG be the adjacency matrix (with the convention that a loop
provides a contribution 1 on the diagonal also for undirected graphs). For any r ∈ N the entry

(
Ar

G
)

jk of the
rth power of AG is equal to the number of walks of length r from x j to xk.

12

Proof. Let AG be a N × N adjacency matrix. When r = 1,
(
Ar

G
)

jk is the number of walks of length 1 from x j

to xk by the definition of the adjacency matrix. Then, let r ∈ N be given and suppose
(
Ar

G
)

jk is the number of
walks of length r from x j to xk. Consider

(
Ar+1

G
)

jk, and let us compute this entry by using the summation of
multiplication of entries of two matrices.

(
Ar+1

G
)

jk =

N∑
l=1

(
Ar

G
)

jl
(
A1

G
)
lk. (2.1.3)

By the assumption and definitions mentioned above,
(
Ar

G
)

jl is the number of walks of length r from x j to xl,
and

(
A1

G
)
lk is the number of walks of length 1 from xl to xk. Hence,

(
Ar

G
)

jl
(
A1

G
)
lk is the number of walks of

length r + 1 consisting of two walks, one is the walk of length r from x j to xl and another one is the walk of
length 1 from xl to xk. It follows that

∑
l
(
Ar

G
)

jl
(
A1

G
)
lk indicates the number of all walks of length r + 1 from

x j to xk. Thus, we can regard the l.h.s. of (2.1.3) as the number of walks of length r + 1 from x j to xk. One
finishes the proof by an induction argument. □

Let us also mention that adjacency matrices can also be used for checking if two graphs are isomorphic, see
the following sections. Indeed, if AG and AG′ correspond to the adjacency matrices of two finite graphs with
the same order, then a reordering of the vertices on one graph should lead to two identical adjacency matrices
if the graphs are isomorphic. However, this approach is very time and energy consuming, and therefore very
inefficient.

We now provide another tool involving matrices. Unfortunately, the definition is not exactly the same for
directed or undirected graphs. Also, these definitions depend slightly on the authors, especially for the value
associated with a loop.

Definition 2.3 (Incidence matrix of an undirected graph). Let G = (V, E) be a finite undirected graph with
V = {x1, . . . , xN} and E = {e1, . . . , eM}. The incidence matrix IG of G consists in the N ×M matrix with entries

i jℓ =

0 if x j is not an endpoint of eℓ,
1 if x j is an endpoint of eℓ,
2 if eℓ is a loop at x j.

Figure 2.4: Incidence matrix of an undirected graph, see Fig. 2.6.4 of [GYA]

The following properties can be easily inferred from this definition:

Lemma 2.4. For the incidence matrix of a finite undirected graph the following relations hold:

M∑
ℓ=1

i jℓ = deg(x j) and
N∑

j=1

i jℓ = 2.

13

For a directed graph, the incidence matrix is defined as follows:

Definition 2.5 (Incidence matrix of a directed graph). Let G = (V, E) be a finite directed graph with V =
{x1, . . . , xN} and E = {e1, . . . , eM}. The incidence matrix IG of G consists in the N × M matrix with entries

i jℓ =

0 if x j is not an endpoint of eℓ,
1 if x j is the target of eℓ,
−1 if x j is the origin of eℓ,
2 if eℓ is a loop at x j.

Figure 2.5: Incidence matrix of an undirected graph, see Fig. 2.6.5 of [GYA]

Note that one of the undesirable features of these matrices is that they contain many zeros. One can be more
economical by keeping only the non-zero information but one loses the power of matrices. The incidence
tables corresponds to new representations.

Definition 2.6 (Incidence table of an undirected graph). Let G = (V, E) be a finite undirected graph with
V = {x1, . . . , xN} and E = {e1, . . . , eM}. The incidence table IV:E(G) lists, for each vertex x j, all edges eℓ
having x j as one endpoint.

Figure 2.6: Incidence table of an undirected graph, see Ex. 2.6.6 of [GYA]

For directed graphs, the tables have to be duplicated.

Definition 2.7 (Incidence tables of a directed graph). Let G = (V, E) be a finite directed graph with V =
{x1, . . . , xN} and E = {e1, . . . , eM}. The incoming incidence table inV:E(G) lists, for each vertex x j, all edges
eℓ having x j as a final point (target), while the outgoing incidence table outV:E(G) lists, for each vertex x j, all
edges eℓ having x j as an initial point (origin).

14

Figure 2.7: Incidence tables for the graph of Figure 2.5, see Ex. 2.6.7 of [GYA]

2.2 Isomorphisms

Our general aim is to provide some efficient tools for deciding when two graphs contain the same information,
even if they are represented quite differently. What characterizes a graph is its pattern of connections, and the
direction on edges for directed graphs, but the way they are represented does not matter. For example, the two
graphs of Figure 2.8 correspond to the same graph, even if they do not look similar.

Figure 2.8: Two representations of the same graph, see. Fig. 2.1.1 of [GYA]

We say that these two pictures represent the same graph because any vertex has the same adjacent vertices on
both representations. Clearly, if the graph has loop(s) or multiple edges, or if the graph is directed, we would
like to have these properties similarly represented in the two pictures. The correct notion encoding all the
necessary information is provided in the next definition.

Definition 2.8 (Isomorphism of graph). Let G = (V, E) and G′ = (V ′, E′) be two graphs, with internal map
denoted respectively by i and by i′. A map f : G → G′ is an isomorphism of graphs if f = (fV , fE) with
fV : V → V ′ and fE : E → E′ satisfy

(i) fV and fE are bijections,

(ii) For any e ∈ E with i(e) = (x, y) in V × V, one has i′
(
fE(e)

)
=

(
fV (x), fV (y)

)
in V ′ × V ′.

Whenever such an isomorphism exists, we say that G and G′ are isomorphic, and write G � G′.

Note that this definition holds for the general definition of a graph provided in Definition 1.1, see Figures 2.9
and 2.10. Once again, if the graph is undirected, the pairs (x, y) and (y, x) are identified in V ×V , and the same
for the pairs

(
fV (x), fV (y)

)
and

(
fV (y), fV (x)

)
in V ′ ×V ′, but this property does not hold for directed graphs. In

the special case of simple graphs, as presented in Remark 1.2, the above definition can be slightly simplified
since an edge is uniquely defined by its endpoints, see Figure 2.11. Observe finally that another way to present

15

Figure 2.9: Isomorphism of a graph with loops and multiple edges

the second condition of Definition 2.8 is to say the following diagram is commutative:

E V × V

E′ V ′ × V ′ .

i

fE fV× fV

i′

Figure 2.10: a) and d) are isomorphic, b) and c) are isomorphic

Figure 2.11: Isomorphism of a simple graph

Remark 2.9. One observes that the notion of isomorphisms is an equivalence relation. Indeed, G � G
(reflexive property) by considering the identify map for the graph isomorphism; if G � G′, then G′ � G
(symmetric property) because f −1 also defines an isomorphism of graph; if G � G′ (through a map f) and
G′ � G′′ (through a map f ′), then G � G′′ (transitive property) because the composition of maps f ′ ◦ f also
defines an isomorphism of graph, as it can be easily checked.

16

Deciding when two graphs are isomorphic is a hard and famous problem, the so-called graph-isomorphism
problem. Except for very small graphs, it is very time consuming. However, by looking at specific quantities,
one can often easily show that two graphs are not isomorphic. Such quantities are presented in the next
definition.

Definition 2.10 (Graph invariant). A graph invariant is a property of a graph which is preserved by isomor-
phisms.

In other terms, such a quantity is the same in any representation of a graph. Thus, if this quantity is not the
same in two graphs, one can directly say that these two graphs are not isomorphic. Let us list a few quantities
which are clearly graph invariants, additional examples will appear in this chapter. We recall that the notation
N(x) for the set of neighbours of x has been introduced in Definition 1.4.

Proposition 2.11 (Graph invariants 1). Let G = (V, E) be a graph. The following quantities are graph invari-
ants:

(i) The order and the size (see Definition 1.3), with the convention that these quantities can take the value
∞,

(ii) The set of degrees (see Definition 1.4), namely {deg(x) | x ∈ V},

(iii) The set of degrees of neighbours, namely{
{deg(y) | y ∈ N(x)} for any x ∈ V

}
,

(iv) The set of lengths of walks, of trails, or of paths in G, see Definitions 1.10 and 1.12,

(v) The diameter, the radius and the girth (see Definitions 1.15 and 1.20).

Let us observe that for directed graphs, a refined version of (ii) and (iii) exists. We recall that the notion
of indegree and outdegree have been introduced in (2.1.1) and (2.1.2), respectively. Then, the following
quantities are directed graphs invariants:

(ii’) The set if indegrees and outdegrees, namely {degin(x) | x ∈ V}, and {degout(x) | x ∈ V},

(iii’) The indegrees and outdegrees of neighbours, namely{
{degin(y) | y ∈ N(x)} for any x ∈ V

}
,

and {
{degout(y) | y ∈ N(x)} for any x ∈ V

}
.

Note that these invariants could be even further refined by considering separately the set of neighbours of x
which are connected by an edge e satisfying either o(e) = x or t(e) = x. We leave the definition of these
invariants to the interested reader.

2.3 Automorphisms and symmetries

Identifying the symmetries of a graph is often useful, even if it is not an easy task. Clearly, symmetries should
not depend on the representation but should again be an intrinsic property. The following definition contains
the necessary notion for dealing with symmetries of a graph.

17

Definition 2.12 (Automorphism). Let G be a graph. An isomorpism from G to G is called an automorphism.

Clearly, any graph possesses an automorphism, the identity map. In addition, by the properties of the equiv-
alence relation mentioned in Remark 2.9, one observes that the set of automorphisms of a graph is in fact
a group: the composition of automorphisms is associative, and every automorphism has an inverse (it corre-
sponds to the map f −1 mentioned in Remark 2.9). One speaks about the automorphisms group of a graph. The
main idea now is to look at the size of this group. If this group is big, then the graph has several symmetries,
while if the group contains only the identity element, then the graph has no symmetry at all. Observe that for
simple undirected graphs, automorphisms can be completely described by permutations of the set of vertices.

Figure 2.12 contains three representations of the same simple graph, called the Petersen graph. At first glance,
it is not easy to see that these three graphs are isomorphic, but this can be checked by looking at the edges
connected at any vertex. Then, what about automorphisms ? It is clear on the picture (a) that any rotation
by 2πk/5 with k ∈ {0, 1, 2, 3, 4} defines an automorphism. A reflection symmetry by a vertical axis is also
clear on figure (a). On figures (b) and (c) a reflection symmetry by a vertical axis is also clear, but these three
reflection symmetries do not correspond to the same automorphisms of G.

Figure 2.12: Three representations of the Petersen graph, see. Fig. 2.2.3 of [GYA]

Let us try to describe these automorphisms by using a convenient notation. More information on the permuta-
tion group can be found in the Appendix A.4 of [GYA] or in Wikipedia [1]. One way to describe the rotation
by 2π/5 of figure (a) is to write

(0 1 2 3 4)(5 6 7 8 9)

describing the action of the automorphism: 0 → 1, 1 → 2, 2 → 3, 3 → 4, 4 → 0 and 5 → 6, 6 → 7,
7 → 8, 8 → 9, 9 → 5. In a similar way, the three mentioned reflection symmetries can be described by
(1 4)(2 3)(6 9)(7 8)(0)(5), (0 5)(1 8)(2 3)(4 7)(6)(9) and (0 2)(3 4)(5 7)(8 9)(1)(6).

Whenever a group acts on an object, a useful concept is the one of orbit. Here, we keep in mind the action
of the automorphism group acting on a graph, but the definition is more general. Note that since G is already
used for a graph, we use the notation H for the group in the next definition.

Definition 2.13 (Orbit). Let H be a group acting on a set X, with an action denoted by h(x) ∈ X for x ∈ X
and h ∈ H. For any x ∈ X the orbit of x is the set {h(x) | h ∈ H} and is denoted by Orb(x).

In other words, Orb(x) corresponds to all points taken by x when a group H acts on this point. It is easily
observed that for any x, y ∈ X one has either Orb(x) = Orb(y) or Orb(x)∩Orb(y) = Ø, and no other alternative.
Let us consider the graph given in Figure 2.13. This graph has again several automorphisms obtained by
reflection symmetries by a vertical axis, a horizontal axis, but also the one obtained by the combination of
these two automorphisms. If we list them with the notation introduced above one gets

(1)(2)(3)(4)(5)(6)(7)(8)

18

Figure 2.13: A graph with several symmetries

(1 8)(2 7)(3)(4)(5)(6)

(1)(2)(3 5)(4 6)(7)(8)

(1 8)(2 7)(3 5)(4 6).

Let us now describe the orbits of the vertices and of the edges under the group generated by these four
automorphisms. For this example, the vertex orbits are

Orb(1) = Orb(8) = {1, 8}, Orb(2) = Orb(7) = {2, 7},

Orb(4) = Orb(6) = {4, 6}, Orb(3) = Orb(5) = {3, 5},

while the edge orbits are

Orb(a) = Orb(b) = {a, b}, Orb(c) = Orb(d) = {c, d},

Orb(e) = Orb(f) = Orb(g) = Orb(h) = {e, f , g, h}, Orb(i) = {i}.

Figure 2.14: No symmetry

Observe that these notions apply to directed graphs as well, but the orien-
tation is one more ingredient to take into account. For example, the graph
represented in Figure 2.14 has a group of automorphism reduced to the
identity only.

Let us still state some easy properties of elements on orbits. These proper-
ties can be deduced from Proposition 2.11.

Lemma 2.14.

(i) All vertices in one orbit have the same degree (and the same indegree
and outdegree for directed graphs),

(ii) All edges in one orbit have the same pair of degrees at their end-
points (and the same indegrees and outdegrees for directed graphs).

19

Let us check what are the vertex orbits and the edge orbit of Figure 2.12 ? Quite surprisingly, this graph has
only one vertex orbit (containing all vertices) and one edge orbit (containing all edges). It means that given
two vertices x and y, there exists one automorphism sending x on y, and a similar observation holds for any
pair of edges. In such a case, we speak about a vertex transitive graph and a edge transitive graph.

2.4 Subgraphs

Some properties of a graph can be determined by the existence of some subgraphs inside it.

Figure 2.15: 1 clique, 1 maximal
clique

One example is Theorem 1.21 about undirected bipartite graphs and the
existence of cycles of odd length. In this section we gather several notions
related to subgraphs, not all these notions are related to each others.

Definition 2.15 (Clique). Let G = (V, E) be an undirected graph and con-
sider a subset S ⊂ V. This set S is called a clique if for any x, y ∈ S with
x , y there exists e ∈ E with i(e) = (x, y).

Note that the first part of the definition means that every two distinct ver-
tices in S are adjacent. One speaks about a a maximal clique S if there
is no clique S ′ with S ⊂ S ′ ⊂ V , see Figure 2.15. Observe also that this
requirement is a maximality condition, and that some authors include this
requirement in the definition of a clique. The notion of clique is interesting
for the next definition.

Definition 2.16 (Clique number). The clique number w(G) of a graph G
corresponds to the number of vertices of a largest clique in G.

Note that there might be several cliques containing w(G) vertices. Thus,
there is no uniqueness for the “largest” clique, but the clique number is uniquely defined. In a vague sense, this
clique number gives the maximal number of vertices which are tightly connected to each others, see Figure
2.16. Two concepts complementary to the notions of clique and clique number are:

Definition 2.17 (Independent set and independence number). Let G = (V, E) be an undirected graph and
consider a subset S ⊂ V. This set S is called independent if no pair of vertices in S is connected by any
edge in G. The independence number α(G) of a graph G corresponds to the number of vertices of a largest
independent set in G.

Figure 2.16: w(G) = 4

As before, there is no uniqueness for the largest independent set in G, but
the independence number is uniquely defined, see Figure 2.17 for example.
Note that these last notions extend directly to directed graphs. However,
for the notion of a clique, it is not so clear what would be the most useful
extension ? Should we use the notion of a clique in the underlying undi-
rected graphs (when orientation is suppressed), or should we look for pair
of edges connected by directed edges in both directions ? The choice of
the most suitable notion would certainly depend on the applications.

A somewhat related (but more global) notion is provided in the next defi-
nition.

Definition 2.18 (Component). A component of a graph G is a maximal
connected subgraph of G.

20

Figure 2.17: Independence number: α(G) = 5

Figure 2.18: A graph with 4 components

In other words, a connected subgraph G′ is a component of G if G′ is not a proper subgraph of any connected
subgraph of G. Here, proper simply means different. It thus follows that any graph is made of the disjoint
union of its components. The number of components of G will be denoted by c(G), see Figure 2.18.

Since orientation does not play any role in the definition of connected graphs, it also does not play any role in
the definition of a component. Note that an alternative definition could be provided in terms of paths: For any
pair of vertices in one component there exists a path (with the direction on the edges suppressed) having these
vertices as endpoints, and the edges for all these possible paths belong to same component of the graph.

Recall that the suppression of a vertex or an edge from a graph has been introduced in Section1.1. Together
with the notion of component, we can now select some vertices or edges which are more important than others.
More precisely, the following definitions identify the most vulnerable parts of a graph, see also Figures 2.19
and 2.20.

Definition 2.19 (Vertex-cut and cut-vertex). Let G = (V, E) be a graph.

(i) A vertex-cut is a set of vertices U ⊂ V such that G − U has at least one more component than G.

(ii) A vertex x ∈ V is called a cut-vertex or a cutpoint if {x} is a vertex-cut.

Definition 2.20 (Edge-cut and cut-edge). Let G = (V, E) be a graph.

(i) An edge-cut is a set of edges F ⊂ E such that G − F has at least one more component than G.

(ii) An edge e ∈ E is called a cut-edge or a bridge if {e} is an edge-cut.

These notions will be used again when graph’s connectivity will be discussed. For the time being, let us
simply complement the content of Proposition 2.11 with a few more graph invariants.

21

Figure 2.19: Graph with two cut-vertices Figure 2.20: Graph with three cut-edges

Proposition 2.21 (Graph invariants 2). Let G = (V, E) be a graph. The following quantities are graph invari-
ants:

(i) For undirected graphs, the clique number and the independence number, namely w(G) and α(G),

(ii) The number of components, namely c(G),

(iii) The number of distinct cutpoints or bridges.

22

Chapter 3

Trees

Trees play a central role in graph theory, and are at the root of many algorithms. We first present the theoretical
part, and subsequently describe several applications.

3.1 Trees and forests

We first provide the definition of a tree in the general setting that we have introduced so far. Usually, trees and
directed trees are treated separately.

Definition 3.1 (Tree). A tree is a connected graph whose underlying undirected graph has no cycle.

Note first that the acyclicity condition prevents any tree to have a loop or any multiple edges. For that reason,
trees are always simple graphs, as defined in Remark 1.2.

Figure 3.1: An acyclic digraph

For undirected graphs the above definition reduces to a connected
and acyclic graph. For directed graphs, this definition does not see
the orientation on the edges, and is probably not the most interest-
ing definition. Indeed, the notion of connected graph is based on the
underlying graph, and the acyclicity property is also imposed on the
underlying undirected graph. For directed graphs, a more interesting
notion is the one of acyclic digraph, see Figure 3.1. These oriented
graphs have no cycle, but the underlying unoriented graph can have
cycles. Acyclic digraphs have also several applications, see [3]. For
simplicity, we shall simply say that a directed graph has no undi-
rected cycle whenever the underlying undirected graph has no cycle.
Directed graphs which are trees are also called oriented trees, poly-
trees, or singly connected network. In the sequel, whenever we want
to emphasize that the tree considered is also an oriented graph, we
shall call it an oriented tree, and accordingly an unoriented tree will
be a tree without orientation, see Figure 3.2.

Recall that a leaf is a vertex of degree 1. It is not difficult to observe
(and prove) that any finite tree containing at least one edge has also
at least two leaves. In other words, a non-trivial tree must have at least two leaves ,. Also, if a tree is made

23

Figure 3.2: Three trees: two unoriented, one oriented

of n vertices, it contains exactly n − 1 edges. Note that a graph with no undirected cycle is called a forest, see
Figure 3.3, and that such a forest is made of the disjoint union of trees, each of them defining a component of
the graph, see Definition 2.18. Some authors use the terms polyforest or oriented forest for the disjoint union
of oriented trees.

Figure 3.3: One forest

We now provide some equivalent definitions of a tree. The proof is
provided in [GYA, Thm. 3.1.8] for undirected graphs.

Proposition 3.2. Let G be a graph with n vertices. The following
statements are equivalent:

(i) G is a tree,

(ii) G contains no undirected cycle and has n − 1 edges,

(iii) G is connected and has n − 1 edges,

(iv) G is connected and every edge is a cut-edge, see Definition
2.20,

(v) Any two vertices of G are connected by exactly one unoriented
path (when the orientation on the edges is disregarded),

(vi) G contains no undirected cycle, and the addition of any new
edge e on the graph generates a graph with exactly one undirected cycle.

Recall that the notion of a central vertex has been introduced in Definition 1.16. Such a vertex has the property
of being at a minimum distance to all other vertices, and therefore is located at a “strategic position”. This
position is usually not unique, and examples with several central vertices are easy to construct. For trees, the
situation is completely different. In fact, the following statement has already been proved in 1869, but note
that it applies only to unoriented graphs.

Theorem 3.3. For any finite unoriented tree, there exists only one or two central vertices.

The proof is not difficult but relies on several lemmas, see pages 125 and 126 of [GYA]. Let us just emphasize
the main idea: If x is a central vertex in an unoriented tree, then x is still a central vertex in the induced tree
obtained by removing all leaves. By the process of removing leaves iteratively, one finally ends up with a tree
consisting either of one single vertex, or of two vertices connected by an edge. This unique vertex or the two
vertices correspond to the central vertices of the initial unoriented tree.

24

Figure 3.4: Irreducible trees with less than 12 vertices, see [4]

Note that this almost unicity of the central vertex of a tree can be used for the definition of the root of a tree.
Before introducing rooted trees, and for fun, let us introduce one more notion:

Definition 3.4 (Irreducible tree). An irreducible tree, or series-reduced tree is an unoriented tree in which
there is no vertex of degree 2.

Note that there exists a classification of such trees, modulo isomorphisms. The table of the ones with less that
12 is provided in Figure 3.4.

3.2 Rooted trees

In a tree, it is sometimes important to single out one vertex. This idea is contained in the next definition.

Definition 3.5 (Rooted tree). A rooted tree is tree with a designated vertex called the root.

Figure 3.5: Two trees with root r

On drawings, the root of a rooted tree is often put at a special
place (top, bottom, left or right of the picture), see figure 3.5.
Note that in this definition, the choice of the root is arbitrary.
However, in applications there often exists a natural choice for
the root, based on some specific properties of this vertex. We
mention a few examples in the next definition, but other situa-
tions can take place.

25

Definition 3.6 (Shortest path tree, arborescence and anti-arborescence).

(i) A shortest path tree is an unoriented rooted tree for which the root is the unique central vertex,

(ii) An arborescence or out-tree is a rooted oriented tree with all edges pointing away from the root, and an
anti-arborescence or in-tree is a rooted oriented tree with all edges pointing towards the root,

Let us illustrate these definitions: In Figure 3.6, the first tree is a rooted unoriented tree without any special
property, the second tree corresponds to a shortest path tree, while the third tree is an arborescence. Note that
underlying graphs for the first and the second tree are the same, only the choice of a specific vertex as a root
makes them look different. As a consequence, these two trees are isomorphic as graphs, but not as rooted trees
(for which the two roots should be in correspondence).

Figure 3.6: Three trees

Let us now introduce some names related to vertices.

Definition 3.7. Let G be an unoriented rooted tree, or an arborescence, with root denoted by r.

(i) The height, or the depth, or the level of a vertex x corresponds to the distance d(r, x),

(ii) The height of the tree is the greatest level, or equivalently the length of the longest path with one
endpoint at r,

(iii) The ancestors or ascendants of a vertex x is the set of all vertices contained in the path from r to x, while
the descendants of x is the set of all y having x as an ancestor. One speaks about proper ancestors of x
and proper descendants of x when x is not included in these sets,

(iv) The parent of a vertex x is the ancestor y satisfying d(r, y) = d(r, x) − 1, and a child of x is a descendant
y satisfying d(r, y) = d(r, x)+ 1, with the convention that the root has no parent, and a leaf has no child,

(v) Two vertices having the same parent are called siblings,

(vi) An internal vertex of a tree is a vertex which possesses at least one child.

It is easily observed that a vertex x has only one parent but is allowed to have several children. Let us also
mention that these notions can also be applied to anti-arborescence, if the distance d(r, x) is replaced by d(x, r),
and the directions of paths are reversed. In the sequel we shall usually not mention anti-arborescences, but
keep in mind that any information on arborescences can be adapted to anti-arborescences. On the other hand,
one observes that the notions introduced above do not really fit with arbitrary oriented rooted trees, since given
an arbitrary vertex x, the distances d(r, x) and d(x, r) could be infinite.

Let us now discuss the regularity of trees.

26

Definition 3.8 (p-ary tree, complete p-ary tree). Let p be a natural number.

(i) A p-ary tree is an unoriented rooted tree or an arborescence, in which every vertex has at most p
children, and at least one of them possesses p children,

(ii) A complete p-ary tree is an unoriented rooted tree or an arborescence in which every internal vertex
has p children, and each leave of the tree has the same depth.

Figure 3.7: A 3-ary tree and a complete 2-ary tree

Another useful notion can be defined for the rooted trees considered so far. Note however that it is an additional
structure which is added repeatedly to the children of each vertex.

Definition 3.9 (ordered tree). An ordered tree is an unoriented rooted tree or an arborescence in which the
children of each vertex are assigned with a fixed ordering.

On drawing, the ordering is often represented by the respective position of the children of any given vertex.
The primary example of an ordered tree is the binary tree, a 2-ary tree with possibly a left child and a right
child for each vertex. Another example is the ternary tree, a 3-ary tree with children distinguished into left
child, mid child and right child.

Figure 3.8: One binary tree and one ternary tree

Let us now list a few applications of rooted trees, more will be presented in the following sections. The
forthcoming pictures are all borrowed from [GYA, Sec. 3.2].

Example 3.10 (Decision tree). A decision tree is a decision support tool that uses a tree-like model of deci-
sions and their possible consequences, including chance event outcomes, resource costs, and utility. It often
lists all possible sequences, and provides a final weight (for example probability or cost) to each path in the
tree, see Figure 3.9 and [5].

27

Figure 3.9: The first three moves of tic-tac-toe

Example 3.11 (Tree data structure). Trees are widely used whenever data contains a hierarchical structure,
see Figure 3.10. The notion of parent and children can then be used efficiently.

Figure 3.10: Classification in libraries is often based on a tree data structure

Example 3.12 (Sentence parsing). Rooted trees can be used to parse a sentence in any language, see Figure
3.11. For such an application, a predefined structure of the tree is applied to a sentence.

Let us finally mention one application of the notion of shortest path tree provided in Definition 3.6. Given a
connected unoriented graph and choosing one vertex x, it is always possible to realize one shortest path tree
with root x. Note that this tree is usually not unique, but allows us to get a good representation of the distance
between x and any other vertex of the graph.

3.3 Traversals in binary trees

In this section we introduce a basic tool for encoding or decoding some information stored in binary trees,
see the left picture in Figure 3.8. Most of the constructions apply to more general ordered p-ary trees as well.
Note that this section and the following ones are very much oriented towards computer science.

Definition 3.13 (Graph traversal). A graph traversal or a graph search is the process of visiting systematically
each vertex in a graph.

Here “visiting” means either collect the data, or compare or perform the data, or update the data stored at a
vertex. Since each vertex are visited successively, a graph traversal also corresponds to endowing the vertices
of a graph with a global ordering. For a general graph, a traversal can be almost arbitrary, but for trees (and in
particular for binary trees) some traversals are rather natural. Note that we consider planar trees in the sense

28

Figure 3.11: Parsing a sentence

that the order on the tree is indexed by left and right. As a consequence, given a vertex x of the graph, its left
subtree L(x) and its right subtree R(x) are clearly defined, see Figure 3.12.

Figure 3.12: Left subtree L(x)
and right subtree R(x)

The general recursive pattern for traversing a binary tree is this: Go down
one level to the vertex x. If x exists (is non-empty) execute the following
three operations in a certain order: (L) Recursively traverse x’s left subtree,
(R) Recursively traverse x’s right subtree, (N) Process the current node x
itself. Return by going up one level and arrive at the parent of x. The
following examples are the most used traversals:

Definition 3.14 (Traversal of binary trees). Let G be a binary tree, with
the root represented at the top.

(i) The level-order traversal consists in enumerating the vertices in the
top-to-bottom, left-to-right order,

(ii) The pre-order traversal or NLR is defined recursively by 1) process
the root, 2) perform the pre-order traversal of the left subtree, 3) per-
form the pre-order traversal of the right subtree,

(iii) The in-order traversal or LNR is defined recursively by 1) perform
the in-order traversal of the left subtree, 2) process the root, 3) per-
form the in-order traversal of the right subtree,

(iv) The post-order traversal or LRN is defined recursively by 1) perform
the post-order traversal of the left subtree, 2) perform the post-order
traversal of the right subtree, 3) process the root .

Let us illustrate these traversals with Figure 3.13 from [6].

29

Figure 3.13: Traversals of a binary tree

(i) Level-order traversal:
F, B, G, A, D, I, C, E, H,

(ii) Pre-order traversal (NLR) in red:
F, B, A, D, C, E, G, I, H,

(iii) In-order traversal (LNR) in yellow:
A, B, C, D, E, F, G, H, I,

(iv) Post-order traversal (LRN) in green:
A, C, E, D, B, H, I, G, F.

In the next section we gather several applications of binary trees. Traversals will also play a role for reading a
tree.

3.4 Applications

In applications, the letter T is often used for trees instead of the letter G which was more natural for general
graph. In this section, we follow this general trend and use the letter T instead of G.

3.4.1 Arithmetic expression trees

Let us first look at an application of the in-order traversal for arithmetic expressions. A similar application
holds for boolean expressions.

Definition 3.15 (Arithmetic expression tree). An arithmetic expression tree is a binary tree, with arithmetic
expressions (operators) at each internal vertex, and constants or variables at each leaf.

30

Clearly, such a tree can be read by the different traversals introduced in Definition 3.14. In this setting, the
most natural traversal is the in-order traversal. However, when printing the expression contained in such a
tree, opening and closing parentheses must be added at the beginning and ending of each expression. The
interest of these trees is precisely that they take care of the ordering of the operations. As every subtree
represents a sub-expression, an opening parenthesis is printed at its start and the closing parenthesis is printed
after processing all of its children. For example, the arithmetic expression tree represented in Figure 3.14
corresponds to the expression

(
(5 + z)/ − 8

)
∗ (42), see also [7]. Note that following the in-order traversal,

one should write 8− and not −8. However, the sign − is in fact slightly misleading since it represents here
the operation “take the opposite”. When applied to the number 8, the outcome is indeed −8. The operation
“take the opposite” or “take the inverse” are called unary operators because they require only one child, and
not two children as most of the other operations.

Figure 3.14: An arithmetic expression tree

3.4.2 Binary search trees

We now introduce an application of binary trees for the efficient search of data. In the next definition, we
consider a totally ordered set (S ,≤), which means a set S with a binary operation ≤ satisfying the following
three conditions for any a, b, c ∈ S :

(i) Antisymmetry: If a ≤ b and b ≤ a, then a = b,

(ii) Transitivity: If a ≤ b and b ≤ c, then a ≤ c,

(iii) Connexity: Either a ≤ b or b ≤ a.

Clearly, N, Z or R are totally ordered sets, but introducing this notion gives us more flexibility. When a ≤ b
we say that a is smaller than or equal to b.

Definition 3.16 (Binary search trees (BST)). Binary search trees (BST), also called ordered or sorted binary
trees is a binary tree T = (V, E) together with a (weight) function ω : V → S , with (S ,≤) a totally ordered set,
such that for any x ∈ V:

• ω(y) ≤ ω(x) for any y ∈ L(x),

• ω(x) ≤ ω(y) for any y ∈ R(x),

31

where L(x) and R(x) are the left and and the right subtree defined below x. The values at the vertices, namely
{ω(x) ∈ S | x ∈ V}, are called the keys.

Two examples of binary search trees are presented in Figure 3.15. Let us emphasize that binary search trees do
not consist only in the values of the keys: the structure of the tree and accordingly the position of each vertex
is important. For example, even though the two binary search trees of Figure 3.15 contain the same keys,
they are very different and exhibit different responses to a research algorithm. It takes only four comparisons
to determine that the number 20 is not one of the key stored in the left tree of Figure 3.15, while the same
conclusion is obtained only after nine comparisons in the right tree.

Figure 3.15: Two binary search trees, see Figure 3.4.1 of [GYA]

In practice, BST have a better behaviour if the two subtrees at each vertex contain roughly the same number
of vertices. In such a case, we say that the binary tree is balanced.

It is easily observed that the smallest key in a BST is always stored in the most left vertex. This can be found
starting from the root and proceeding always to the left until one reaches a vertex with no left-child. Similarly,
the largest value is always attached to the most right vertex. This vertex can be found starting from the root
and proceeding always to the right until a vertex with no right-child is reached.

More generally, the vertex corresponding to a certain key can be found by a simple iteration process, excluding
always either a left subtree or a right subtree from the rest of the search. For a balanced tree containing n
vertices, such a search requires an average of O

(
ln(n)

)
operations2. Indeed, for a balanced tree, the relation

between the height h of the tree and the number n is of the form 2h � n, which means that a leaf can be reached
in about log2(n) steps.

Two other primary operations can be performed on BST, namely the insert operation and the delete operation.
The first one consists in adding a vertex corresponding to a prescribed new key by first looking at the right
position for this new vertex. The second operation consists in eliminating a vertex but keeping the structure
of a BST. These operations can be studied as an exercise.

3.4.3 Huffman trees

In this section we discuss the use of binary trees for creating efficient binary codes.

2For a strictly positive function ζ, the notation f ∈ O
(
ζ(n)

)
means that

∣∣∣ f (n)
ζ(n)

∣∣∣ ≤ c for some c < ∞ and all n, while f ∈ o
(
ζ(n)

)
means

limn→∞
f (n)
ζ(n) = 0. These notations give us an indication about the growth property of the function f without looking at the details.

32

Definition 3.17 (Binary code). A binary code is a bijective map between a finite set of symbols (or alphabet)
and a set of finite sequences made of 0 and 1. Each sequence is called a bit string or codeword.

In this definition, the set of symbols can be arbitrary, like a set of letters, a set of words, a set of mathematical
symbols, and so on. Also, the finite sequences of 0 and 1 can either be all of the same length, or have a variable
length. In the latter case, it is important that a given sequence does not correspond to the first part of another
sequence. In that respect, the following definition is useful:

Definition 3.18 (Prefix code). A prefix code is a binary code with the property that no bit string is the intial
part of any other bit string.

It is quite clear that an ordered tree can be associated with any binary code. For this, it is sufficient to associate
the value 0 to the edge linking a father to the left child (if any), and a value 1 to the edge linking a father to the
right child (if any). In such a construction, the difference between a binary code and a prefix code is clearly
visible: in the former case a symbol can be associated to any vertex, while in the latter case a symbol is only
associated to leaves, see Figure 3.16.

Figure 3.16: Trees of a binary code and of a prefix code

The code ASCII is a binary code in which each bit string has a fixed length. On the other hand, the example
presented in Figure 3.17 corresponds to a prefix code together with the associated binary tree.

Figure 3.17: A prefix code and the corresponding tree, see Figure 3.5.1 of [GYA]

For some applications it would be be quite natural to use short codewords for symbols which appear frequently.

33

For example, in a prefix code for an English text, one would like to associate a short bit string to the letter e
which appears quite often, and accept a longer bit string for a letter which is much more rare. One efficient way
to realize such a prefix code is to use the Huffman code. It is based on one additional information associated
with any symbol: its frequency or its weight. The following definition is based on the notion of weighted
length for weighted graphs already introduced in Definition 1.28. We shall also use the information about the
height or depth of a vertex, as introduced in Definition 3.7. Recall that the depth corresponds to the length
d(r, x) of the path between the root r and a vertex x. In the present setting, this length is also equal to the
number of elements of the codeword associated to a vertex.

Definition 3.19 (Weighted depth). Let T be a tree with leaves {x1, x2, . . . , xn}, and let {ωi}
n
i=1 ⊂ [0,∞) be

weights associated with the leaves. Then the weighted depth ω(T) of the tree is defined by

ω(T) :=
n∑

i=1

ωi d(r, xi).

Figure 3.18: Huffman algorithm, from Algorithm 3.5.1 of [GYA]

Note that if the weight ωi associated to a leaf xi is related to the frequency of the letter si corresponding to that
leaf, and if

∑
i ωi = 1, then the weighted depth provides an information about the length of the transcription

of the text with this prefix code: the weighted depth corresponds to the average length of the bit strings used
for the transcription.

Now, given a list of symbols S := {s1, s2, . . . , sl} and a list of weights {ω1, ω2, . . . , ωl}, the Huffman algorithm
corresponds to constructing a tree T which minimizes the weighted depthω(T). Note however that the solution
is not unique, and the lack of unicity appears rather clearly in the algorithm presented in Figure 3.18. The
resulting tree is called a Huffman tree and the resulting prefix code is called a Huffman code. Clearly, these
outcomes depend on the given weights. An example of such a construction is provided in Figure 3.19. Let us
finally mention the result which motivates the construction presented above:

Theorem 3.20 (Huffman’s theorem). Given a list of weights {ω1, ω2, . . . , ωl}, the Huffman algorithm pre-
sented in Figure 3.18 generates an binary tree T which minimizes the weighted depth ω(T) among all binary
trees.

34

Figure 3.19: Application of Huffman algorithm, from Example 3.5.3 of [GYA]

3.4.4 Priority trees

Let us present one more application of binary trees. First of all, we introduce some ideas more related to
computer science.

Definition 3.21 (Abstract data type). An abstract data type is a set of objects together with some operations
acting on these objects.

Two such objects are quite common: 1) A queue, which is a set of objects that are maintained in a sequence
which can be modified by the addition of new objects (enqueue) at one end of the sequence and the removal of
objects (dequeue) from the other end of the sequence. A queue is also called FIFO (First In, First Out), and a

35

representation of a queue is provided in Figure 3.20a. 2) A stack, which is a set of objects that are maintained
in a sequence which can be modified by the addition of new object on the top of the sequence (push operation)
or removed also on the top of the sequence (pop operation). A stack is also called LIFO (Last In, First out),
and a representation of a stack is provided in Figure 3.20b.

(a) A queue (b) A stack

Figure 3.20: Two standard abstract data types

We now generalize these two examples.

Definition 3.22 (Priority queue). A priority queue is a set of objects, each of which is assigned a priority,
namely an element of a totally ordered set. The operation of addition (enqueue) consists simply in adding one
more object together with its priority to the set, while the operation of removal (dequeue) consists always in
removing the object with the largest priority. If two objects share the largest priority, an additional selection
rule has to be prescribed.

Note that the queue and the stack already mentioned as special instances of priority queues. In the former
one, the lowest priority is always given to the newest object, while in the latter the largest priority is always
given to the newest object. One can always represent a priority queue in a linked list, with the links sorted
by decreasing priorities. Note that a linked list is also an abstract data type consisting in a set of objects,
where each object points to the next in the set, see Figure 3.21. However, a better suited and more efficient
implementation of a priority queue can be obtained with priority trees, as introduced below. A priority tree
corresponds in fact to the most natural representation of a priority queue.

Figure 3.21: A linked list, with a terminal object (terminator) represented by a box

For priority trees, recall first that complete p-ary trees were introduced in Definition 3.8. We now weaken a
little bit the completeness requirement.

Definition 3.23 (Left-completeness). A binary tree of height h is called left-complete if the following condi-
tions are satisfied:

(i) Every vertex of depth h − 2 or less has two children,

(ii) There is at most one vertex at depth h − 1 that has only one child (a left-one)

(iii) No vertex at depth h − 1 has fewer children than another vertex at depth h − 1 to its right.

36

Figure 3.22: A left-complete binay tree

An example of a left-complete binary tree of height 3 is pre-
sented in Figure 3.22. In the sequel we shall endow the ver-
tices of such a tree with one additional information. However,
in order to keep the greatest generality, let us first introduce a
notion slightly weaker than the totally ordered set already men-
tioned. A partially ordered set S consists in a set S with a
binary operation ≤ satisfying the following three conditions for
any a, b, c ∈ S :

(i) Reflexivity: a ≤ a,

(ii) Antisymmetry: If a ≤ b and b ≤ a, then a = b,

(iii) Transitivity: If a ≤ b and b ≤ c, then a ≤ c.

Clearly, a totally ordered set is also a partially ordered set, but the converse is not true. The main difference
with a totally ordered set is that some elements a and b, the relations a ≤ b and b ≤ a could both be wrong. In
such a case, we say that a and b are not comparable. An example of partially ordered set is provided by the
set of all subsets of R with A ≤ B if A ⊂ B, for any subsets A and B of R. For example, with intervals one has
(1, 2) ≤ (0, 4), but (0, 4) and (1, 5) are not comparable.

We can now introduce a general definition of priority trees:

Definition 3.24 (Priority tree). A priority tree is a left-complete binary tree T = (V, E) together with a map
ω : V → S , with (S ,≤) a partially ordered set, such that for any x ∈ V and any child y of x one has
ω(y) ≤ ω(x). The value of S are called the priorities.

Binary search trees (BST), also called ordered or sorted binary trees is a binary tree T = (V, E) together with
a (weight) function ω : V → S , with (S ,≤) a totally ordered set, such that for any x ∈ V:

• ω(y) ≤ ω(x) for any y ∈ L(x),

• ω(x) ≤ ω(y) for any y ∈ R(x),

(a) The alphabetical total ordering (b) The inclusion partial ordering

Figure 3.23: Two examples of priority trees

Two examples of priority trees are presented in Figure 3.23. Note that Figure 3.23a is based on a totally
ordered set, while Figure 3.23b is based on a partially ordered set. Note also that even though a vertex can
not have a larger priority than its parent, it can have a larger priority than a sibling of its parent. From the
definition, the piorities of a parent and of a child are always comparable, but the priorities of two siblings, or
of elements which are further away, do not need to be comparable.

37

By comparing the definition of priority queue and of priority trees, it is quite clear that a priority queue can be
represented in a priority tree. In fact, only special intances of priority trees are used for representing priority
queues: the ones for which the priorities are chosen in a totally ordered sets3.

When a priority queue is represented by a priority tree, the dequeue operation consists simply in extracting
the root of the tree, but how can one obtain again a priority tree ? In fact, the removal and the addition of
any element in a priority tree can be implemented by the following algorithms. The insertion of an arbitrary
element in a priority tree can be implemented by the algorithm Priority tree insert presented in Figure 3.24.
An example is provided in Figure 3.25.

Figure 3.24: Priority tree insert, from algorithm 3.6.1 of [GYA]

Figure 3.25: The insertion of 13 in the priority tree, see Figure 3.6.3 of [GYA]
The removal of an arbitrary element of a priority tree (as for example the root) can be implemented by the
algorithm Priority tree delete presented in Figure 3.26. An example is provided in Figure 3.27.

3.5 Counting binary trees

Let us conclude this chapter with a question related to combinatoric: how many binary trees of n vertices can
one construct ? For this question one has to remember that binary trees are ordered 2-ary trees (which implies
that they are rooted). Clearly, if n = 1, there is only one such tree. If n = 2, two solutions exist: a root with
a left child, or a root with a right child. The solutions for n = 3 are presented in Figure 3.28, but what about
bigger n ?

3A more general notion of priority queue with a partially ordered set is possible, but the corresponding operations are not well
defined, or not really natural.

38

Figure 3.26: Priority tree delete, from algorithm 3.6.2 of [GYA]

Figure 3.27: The deletion of 21 in the priority tree, see Figure 3.6.4 of [GYA]

Figure 3.28: Rooted ordered trees with 3 vertices

One approach is by recursion. Let Cn denote the
number of such binary trees of n vertices. As shown
above, C1 = 1, C2 = 2 and C3 = 5. Now, given
the root of a tree containing n vertices, this root has
a left subtree and a right subtree. If the left subtree
contains j vertices (with 0 ≤ j ≤ n−1) then the right
subtree contains n − j − 1 vertices. In such a case,
there exists C j possible binary subtrees for the left subtree, and Cn− j−1 subtrees for the right subtree, making a
total of C jCn− j−1 possible and different trees. Note that this formula holds if we fix by convention that C0 = 1.
Since j can vary between 0 and n − 1 and since the solutions obtained for different j are all different, one
obtains the recurrence relation

Cn = C0Cn−1 +C1Cn−2 +C2Cn−3 + . . .Cn−2C1 +Cn−1C0.

This relation can also be written more concisely:

Cn =

n−1∑
j=0

C jCn− j−1

and is called the Catalan recursion. Then numbers Cn are known as the Catalan numbers, and appear in
various counting problems, see [9]. A closed formula exists for the computation of these numbers, In fact one

39

has

Cn =
1

n + 1

(
2n
n

)
,

where
(
2n
n

)
denote a binomial coefficient. Several proofs of this result are presented in [9].

Another formula which will appear later on is the so-called Cayley’s formula. This formula counts the number
of non-isomorphic trees with n labeled vertices. These labels can be identified with a different weight assigned
to each vertex, see Section 1.4 for the definition of weighted graphs. For weighted graphs, any isomorphism
has to respect the weights, which means that the functions (fV , fE), from the weighted graph G = (V, E, ω) to
the weighted graph G′ = (V ′, E′, ω′), introduced in Definition 2.8 have to satisfy for any x ∈ V and e ∈ E

ω′
(
fV (x)

)
= ω(x) and ω′

(
fE(e)

)
= ω(e).

Obviously, if only the vertices (or the edges) are endowed with weights, only one of these conditions has to
be satisfied.

Figure 3.29: Trees with 2, 3 and 4 labeled vertices, see [10]

In Figure 3.29 labels on vertices are indicated by colors, and only trees are considered. All non isomorphic
trees of 2, 3 and 4 labeled vertices are presented. Calyley’s formula states that for n labeled vertices, the
number of non-isomorphic trees is nn−2. Several proofs are indicated on [10], and one is fully presented in
[GYA, Sec. 3.7].

40

Bibliography

[BG] S. Baase, A. van Gelder, Computer algorithms, Introduction to design and analysis, Addison-Wesley,
2000.

[CH] J. Clark, D.A. Holton, A first look at graph theory, Wold Scientific, 1991.

[Die] R. Diestel, Graph theory, Fifth edition, Springer, 2017.

[GYA] J.L. Gross, J. Yellen, M. Anderson, Graph theory and its applications, CRC press, 2019.

[KMS] I. Kiss, J. Miller, P. Simon, Mathematics of epidemics on networks, Springer, 2017.

[Ma] B. Maurer, The King Chicken Theorems, Mathematics Magazine Vol. 53, (1980), pp. 67-80.

[Mo] J.W. Moon, Topics on tournaments, Holt, Rinehart and Winston, Inc., 1968.

[Ne] M. Newman, Networks, second edition, Oxford University Press, 2018.

[1] https://en.wikipedia.org/wiki/Permutation group

[2] https://proofwiki.org/wiki/Definition:Adjacency Matrix

[3] https://en.wikipedia.org/wiki/Directed acyclic graph

[4] https://thespectrumofriemannium.wordpress.com/tag/homeomorphically-irreducible-tree/

[5] https://en.wikipedia.org/wiki/Decision tree

[6] https://en.wikipedia.org/wiki/Tree traversal

[7] https://en.wikipedia.org/wiki/Binary expression tree

[8] https://en.wikipedia.org/wiki/Binary search tree

[9] https://en.wikipedia.org/wiki/Catalan number

[10] https://en.wikipedia.org/wiki/Cayley’s formula

41

https://en.wikipedia.org/wiki/Permutation_group
https://proofwiki.org/wiki/Definition:Adjacency_Matrix
https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://thespectrumofriemannium.wordpress.com/tag/homeomorphically-irreducible-tree/
https://en.wikipedia.org/wiki/Decision_tree
https://en.wikipedia.org/wiki/Tree_traversal
https://en.wikipedia.org/wiki/Binary_expression_tree
https://en.wikipedia.org/wiki/Binary_search_tree
https://en.wikipedia.org/wiki/Catalan_number
https://en.wikipedia.org/wiki/Cayley's_formula

	The basics
	Graphs
	Walks and paths
	Cycles
	Weighted graphs

	Representations and structures
	Matrix representations
	Isomorphisms
	Automorphisms and symmetries
	Subgraphs

	Trees
	Trees and forests
	Rooted trees
	Traversals in binary trees
	Applications
	Arithmetic expression trees
	Binary search trees
	Huffman trees
	Priority trees

	Counting binary trees

	Bibliography

